2010届高考数学函数图像与图像变换1
- 格式:doc
- 大小:310.50 KB
- 文档页数:6
函数的图像及其变换(完整版)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN函数的图像及变换一、函数图像的变换对称变换(||)翻折翻折变换|()|翻折左右平移平移变换上下平移横坐标不变,纵坐标伸缩伸缩变换纵坐标不变,横坐标伸缩y f x y f x ⎧⎪⎧=⎪⎨⎪=⎩⎪⎪⎧⎨⎨⎪⎩⎪⎪⎧⎪⎨⎪⎩⎩关于x 轴对称:(,)(,)x y x y →- 关于y 轴对称:(,)(,)x y x y →- 关于原点对称:(,)(,)x y x y →-- 关于y x =对称:(,)(,)x y y x →关于y x =-对称:(,)(,)x y y x →-- 关于直线x a =对称:(,)(2,)x y a x y →-(轴对称) 关于y x b =+对称:(,)(,)x y y b x b →-+ 关于y x b =-+对称:(,)(,)x y b y x b →--+ 关于点(,)P a b 对称:(,)(2,2)x y a x b y →--(点对称)例1:已知2()2f x x x =-,且()g x 与()f x 关于点(1,2)对称,求()g x 的解析式.(相关点法)例2:已知函数()y f x =的图像关于直线1x =-对称,且当(0,)x ∈+∞时,有1()f x x=,则当 (,2)x ∈-∞-时,()f x 的解析式是( ).A. 1x -B. 12x +C.12x -+D. 12x- 例3:下列函数中,同时满足两个条件“①x R ∀∈,()()01212f x f x ππ++-=;②当6π-<x 3π<时,'()0f x >”的一个函数是( )A.()sin(2)6f x x π=+B. ()cos(2)3f x x π=+C. ()sin(2)6f x x π=-D. ()cos(2)6f x x π=-①关于形如()y f x =的图像画法:当0x ≥时,()y f x =;当0x ≤时,()y f x =-()y f x =为偶函数,关于y 轴对称,即把0x ≥时()y f x =的图像画出,然后0x ≤时的图像与 0x ≥的图像关于y 轴对称即可得到所求图像.②关于形如()y f x =的图像画法当()0f x ≥时,()y f x =;当()0f x ≤时,()y f x =-先画出()y f x =的全部图像,然后把()y f x =的图像x 轴下方全部关于x 轴翻折上去,原x 轴上方的图像保持不变,x 轴下方的图像去掉不要即可得到所求图像.例3:画出下列函数的图像.(1)12log y x = (2)228y x x =--例4:设函数2()45f x x x =--.(1)在区间[2,6]-上,画出函数()f x 的图像;(2)设集合{}()5A x f x =≥,(,2][0,4][6,)B =-∞-+∞.试判断集合A B 、之间的关系,并给出证明;(3)当2k >时,求证:在区间[1,5]-上,3y kx k =+的图像位于函数()f x 图像的上方.①左右平移把函数()y f x =的全部图像沿x 轴方向向左(0a >)或向右(0a <)平移a 个单位即可得到函数()y f x a =+的图像②上下平移把函数()y f x =的全部图像沿y 轴方向向上(0a >)或向下(0a <)平移a 个单位即可得到函数()y f x a =+的图像例4:将函数lg(32)1y x =-+按向量(2,3)a =-平移后得到新的图象解析式为 例5:把一个函数的图象按向量(,2)8a π=-平移后得到的图象的解析式为sin(2)24y x π=+-,则原来函数的解析式 .Ⅰ.将函数()y f x =的全部图像中的每一点横坐标不变,纵坐标伸长(1)a >或缩短(01)a <<为原来的a 倍得到函数()(0)y af x a =>的图像.Ⅱ. 将函数()y f x =的全部图像中的每一点纵坐标不变,横坐标伸长(1)a >或缩短(01)a <<为原来的1a倍得到函数()(0)y f ax a =>的图像. 例6:已知函数21()2lg(2)-=++x f x x ,把函数()y f x =的图像关于y 轴对称,然后向右平移1个单位,最后纵坐标保持不变,横坐标变为原来的2倍得到()g x 的图像,求()g x 的解析式.例7:已知函数2()log (1)f x x =+,将()y f x =的图像向左平移1个单位,再将图像上所有点纵坐标伸长到原来的2倍,得到函数()y g x =的图像. (1)求()y g x =的解析式和定义域;(2)求函数()(1)()F x f x g x =--的最大值.【练习】1.为了得到函数321x y -=-的图像,只需要把函数2x y =的图像上所有的点( ).A.向右平移3个单位长度,再向下平移1个单位长度B.向左平移3个单位长度,再向下平移1个单位长度C.向右平移3个单位长度,再向上平移1个单位长度D.向左平移3个单位长度,再向上平移1个单位长度 2.下面四个图形中,与函数22log (1)yx x =+≥的图像关于y x =对称的是( ).3.若函数()()y f x x R =∈满足(2)()f x f x +=,且[1,1]x ∈-时,()f x x=,则函数()y f x =的图像与函数4log y x =的图像的交点的个数为( ).A.3B.4C.6D.84.将函数by a x a=++的图像向右平移2个单位长度后又向下平移2个单位,所得到的函数图像与原图像如果关于直线y x =对称,那么( ).A. 1,0a b =-≠B. 1,a b R =-∈C.1,0a b =≠D. 0,a b R =∈ 5.已知21()f x x x =+,且()g x 与()f x 关于点(1,0)-对称,求()g x 的解析式.6.画出下列函数的图像.(1)ln y x = (2)26y x x =--7. 函数()2xf x =和3()g x x =的图像的示意图如图所示,设两函数的图像交于点11(,)A x y ,22(,)B x y ,且12x x <.(1)请指出示意图中曲线12,C C 分别对应于哪一个函数;(2)若12[,1],[,1]x a a x b b ∈+∈+,且{},1,2,3,4,5,6,7,8,9,10,11,12a b ∈,指出,a b 的值,并说明理由;(3)结合函数图像的示意图,判断(6),(6),(2010),(2010)f g f g 的大小关系.8.已知函数()f x 和()g x 的图像关于原点对称,且2()2f x x x =+. (1)求函数()g x 的解析式; (2)解不等式()()1g x f x x ≥--;(3)若()()()1h x g x f x λ=-+在[1,1]-上是增函数,求实数λ的取值范围.6. 已知函数()y f x =,把函数()y f x =的图像向左平移1个单位,然后横坐标保持不变,纵坐标变为原来的3倍再向下平移3个单位得到()g x 的图像,求()g x 的解析式.补充:请把相应的幂函数图象代号填入表格.①32x y =;②2-=x y;③21xy =;④1-=x y ;⑤31x y =;⑥23x y =;⑦34x y =; ⑧21-=x y ;⑨35x y =.函数代号 ①②③④⑤⑥⑦⑧⑨⑩图象代号HI常规函数图像有:指数函数:逆时针旋转,底数越来越大 .对数函数:逆时针旋转,底数越来越小幂函数:逆时针旋转,指数越来越大。
高考数学《图像变换在三角函数中的应用》基础知识与典型例题分析在高考中涉及到的三角函数图像变换主要指的是形如()sin y A x ωϕ=+的函数,通过横纵坐标的平移与放缩,得到另一个三角函数解析式的过程。
要求学生熟练掌握函数图像变换,尤其是多次变换时,图像变化与解析式变化之间的对应联系。
