函数及其表示2
- 格式:doc
- 大小:80.00 KB
- 文档页数:5
1.函数的有关概念(1)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图象法和列表法.2.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.【知识拓展】求函数定义域常见结论:(1)分式的分母不为零;(2)偶次根式的被开方数不小于零;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数大于零且不等于1;(k∈Z);(5)正切函数y=tan x,x≠kπ+π2(6)零次幂的底数不能为零;(7)实际问题中除要考虑函数解析式有意义外,还应考虑实际问题本身的要求.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)对于函数f:A→B,其值域是集合B.()(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.()(3)映射是特殊的函数.()(4)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射.()(5)分段函数是由两个或几个函数组成的.()1.函数y =2x -3+1x -3的定义域为()A .[32,+∞)B .(-∞,3)∪(3,+∞)C .[32,3)∪(3,+∞)D .(3,+∞)2.(教材改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是()3.下列函数中,与函数y =x +1是相等函数的是()A .y =(x +1)2B .y =3x3+1C .y =x2x+1D .y =x2+14.已知f (1x)=x 2+5x ,则f (x )=________.5.已知函数f (x )=2x +1,若f (a )=5,则实数a 的值为________.题型一函数的概念例1有以下判断:①f (x )=|x |x 与g (x )=1(x ≥0)-1(x <0)表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个;③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则0))21((=f f 其中正确判断的序号是________.(1)下列所给图象是函数图象的个数为()A .1B .2C .3D .4(2)下列各组函数中,表示同一个函数的是()A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x (x )2题型二函数的定义域问题命题点1求函数的定义域例2(1)函数f(x)=1-2x+1x+3的定义域为()A.(-3,0]B.(-3,1]C.(-∞,-3)∪(-3,0]D.(-∞,-3)∪(-3,1](2)若函数y=f(x)的定义域为[0,2],则函数g(x)=f(2x)x-1的定义域是________引申探究本例(2)中,若将“函数y=f(x)的定义域为[0,2]”改为“函数y=f(x+1)的定义域为[0,2]”,则函数g(x)=f(2x)x-1的定义域为________________.命题点2已知函数的定义域求参数范围例3(1)若函数f (x )=2221x ax a +--的定义域为R ,则a 的取值范围为________.(2)若函数y =ax +1ax 2+2ax +3的定义域为R ,则实数a 的取值范围是________.(1)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为()A .(-1,1)B .(-1,-12)C .(-1,0)D .(12,1)(2)若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是()A .(0,34]B .(0,34)C .[0,34]D .[0,34)题型三求函数解析式例4(1)已知函数f (x -1)=11x ,则函数f (x )的解析式为.(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________.(3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f (1x)·x -1,则f (x )=________.(1)已知f (x +1)=x +2x ,求f (x )的解析式;(2)已知一次函数f (x )满足f (f (x ))=4x -1,求f (x );(3)已知f (x )+3f (-x )=2x +1,求f (x ).2.分类讨论思想在函数中的应用典例(1)已知实数a≠0,函数f(x)=2x+a,x<1,-x-2a,x≥1,若f(1-a)=f(1+a),则a的值为________________.(2)(2019·长春模拟)已知