一、基础知识:(一)图像变换规律:设函数为()y f x =(所涉及参数均为正数) 1、函数图像的平移变换:(1)()f x a +:()f x 的图像向左平移a 个单位 (2)()f x a −:()f x 的图像向右平移a 个单位 (3)()f x b +:()f x 的图像向上平移b 个单位 (4)()f x b −:()f x 的图像向下平移b 个单位 2、函数图像的放缩变换:(1)()f kx :()f x 的图像横坐标变为原来的1k(图像表现为横向的伸缩) (2)()kf x :()f x 的图像纵坐标变为原来的k 倍(图像表现为纵向的伸缩) 3、函数图象的翻折变换: (1)()fx :()f x 在x 轴正半轴的图像不变,负半轴的图像替换为与正半轴图像关于y 轴对称的图像(2)()f x :()f x 在x 轴上方的图像不变,x 轴下方的部分沿x 轴向上翻折即可(与原x 轴下方图像关于x 轴对称)(二)图像变换中要注意的几点:1、如何判定是纵坐标变换还是横坐标变换?在寻找到联系后可根据函数的形式了解变换所需要的步骤,其规律如下: ① 若变换发生在“括号”内部,则属于横坐标的变换 ② 若变换发生在“括号”外部,则属于纵坐标的变换例如:()31y f x =+:可判断出属于横坐标的变换:有放缩与平移两个步骤()2y f x =−+:可判断出横纵坐标均需变换,其中横坐标的为对称变换,纵坐标的为平移变换2、解析式变化与图像变换之间存在怎样的对应?由前面总结的规律不难发现: (1)加“常数”⇔ 平移变换(2)添“系数”⇔放缩变换 (3)加“绝对值”⇔翻折变换3、多个步骤的顺序问题:在判断了需要几步变换以及属于横坐标还是纵坐标的变换后,在安排顺序时注意以下原则:① 横坐标的变换与纵坐标的变换互不影响,无先后要求 ② 横坐标的多次变换中,每次变换只有x 发生相应变化 例如:()()21y f x y f x =→=+可有两种方案方案一:先平移(向左平移1个单位),此时()()1f x f x →+。
函数图像及其变换师大学附属外国语中学 庆兵函数是整个高中数学的重点和难点,高中阶段对函数性质的研究往往是通过研究函数图像及其变换得到的,所以函数图像及其变换也就成为高考的固定考点。
历年高考考试大纲中都明确要求,学生要“会运用函数图像理解和研究函数的性质”,并且与前几年比较可以发现,近几年高考对于函数图像方面的考查已经不再局限于对几个常见函数本身的单一的考查,而是结合函数的运算,更为深刻地考查函数与函数、函数与方程、函数与不等式、函数与其他学科或现实生活等方面的联系。
这就要求我们不仅要熟练掌握一些基本函数的图像特征及函数图像变换的几种常见方法,而且要会灵活运用。
下面笔者就结合近几年的一些高考试题,谈一些函数图像及其变换和应用方面的问题,希望能引起正在忙于备考的高三教师和学子们的重视,并给他们带来一些启发。
(一)平移变换及其应用:函数00)(y x x f y +-=的图像可以看作是由函数)(x f y =的图像先向左0(x >0)或向右(0x <0)平移||0x 个单位,再向上0(y >0)或向下(0y <0)平移||0y 个单位得到。
如:例1、(2008理11)方程0122=-+x x 的解可视为函数2+=x y 的图象与函数xy 1=的图象交点的横坐标。
若方程044=-+ax x 的各个实根)4(,,,21≤k k x x x x 所对应的点),,2,1)(4,(k i x x i i =均在直线x y =的同侧,则实数a 的取值围是 。
(图一) (图二)分析:由题意,方程044=-+ax x 的解可视为函数a x y +=3的图象与函数xy 4=的图象交点的横坐标。
这些交点可以看作是由函数3x y =的图象经过上下平移得到,由图(1)可知,函数3x y =与函数xy 4=的图象分别交于点P 、Q ,且点P 在直线上方,点Q 在直线x4=下方,要使得方程044=-+ax x 的各个实根)4(,,,21≤k k x x x x 所对应的点),,2,1)(4,(k i x x ii =均在直线x y =的同侧,只须将函数3x y =图像上下平移,将点Q 移至函数x y 4=图像与直线x y =交点A )2,2(--左侧或将点P 移至函数xy 4=图像与直线x y =交点B )2,2(右侧即可。
函数的图像及其变换(完整版)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(函数的图像及其变换(完整版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为函数的图像及其变换(完整版)的全部内容。
晴。
高考数学函数图像变换与技巧全解析在高考数学中,函数图像的变换与相关技巧是一个重要且具有一定难度的知识点。
掌握这部分内容,对于理解函数的性质、解决函数相关的问题以及提高数学综合解题能力都具有至关重要的意义。
一、函数图像的平移变换函数图像的平移是指将函数的图像在平面直角坐标系中沿着坐标轴进行移动。
对于形如 y = f(x) 的函数,向左平移 a 个单位,得到的函数为 y = f(x + a);向右平移 a 个单位,得到的函数为 y = f(x a)。
向上平移 b 个单位,得到的函数为 y = f(x) + b;向下平移 b 个单位,得到的函数为 y = f(x) b。
例如,对于函数 y = x²,将其向左平移 2 个单位,得到 y =(x +2)²的图像;将其向下平移 3 个单位,得到 y = x² 3 的图像。
在进行平移变换时,需要注意“左加右减,上加下减”的规律。
这个规律简单易记,但在实际应用中,同学们要理解其本质,即函数自变量 x 的变化和函数值 y 的变化。
二、函数图像的伸缩变换函数图像的伸缩变换包括沿 x 轴和 y 轴的伸缩。
沿 x 轴方向的伸缩:对于函数 y = f(x),若将其横坐标伸长或缩短到原来的 k 倍(k > 0),则得到的函数为 y = f(1/k x) (当 k > 1 时,图像沿 x 轴缩短;当 0 < k < 1 时,图像沿 x 轴伸长)。
例如,函数 y = sin x 的图像,将其横坐标缩短为原来的 1/2,得到y = sin 2x 的图像。
沿 y 轴方向的伸缩:对于函数 y = f(x),若将其纵坐标伸长或缩短到原来的 k 倍(k > 0),则得到的函数为 y = kf(x) (当 k > 1 时,图像沿 y 轴伸长;当 0 < k < 1 时,图像沿 y 轴缩短)。
比如,函数 y = x 的图像,将其纵坐标伸长为原来的 2 倍,得到 y= 2x 的图像。
函数图像变换知识点总结一、基本概念1. 函数图像的平移函数图像的平移是指将原函数图像沿横轴或纵轴方向平移一定的距离。
平移的方向和距离可以是正数也可以是负数。
- 沿横轴方向平移:对于函数y=f(x),如果在横轴方向上平移了a个单位,新函数表示为y=f(x-a)。
- 沿纵轴方向平移:对于函数y=f(x),如果在纵轴方向上平移了b个单位,新函数表示为y=f(x)+b。
2. 函数图像的伸缩函数图像的伸缩是指将原函数图像沿横轴或纵轴方向进行拉伸或压缩。
伸缩的方向和比例可以是正数也可以是负数。
- 沿横轴方向伸缩:对于函数y=f(x),如果在横轴方向上进行了伸缩,新函数表示为y=f(kx)。
- 沿纵轴方向伸缩:对于函数y=f(x),如果在纵轴方向上进行了伸缩,新函数表示为y=kf(x)。
3. 函数图像的翻转函数图像的翻转是指对原函数图像进行镜像操作,可以分为关于横轴翻转和关于纵轴翻转两种情况。
- 关于横轴翻转:对于函数y=f(x),进行横轴翻转后,新函数表示为y=-f(x)。
- 关于纵轴翻转:对于函数y=f(x),进行纵轴翻转后,新函数表示为y=f(-x)。
二、函数图像变换的特点1. 平移:平移不改变函数的基本形状,只是改变了函数的位置;2. 伸缩:伸缩可以改变函数的斜率和幅度,但不改变函数的形状;3. 翻转:翻转改变了函数的整体形状,使得原函数变为其镜像;4. 组合变换:可以将多种变换进行组合,得到更复杂的函数图像变换。
三、函数图像变换的应用函数图像变换不仅仅是数学中的一种抽象概念,还可以应用到具体的问题中,如物理、经济等领域。
1. 物理问题:在物理学中,函数图像变换可以用来描述物体的运动、变形等。
例如,对于速度-时间图像,进行平移可表示物体的起始位置不同;进行伸缩则可以描述加速度的变化;进行翻转可以描述反向运动等情况。
2. 经济问题:在经济学中,函数图像变换可以用来描述经济模型的变化。
例如,对于需求-价格图像,进行平移可以表示需求量或价格的变化;进行伸缩可以描述需求的弹性;进行翻转可以描述替代品或补充品的关系等情况。
难点10 函数图象与图象变换函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.●难点磁场(★★★★★)已知函数f (x )=ax 3+bx 2+cx +d 的图象如图,求b 的范围.●案例探究[例1]对函数y =f (x )定义域中任一个x 的值均有f (x +a )=f (a -x ),(1)求证y =f (x )的图象关于直线x =a 对称;(2)若函数f (x )对一切实数x 都有f (x +2)=f (2-x ),且方程f (x )=0恰好有四个不同实根,求这些实根之和.命题意图:本题考查函数概念、图象对称问题以及求根问题.属★★★★★级题目. 知识依托:把证明图象对称问题转化到点的对称问题.错解分析:找不到问题的突破口,对条件不能进行等价转化. 技巧与方法:数形结合、等价转化.(1)证明:设(x 0,y 0)是函数y =f (x )图象上任一点,则y 0=f (x 0),又f (a +x )=f (a -x ),∴f (2a -x 0)= f [a +(a -x 0)]=f [a -(a -x 0)]=f (x 0)=y 0,∴(2a -x 0,y 0)也在函数的图象上,而2)2(00x x a +-=a ,∴点(x 0,y 0)与(2a -x 0,y 0)关于直线x =a 对称,故y =f (x )的图象关于直线x =a 对称.(2)解:由f (2+x )=f (2-x )得y =f (x )的图象关于直线x =2对称,若x 0是f (x )=0的根,则4-x 0也是f (x )=0的根,由对称性,f (x )=0的四根之和为8.[例2]如图,点A 、B 、C 都在函数y =x 的图象上,它们的横坐标分别是a 、a +1、a +2.又A 、B 、C 在x 轴上的射影分别是A ′、B ′、C ′,记△AB ′C 的面积为f (a ),△A ′BC ′的面积为g (a ).(1)求函数f (a )和g (a )的表达式;(2)比较f (a )与g (a )的大小,并证明你的结论.命题意图:本题考查函数的解析式、函数图象、识图能力、图形的组合等.属★★★★★级题目. 知识依托:充分借助图象信息,利用面积问题的拆拼以及等价变形找到问题的突破口. 错解分析:图形面积不会拆拼. 技巧与方法:数形结合、等价转化.解:(1)连结AA ′、BB ′、CC ′,则f (a )=S △AB ′C =S 梯形AA ′C ′C -S △AA ′B ′-S △CC ′B=21(A ′A +C ′C )=21(2++a a ), g (a )=S △A ′BC ′=21A ′C ′·B ′B =B ′B =1+a .0)11121(21)]1()12[(21)122(21)()()2(<++-+++=-+-+-+=+-++=-a a a a a a a a a a a a g a f∴f (a )<g (a ). ●锦囊妙计1.熟记基本函数的大致图象,掌握函数作图的基本方法:(1)描点法:列表、描点、连线;(2)图象变换法:平移变换、对称变换、伸缩变换等.2.高考中总是以几类基本初等函数的图象为基础来考查函数图象的.题型多以选择与填空为主,属于必考内容之一,但近年来,在大题中也有出现,须引起重视.●歼灭难点训练 一、选择题1.(★★★★)当a ≠0时,y =ax +b 和y =b ax 的图象只可能是()2.(★★★★)某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了,再走余下的路,下图中y 轴表示离学校的距离,x 轴表示出发后的时间,则适合题意的图形是()二、填空题3.(★★★★★)已知函数f (x )=log 2(x +1),将y =f (x )的图象向左平移1个单位,再将图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数y =g (x )的图象,则函数F (x )=f (x )-g (x )的最大值为_________.三、解答题4.(★★★★)如图,在函数y =lg x 的图象上有A 、B 、C 三点,它们的横坐标分别为m ,m +2,m +4(m >1).(1)若△ABC 面积为S ,求S =f (m ); (2)判断S =f (m )的增减性.5.(★★★★)如图,函数y =23|x |在x ∈[-1,1]的图象上有两点A 、B ,AB ∥Ox 轴,点M (1,m )(m ∈R 且m >23)是△ABC 的BC 边的中点.(1)写出用B 点横坐标t 表示△ABC 面积S 的函数解析式S =f (t ); (2)求函数S =f (t )的最大值,并求出相应的C 点坐标.6.(★★★★★)已知函数f (x )是y =1102+x -1(x ∈R )的反函数,函数g (x )的图象与函数y =-21-x的图象关于y 轴对称,设F (x )=f (x )+g (x ).(1)求函数F (x )的解析式及定义域;(2)试问在函数F (x )的图象上是否存在两个不同的点A 、B ,使直线AB 恰好与y 轴垂直?若存在,求出A 、B 的坐标;若不存在,说明理由.7.(★★★★★)已知函数f 1(x )=21x -,f 2(x )=x +2,(1)设y =f (x )=⎩⎨⎧∈--∈]1,0[ ),(3)0,1[),(21x x f x x f ,试画出y =f (x )的图象并求y =f (x )的曲线绕x 轴旋转一周所得几何体的表面积;(2)若方程f 1(x +a )=f 2(x )有两个不等的实根,求实数a 的范围.(3)若f 1(x )>f 2(x -b )的解集为[-1,21],求b 的值. 8.(★★★★★)设函数f (x )=x +x1的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x ). (1)求g (x )的解析表达式;(2)若直线y =b 与C 2只有一个交点,求b 的值,并求出交点坐标; (3)解不等式log a g (x )<log a 29 (0<a <1).参考答案难点磁场解法一:观察f (x )的图象,可知函数f (x )的图象过原点,即f (0)=0,得d =0,又f (x )的图象过(1,0),∴f (x )=a +b +c ①,又有f (-1)<0,即-a +b -c <0②,①+②得b <0,故b 的范围是(-∞,0)解法二:如图f (0)=0有三根,∴f (x )=ax 3+bx 2+cx +d =ax (x -1)(x -2)=ax 3-3ax 2+2ax ,∴b = -3a ,∵a >0,∴b <0.歼灭难点训练一、1.解析:∵y =b ax =(b a )x ,∴这是以b a 为底的指数函数.仔细观察题目中的直线方程可知:在选择支B 中a >0,b >1,∴b a >1,C 中a <0,b >1,∴0<b a <1,D 中a <0,0<b <1,∴b a >1.故选择支B 、C 、D 均与指数函数y =(b a )x 的图象不符合.答案:A2.解析:由题意可知,当x =0时,y 最大,所以排除A 、C.又一开始跑步,所以直线随着x 的增大而急剧下降.答案:D二、3.解析:g (x )=2log 2(x +2)(x >-2) F (x )=f (x )-g (x )=log 2(x +1)-2log 2(x +2) =log 21441log 441log )2(122222+++=+++=++x x x x x x x x)1(21111log 2->++++=x x x∵x +1>0,∴F (x )≤41log 211)1(21log 22=++⋅+x x =-2 当且仅当x +1=11+x ,即x =0时取等号. ∴F (x )max =F (0)=-2. 答案:-2三、4.解:(1)S △ABC =S 梯形AA ′B ′B +S 梯形BB ′C ′C -S 梯形AA ′C ′C . (2)S =f (m )为减函数. 5.解:(1)依题意,设B (t ,23 t ),A (-t , 23t )(t >0),C (x 0,y 0). ∵M 是BC 的中点.∴20x t +=1,223y t + =m .∴x 0=2-t ,y 0=2m -23t .在△ABC 中,|AB |=2t ,AB 边上的高h AB =y 0-23t =2m -3t . ∴S =21|AB |·h AB = 21·2t ·(2m -3t ),即f (t )=-3t 2+2mt ,t ∈(0,1).(2)∵S =-3t 2+2mt =-3(t -3m )2+32m ,t ∈(0,1],若⎪⎪⎩⎪⎪⎨⎧>≤<23130m m ,即23<m ≤3,当t =3m 时,S max =32m ,相应的C 点坐标是(2-3m , 23m ),若3m>1,即m >3.S =f (t ) 在区间(0,1]上是增函数,∴S max =f (1)=2m -3,相应的C 点坐标是(1,2m -3). 6.解:(1)y =1102+x -1的反函数为f (x )=lg xx+-11(-1<x <1).由已知得g (x )=21+x ,∴F (x )=lg x x +-11+21+x ,定义域为(-1,1).(2)用定义可证明函数u =x x +-11=-1+12+x 是(-1,1)上的减函数,且y =lg u 是增函数.∴f (x )是(-1,1)上的减函数,故不存在符合条件的点A 、B .7.解:(1)y =f (x )=⎪⎩⎪⎨⎧∈+--∈-]1,0[,1)0,1[,12x x x x .图略.y =f (x )的曲线绕x 轴旋转一周所得几何体的表面积为(2+2)π. (2)当f 1(x +a )=f 2(x )有两个不等实根时,a 的取值范围为2-2<a ≤1. (3)若f 1(x )>f 2(x -b )的解集为[-1,21],则可解得b =235-.8.(1)g (x )=x -2+41x .(2)b =4时,交点为(5,4);b =0时,交点为(3,0). (3)不等式的解集为{x |4<x <29或x >6}.。
2010 年全国统一高考数学试卷(理科)(新课标)一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2} 2.(5分)已知复数,是z 的共轭复数,则=()A.B.C.1 D.23.(5 分)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣2 4.(5分)如图,质点P 在半径为2 的圆周上逆时针运动,其初始位置为P0(,-),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为()A.B.C.D.5.(5分)已知命题p1:函数y=2x﹣2﹣x 在R 为增函数,p2:函数y=2x+2﹣x 在R 为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2 和q4:p1∧(¬p2)中,真命题是()A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q46.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000 粒,对于没有发芽的种子,每粒需再补种2 粒,补种的种子数记为X,则X 的数学期望为()A.100 B.200 C.300 D.4007.(5 分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.8.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2 或x>4} B.{x|x<0 或x>4}C.{x|x<0 或x>6} D.{x|x<﹣2 或x>2}9.(5 分)若,α是第三象限的角,则=()A.B.C.2D.﹣210.(5 分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B.C.D.5πa211.(5 分)已知函数,若a,b,c 互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是()1 n +1 n A .(1,10) B .(5,6) C .(10,12) D .(20,24)12.(5 分)已知双曲线 E 的中心为原点,P (3,0)是 E 的焦点,过 P 的直线 l 与 E 相交于 A ,B 两点,且 AB 的中点为 N (﹣12,﹣15),则 E 的方程式为 ()A .B .C .D .二、填空题(共 4 小题,每小题 5 分,满分 20 分)13.(5 分)设 y=f (x )为区间[0,1]上的连续函数,且恒有 0≤f (x )≤1,可以用随机模拟方法近似计算积分,先产生两组(每组 N 个)区间[0,1]上的均匀随机数 x 1,x 2,…x N 和 y 1,y 2,…y N ,由此得到 N 个点(x i , y i )(i=1,2,…,N ),再数出其中满足 y i ≤f (x i )(i=1,2,…,N )的点数 N 1,那么由随机模拟方案可得积分的近似值为. 14.(5 分)正视图为一个三角形的几何体可以是(写出三种)15.(5 分)过点 A (4,1)的圆 C 与直线 x ﹣y=1 相切于点 B (2,1),则圆 C 的方程为.16.(5 分)在△ABC 中,D 为边 BC 上一点,BD=DC ,∠ADB=120°,AD=2,若 △ADC 的面积为,则∠BAC= .三、解答题(共 8 小题,满分 90 分)17.(12 分)设数列满足 a =2,a ﹣a =3•22n ﹣1 (1) 求数列{a n }的通项公式;(2) 令 b n =na n ,求数列{b n }的前 n 项和 S n .18.(12 分)如图,已知四棱锥 P ﹣ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为 H ,PH 是四棱锥的高,E 为 AD 中点(I ) 证明:PE ⊥BC(II ) 若∠APB=∠ADB=60°,求直线 PA 与平面 PEH 所成角的正弦值.19.(12 分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方 法从该地区调查了 500 位老年人,结果如表:性别 是否需要志愿者男 女需要 40 30 不需要160270(1) 估计该地区老年人中,需要志愿者提供帮助的比例;(2) 能否有 99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3) 根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.附:K 2=.20.(12 分)设 F 1,F 2 分别是椭圆的左、右焦点,过 F 1P (K 2≥k )0.050 0.010 0.0013.8416.63510.828斜率为1 的直线ℓ 与E 相交于A,B 两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E 的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E 的方程.21.(12分)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0 时f(x)≥0,求a 的取值范围.22.(10 分)如图:已知圆上的弧,过C 点的圆的切线与BA 的延长线交于E 点,证明:(I)∠ACE=∠BCD.(II)BC2=BE•CD.23.(10 分)已知直线C1(t 为参数),C2(θ为参数),(I)当α=时,求C1 与C2 的交点坐标;(II)过坐标原点O 做C1 的垂线,垂足为A,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.24.(10 分)设函数f(x)=|2x﹣4|+1.(I)画出函数y=f(x)的图象:(II)若不等式f(x)≤ax 的解集非空,求a 的取值范围.2010 年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}【考点】1E:交集及其运算.【专题】11:计算题.【分析】先化简集合A 和B,注意集合B 中的元素是整数,再根据两个集合的交集的意义求解.【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.【点评】本题主要考查集合间的交集运算以及集合的表示方法,涉及绝对值不等式和幂函数等知识,属于基础题.2.(5分)已知复数,是z 的共轭复数,则=()A.B.C.1 D.2【考点】A5:复数的运算.【分析】因为,所以先求|z|再求的值.【解答】解:由可得.另解:故选:A.【点评】命题意图:本题主要考查复数的运算,涉及复数的共轭复数知识,可以利用复数的一些运算性质可以简化运算.3.(5分)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1B.y=2x﹣1C.y=﹣2x﹣3D.y=﹣2x﹣2【考点】6H:利用导数研究曲线上某点切线方程.【专题】1:常规题型;11:计算题.【分析】欲求在点(﹣1,﹣1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=﹣1 处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=,∴y′=,所以k=y′|x==2,得切线的斜率为2,所以k=2;﹣1所以曲线y=f(x)在点(﹣1,﹣1)处的切线方程为:y+1=2×(x+1),即y=2x+1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.4.(5分)如图,质点P 在半径为2 的圆周上逆时针运动,其初始位置为P0(,-),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【分析】本题的求解可以利用排除法,根据某具体时刻点P 的位置到到x 轴距离来确定答案.【解答】解:通过分析可知当t=0 时,点P 到x 轴距离d 为,于是可以排除答案A,D,再根据当时,可知点P 在x 轴上此时点P 到x 轴距离d 为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.5.(5分)已知命题p1:函数y=2x﹣2﹣x 在R 为增函数,p2:函数y=2x+2﹣x 在R 为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2 和q4:p1∧(¬p2)中,真命题是()A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4【考点】2E:复合命题及其真假;4Q:指数函数与对数函数的关系.【专题】5L:简易逻辑.【分析】先判断命题p1 是真命题,P2 是假命题,故p1∨p2 为真命题,(﹣p2)为真命题,p1∧(﹣p2)为真命题.【解答】解:易知p1 是真命题,而对p2:y′=2x ln2﹣ln2=ln2(),当x∈[0,+∞)时,,又ln2>0,所以y′≥0,函数单调递增;同理得当x∈(﹣∞,0)时,函数单调递减,故p2 是假命题.由此可知,q1 真,q2 假,q3 假,q4真.故选:C.【点评】只有p1 与P2 都是真命题时,p1∧p2 才是真命题.只要p1 与p2 中至少有一个真命题,p1∨p2 就是真命题.6.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000 粒,对于没有发芽的种子,每粒需再补种2 粒,补种的种子数记为X,则X 的数学期望为()A.100 B.200 C.300 D.400【考点】CH:离散型随机变量的期望与方差;CN:二项分布与n 次独立重复试验的模型.【专题】11:计算题;12:应用题.【分析】首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).又没发芽的补种2 个,故补种的种子数记为X=2ξ,根据二项分布的期望公式即可求出结果.【解答】解:由题意可知播种了1000 粒,没有发芽的种子数ξ 服从二项分布,即ξ~B(1000,0.1).而每粒需再补种2 粒,补种的种子数记为X故X=2ξ,则EX=2Eξ=2×1000×0.1=200.故选:B.【点评】本题主要考查二项分布的期望以及随机变量的性质,考查解决应用问题的能力.属于基础性题目.7.(5 分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.【考点】EF:程序框图.【专题】28:操作型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.8.(5 分)设偶函数 f (x )满足 f (x )=2x ﹣4(x ≥0),则{x |f (x ﹣2)>0}=( ) A .{x |x <﹣2 或 x >4} B .{x |x <0 或 x >4} C .{x |x <0 或x >6}D .{x |x <﹣2 或 x >2}【考点】3K :函数奇偶性的性质与判断. 【专题】11:计算题.【分析】由偶函数 f (x )满足 f (x )=2x ﹣4(x ≥0),可得 f (x )=f (|x |)=2|x |﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案. 【解答】解:由偶函数 f (x )满足 f (x )=2x ﹣4(x ≥0),可得 f (x )=f (|x |)=2|x |﹣4,则f (x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使|x ﹣2|>2 解得 x >4,或 x <0.应选:B .【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.9.(5 分)若,α 是第三象限的角,则 =( )A .B .C .2D .﹣2【考点】GF :三角函数的恒等变换及化简求值;GW :半角的三角函数.【专题】11:计算题.【分析】将欲求式 中的正切化成正余弦,还要注意条件中的角 α 与待求式中角的差别,注意消除它们之间的不同.【解答】解:由,α是第三象限的角,∴可得,则,应选A.【点评】本题主要考查三角恒等变换中的倍角公式的灵活运用、同角的三角函数关系等知识以及相应的运算能力.10.(5 分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B.C.D.5πa2【考点】LR:球内接多面体.【专题】11:计算题.【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.【解答】解:根据题意条件可知三棱柱是棱长都为a 的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选:B.【点评】本题主要考查空间几何体中位置关系、球和正棱柱的性质以及相应的运算能力和空间形象能力.11.(5 分)已知函数,若a,b,c 互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【考点】3A:函数的图象与图象的变换;3B:分段函数的解析式求法及其图象的作法;4H:对数的运算性质;4N:对数函数的图象与性质.【专题】13:作图题;16:压轴题;31:数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc 的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.12.(5 分)已知双曲线E 的中心为原点,P(3,0)是E 的焦点,过P 的直线l 与E 相交于A,B 两点,且AB 的中点为N(﹣12,﹣15),则E 的方程式为()A.B.C.D.【考点】KB :双曲线的标准方程;KH :直线与圆锥曲线的综合. 【专题】11:计算题;5D :圆锥曲线的定义、性质与方程.【分析】已知条件易得直线 l 的斜率为 1,设双曲线方程,及 A ,B 点坐标代入方程联立相减得x 1+x2=﹣24,根据=,可求得 a 和【解答】解:由已知条件易得直线 l 的斜率为 k=k PN =1, 设双曲线方程为,A (x 1,y 1),B (x 2,y 2),则有 ,两式相减并结合 x 1+x 2=﹣24,y 1+y 2=﹣30 得 =,从而 k==1即 4b 2=5a 2,又 a 2+b 2=9, 解得 a 2=4,b 2=5,故选:B . 【点评】本题主要考查了双曲线的标准方程.考查了学生综合分析问题和解决问题的能力.二、填空题(共 4 小题,每小题 5 分,满分 20 分) 13.(5 分)设 y=f (x )为区间[0,1]上的连续函数,且恒有 0≤f (x )≤1,可以用随机模拟方法近似计算积分 ,先产生两组(每组 N 个)区间[0,1]上的均匀随机数x1,x2,…x N 和y1,y2,…y N,由此得到N 个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为.【考点】69:定积分的应用;CE:模拟方法估计概率;CF:几何概型.【专题】11:计算题.【分析】要求∫f(x)dx 的近似值,利用几何概型求概率,结合点数比即可得.【解答】解:由题意可知得,故积分的近似值为.故答案为:.【点评】本题考查几何概型模拟估计定积分值,以及定积分在面积中的简单应用,属于基础题.14.(5 分)正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥(其他正确答案同样给分)(写出三种)【考点】L7:简单空间图形的三视图.【专题】21:阅读型.【分析】三棱锥一个侧面的在正视图为一条线段的情形;圆锥;四棱锥有两个侧面在正视图为线段的情形,即可回答本题.【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱.【点评】本题主要考查三视图以及常见的空间几何体的三视图,考查空间想象能力.15.(5 分)过点A(4,1)的圆C 与直线x﹣y=1 相切于点B(2,1),则圆C 的方程为(x﹣3)2+y2=2.【考点】J1:圆的标准方程;J9:直线与圆的位置关系.【专题】16:压轴题.【分析】设圆的标准方程,再用过点A(4,1),过B,两点坐标适合方程,圆和直线相切,圆心到直线的距离等于半径,求得圆的方程.【解答】解:设圆的方程为(x﹣a)2+(y﹣b)2=r2,则(4﹣a)2+(1﹣b)2=r2,(2﹣a)2+(1﹣b)2=r2,=﹣1,解得a=3,b=0,r=,故所求圆的方程为(x﹣3)2+y2=2.故答案为:(x﹣3)2+y2=2.【点评】命题意图:本题主要考查利用题意条件求解圆的方程,通常借助待定系数法求解.16.(5 分)在△ABC 中,D 为边BC 上一点,BD=DC,∠ADB=120°,AD=2,若△ADC 的面积为,则∠BAC= 60°.【考点】HR:余弦定理.【专题】11:计算题;16:压轴题.【分析】先根据三角形的面积公式利用△ADC 的面积求得DC,进而根据三角形ABC 的面积求得BD 和BC,进而根据余弦定理求得AB.最后在三角形ABC 中利用余弦定理求得cos∠BAC,求得∠BAC 的值.【解答】解:由△ADC 的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°=,1 n +1 n n n n n n,则=.故∠BAC=60°.【点评】本题主要考查解三角形中的边角关系及其面积等基础知识与技能,分析问题解决问题的能力以及相应的运算能力.三、解答题(共 8 小题,满分 90 分)17.(12 分)设数列满足 a =2,a ﹣a =3•22n ﹣1 (1) 求数列{a n }的通项公式;(2) 令 b n =na n ,求数列{b n }的前 n 项和 S n .【考点】8E :数列的求和;8H :数列递推式. 【专题】11:计算题.【分析】(Ⅰ)由题意得 a n +1=[(a n +1﹣a n )+(a n ﹣a n ﹣1)+…+(a 2﹣a 1)]+a 1=3(22n﹣1+22n ﹣3+…+2)+2=22(n +1)﹣1.由此可知数列{a}的通项公式为 a =22n ﹣1.(Ⅱ)由 b =na =n•22n ﹣1 知 S =1•2+2•23+3•25++n•22n ﹣1,由此入手可知答案. 【解答】解:(Ⅰ)由已知,当 n ≥1 时,a n +1=[(a n +1﹣a n )+(a n ﹣a n ﹣1)+…+(a 2﹣a 1)]+a 1=3(22n ﹣1+22n ﹣3+…+2)+2=3×+2=22(n +1)﹣1.而 a 1=2,所以数列{a n }的通项公式为 a n =22n ﹣1.(Ⅱ)由 b n =na n =n•22n ﹣1 知 S n =1•2+2•23+3•25+…+n•22n ﹣1①n n 从而 22S =1•23+2•25+…+n•22n +1② ①﹣②得(1﹣22)•S =2+23+25+…+22n ﹣1﹣n•22n +1. 即.【点评】本题主要考查数列累加法(叠加法)求数列通项、错位相减法求数列和等知识以及相应运算能力.18.(12 分)如图,已知四棱锥 P ﹣ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为 H ,PH 是四棱锥的高,E 为 AD 中点(I ) 证明:PE ⊥BC(II ) 若∠APB=∠ADB=60°,求直线 PA 与平面 PEH 所成角的正弦值.【考点】MA :向量的数量积判断向量的共线与垂直;MI :直线与平面所成的角.【专题】11:计算题;13:作图题;14:证明题;35:转化思想.【分析】以 H 为原点,HA ,HB ,HP 分别为 x ,y ,z 轴,线段 HA 的长为单位长,建立空间直角坐标系.(1) 表示,,计算,就证明 PE ⊥BC .(2) ∠APB=∠ADB=60°,求出 C ,P 的坐标,再求平面 PEH 的法向量,求向量,然后求与面 PEH 的法向量的数量积,可求直线 PA 与平面 PEH 所成角的正弦值.【解答】解:以 H 为原点,HA ,HB ,HP 分别为 x ,y ,z 轴,线段 HA 的长为单 位长,建立空间直角坐标系如图,则 A (1,0,0),B (0,1,0) (Ⅰ)设 C (m ,0,0),P (0,0,n )(m <0,n >0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m= ,n=1 ,故 C (﹣),设=(x,y,z)为平面PEH 的法向量则即因此可以取,由,可得所以直线PA 与平面PEH 所成角的正弦值为.【点评】本题主要考查空间几何体中的位置关系、线面所成的角等知识,考查空间想象能力以及利用向量法研究空间的位置关系以及线面角问题的能力.19.(12 分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500 位老年人,结果如表:性别男女是否需要志愿者需要40 30不需要160 270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.050 0.010 0.0013.841 6.635 10.828附:K2=.【考点】BL:独立性检验.【专题】11:计算题;5I:概率与统计.【分析】(1)由样本的频率率估计总体的概率,(2)求K2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500 位老年人中有70 位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K2的观测值因为9.967>6.635,且P(K2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(12 分)设F1,F2 分别是椭圆的左、右焦点,过F1斜率为1 的直线ℓ 与E 相交于A,B 两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E 的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E 的方程.【考点】83:等差数列的性质;K3:椭圆的标准方程;K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】(I)根据椭圆的定义可知|AF2|+|BF2|+|AB|=4a,进而根据|AF2|,|AB|,|BF2|成等差数表示出|AB|,进而可知直线l 的方程,设A(x1,y1),B(x2,y2),代入直线和椭圆方程,联立消去y,根据韦达定理表示出x1+x2 和x1x2进而根据,求得a 和b 的关系,进而求得a 和c 的关系,离心率可得.(II)设AB 的中点为N(x0,y0),根据(1)则可分别表示出x0 和y0,根据|PA|=|PB|,推知直线PN 的斜率,根据求得c,进而求得a 和b,椭圆的方程可得.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l 的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B 两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则, 因为直线 AB 斜率为 1,|AB |=|x 1﹣x 2|=,得,故 a 2=2b 2 所以 E 的离心率(I ) 设 AB 的中点为 N (x 0,y 0),由(I )知. 由|PA |=|PB |,得 k PN =﹣1,即得 c=3,从而故椭圆 E 的方程为. 【点评】本题主要考查圆锥曲线中的椭圆性质以及直线与椭圆的位置关系,涉及等差数列知识,考查利用方程思想解决几何问题的能力及运算能力21.(12 分)设函数f (x )=e x ﹣1﹣x ﹣ax 2.(1) 若 a=0,求 f (x )的单调区间;(2) 若当 x ≥0 时 f (x )≥0,求 a 的取值范围.【考点】6B :利用导数研究函数的单调性.【专题】32:分类讨论.【分析】(1)先对函数 f (x )求导,导函数大于 0 时原函数单调递增,导函数小于 0 时原函数单调递减.(2)根据 e x ≥1+x 可得不等式 f′(x )≥x ﹣2ax=(1﹣2a )x ,从而可知当 1﹣2a ≥0,即时,f′(x )≥0 判断出函数 f (x )的单调性,得到答案.【解答】解:(1)a=0 时,f (x )=e x ﹣1﹣x ,f′(x )=e x ﹣1.当 x ∈(﹣∞,0)时,f'(x )<0;当 x ∈(0,+∞)时,f'(x )>0.故f(x)在(﹣∞,0)单调减少,在(0,+∞)单调增加(II)f′(x)=e x﹣1﹣2ax由(I)知e x≥1+x,当且仅当x=0 时等号成立.故f′(x)≥x﹣2ax=(1﹣2a)x,从而当1﹣2a≥0,即时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0 时,f(x)≥0.由e x>1+x(x≠0)可得e﹣x>1﹣x(x≠0).从而当时,f′(x)<e x﹣1+2a(e﹣x﹣1)=e﹣x(e x﹣1)(e x﹣2a),故当x∈(0,ln2a)时,f'(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f (x)<0.综合得a 的取值范围为.【点评】本题主要考查利用导数研究函数性质、不等式恒成立问题以及参数取值范围问题,考查分类讨论、转化与划归解题思想及其相应的运算能力.22.(10 分)如图:已知圆上的弧,过C 点的圆的切线与BA 的延长线交于E 点,证明:(I)∠ACE=∠BCD.(II)BC2=BE•CD.【考点】N9:圆的切线的判定定理的证明;NB:弦切角.【专题】14:证明题.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC 是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB 即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC 与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5 分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10 分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10 分)已知直线C1(t 为参数),C2(θ为参数),(I)当α=时,求C1 与C2 的交点坐标;(II)过坐标原点O 做C1 的垂线,垂足为A,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【考点】J3:轨迹方程;JE:直线和圆的方程的应用;Q4:简单曲线的极坐标方程;QJ:直线的参数方程;QK:圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(I)先消去参数将曲线C1 与C2 的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P 点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1 的普通方程为,C2 的普通方程为x2+y2=1.联立方程组,解得C1 与C2 的交点为(1,0).(Ⅱ)C1 的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA 的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A 点坐标为(sin2α,﹣cosαsinα),故当α变化时,P 点轨迹的参数方程为:,P 点轨迹的普通方程.故P 点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10 分)设函数f(x)=|2x﹣4|+1.(I)画出函数y=f(x)的图象:(II)若不等式f(x)≤ax 的解集非空,求a 的取值范围.【考点】3A:函数的图象与图象的变换;7E:其他不等式的解法;R5:绝对值不等式的解法.【专题】11:计算题;13:作图题;16:压轴题.【分析】(I)先讨论x 的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax 的图象可知先寻找满足f(x)≤ax 的零界情况,从而求出a 的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax 的图象可知,极小值在点(2,1)当且仅当a<﹣2 或a≥ 时,函数y=f(x)与函数y=ax 的图象有交点.故不等式f(x)≤ax 的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。
难点10 函数图象与图象变换函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质. ● 难点磁场(★★★★★)已知函数f (x )=ax 3+bx 2+cx +d 的图象如图,求b 的范围.● 案例探究[例1] 对函数y =f (x )定义域中任一个x 的值均有f (x +a )=f (a -x ),(1)求证y =f (x )的图象关于直线x =a 对称;(2)若函数f (x )对一切实数x 都有f (x +2)=f (2-x ),且方程f (x )=0恰好有四个不同实根,求这些实根之和.命题意图:本题考查函数概念、图象对称问题以及求根问题.属★★★★★题目. 知识依托:把证明图象对称问题转化到点的对称问题.错解分析:找不到问题的突破口,对条件不能进行等价转化.技巧与方法:数形结合、等价转化.(1)证明:设(x 0,y 0)是函数y =f (x )图象上任一点,则y 0=f (x 0),又f (a +x )=f (a -x ),∴f (2a -x 0)= f [a +(a -x 0)]=f [a -(a -x 0)]=f (x 0)=y 0,∴(2a -x 0,y 0)也在函数的图象上,而2)2(00x x a +-=a ,∴点(x 0,y 0)与(2a -x 0,y 0)关于直线x =a 对称,故y =f (x )的图象关于直线x =a 对称.(2)解:由f (2+x )=f (2-x )得y =f (x )的图象关于直线x =2对称,若x 0是f (x )=0的根,则4-x 0也是f (x )=0的根,由对称性,f (x )=0的四根之和为8.[例2]如图,点A 、B 、C 都在函数y =x 的图象上,它们的横坐标分别是a 、a +1、a +2.又A 、B 、C 在x 轴上的射影分别是A ′、B ′、C ′,记△AB ′C 的面积为f (a ),△A ′BC ′的面积为g (a ).(1)求函数f (a )和g (a )的表达式;(2)比较f (a )与g (a )的大小,并证明你的结论.命题意图:本题考查函数的解析式、函数图象、识图能力、图形的组合等.属★★★★★级题目.知识依托:充分借助图象信息,利用面积问题的拆拼以及等价变形找到问题的突破口.错解分析:图形面积不会拆拼.技巧与方法:数形结合、等价转化.解:(1)连结AA ′、BB ′、CC ′,则f (a )=S △AB ′C =S 梯形AA ′C ′C -S △AA ′B ′-S △CC ′B =21(A ′A +C ′C )=21(2++a a ), g (a )=S △A ′BC ′=21A ′C ′·B ′B =B ′B =1+a . 0)11121(21)]1()12[(21)122(21)()()2(<++-+++=-+-+-+=+-++=-a a a a a a a a a a a a g a f ∴f (a )<g (a ).●锦囊妙计1.熟记基本函数的大致图象,掌握函数作图的基本方法:(1)描点法:列表、描点、连线;(2)图象变换法:平移变换、对称变换、伸缩变换等.2.高考中总是以几类基本初等函数的图象为基础来考查函数图象的.题型多以选择与填空为主,属于必考内容之一,但近年来,在大题中也有出现,须引起重视.●歼灭难点训练一、选择题1.(★★★★)当a ≠0时,y =ax +b 和y =b ax 的图象只可能是( )2.(★★★★)某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了,再走余下的路,下图中y 轴表示离学校的距离,x 轴表示出发后的时间,则适合题意的图形是( )二、填空题3.(★★★★★)已知函数f (x )=log 2(x +1),将y =f (x )的图象向左平移1个单位,再将图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数y =g (x )的图象,则函数F (x )=f (x )-g (x )的最大值为_________.三、解答题4.(★★★★)如图,在函数y =lg x 的图象上有A 、B 、C 三点,它们的横坐标分别为m ,m +2,m +4(m >1).(1)若△ABC 面积为S ,求S =f (m );(2)判断S =f (m )的增减性.5.(★★★★)如图,函数y =23|x |在x ∈[-1,1]的图象上有两点A 、B ,AB ∥Ox 轴,点M (1,m )(m ∈R 且m >23)是△ABC 的BC 边的中点. (1)写出用B 点横坐标t 表示△ABC 面积S 的函数解析式S =f (t );(2)求函数S =f (t )的最大值,并求出相应的C 点坐标.6.(★★★★★)已知函数f (x )是y =1102+x -1(x ∈R )的反函数,函数g (x )的图象与函数y =-21-x 的图象关于y 轴对称,设F (x )=f (x )+g (x ). (1)求函数F (x )的解析式及定义域;(2)试问在函数F (x )的图象上是否存在两个不同的点A 、B ,使直线AB 恰好与y 轴垂直?若存在,求出A 、B 的坐标;若不存在,说明理由.7.(★★★★★)已知函数f 1(x )=21x -,f 2(x )=x +2,(1)设y =f (x )=⎩⎨⎧∈--∈]1,0[ ),(3)0,1[ ),(21x x f x x f ,试画出y =f (x )的图象并求y =f (x )的曲线绕x 轴旋转一周所得几何体的表面积;(2)若方程f 1(x +a )=f 2(x )有两个不等的实根,求实数a 的范围.(3)若f 1(x )>f 2(x -b )的解集为[-1,21],求b 的值. 8.(★★★★★)设函数f (x )=x +x 1的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x ).(1)求g (x )的解析表达式;(2)若直线y =b 与C 2只有一个交点,求b 的值,并求出交点坐标;(3)解不等式log a g (x )<log a 29 (0<a <1). 参考答案难点磁场解法一:观察f (x )的图象,可知函数f (x )的图象过原点,即f (0)=0,得d =0,又f (x )的图象过(1,0),∴f (x )=a +b +c ①,又有f (-1)<0,即-a +b -c <0②,①+②得b <0,故b 的范围是(-∞,0) 解法二:如图f (0)=0有三根,∴f (x )=ax 3+bx 2+cx +d =ax (x -1)(x -2)=ax 3-3ax 2+2ax ,∴b = -3a ,∵a >0,∴b <0.歼灭难点训练一、1.解析:∵y =b ax =(b a )x ,∴这是以b a 为底的指数函数.仔细观察题目中的直线方程可知:在选择支B 中a >0,b >1,∴b a >1,C 中a <0,b >1,∴0<b a <1,D 中a <0,0<b <1,∴b a >1.故选择支B 、C 、D 均与指数函数y =(b a )x 的图象不符合.答案:A2.解析:由题意可知,当x =0时,y 最大,所以排除A 、C.又一开始跑步,所以直线随着x 的增大而急剧下降.答案:D二、3.解析:g (x )=2log 2(x +2)(x >-2)F (x )=f (x )-g (x )=log 2(x +1)-2log 2(x +2)=log 21441log 441log )2(122222+++=+++=++x x x x x x x x )1(21111log 2->++++=x x x∵x +1>0,∴F (x )≤41log 211)1(21log 22=++⋅+x x =-2 当且仅当x +1= 11+x ,即x =0时取等号. ∴F (x )max =F (0)=-2.答案:-2三、4.解:(1)S △ABC =S 梯形AA ′B ′B +S 梯形BB ′C ′C -S 梯形AA ′C ′C .(2)S =f (m )为减函数.5.解:(1)依题意,设B (t ,23 t ),A (-t , 23t )(t >0),C (x 0,y 0). ∵M 是BC 的中点.∴20x t +=1,2230y t + =m . ∴x 0=2-t ,y 0=2m -23t .在△ABC 中,|AB |=2t ,AB 边上的高h AB =y 0-23t =2m -3t . ∴S =21|AB |·h AB = 21·2t ·(2m -3t ),即f (t )=-3t 2+2mt ,t ∈(0,1). (2)∵S =-3t 2+2mt =-3(t -3m )2+32m ,t ∈(0,1],若⎪⎪⎩⎪⎪⎨⎧>≤<23130m m ,即23<m ≤3,当t =3m 时,S max =32m ,相应的C 点坐标是(2-3m , 23m ),若3m >1,即m >3.S =f (t ) 在区间(0,1]上是增函数,∴S max =f (1)=2m -3,相应的C 点坐标是(1,2m -3).6.解:(1)y =1102+x -1的反函数为f (x )=lg xx +-11(-1<x <1). 由已知得g (x )=21+x ,∴F (x )=lg x x +-11+21+x ,定义域为(-1,1). (2)用定义可证明函数u =x x +-11=-1+12+x 是(-1,1)上的减函数,且y =lg u 是增函数.∴f (x )是(-1,1)上的减函数,故不存在符合条件的点A 、B .7.解:(1)y =f (x )=⎪⎩⎪⎨⎧∈+--∈-]1,0[,1)0,1[,12x x x x .图略. y =f (x )的曲线绕x 轴旋转一周所得几何体的表面积为(2+2)π.(2)当f 1(x +a )=f 2(x )有两个不等实根时,a 的取值范围为2-2<a ≤1.(3)若f 1(x )>f 2(x -b )的解集为[-1,21],则可解得b =235-.8.(1)g (x )=x -2+41 x .(2)b =4时,交点为(5,4);b =0时,交点为(3,0). (3)不等式的解集为{x |4<x <29或x >6}.。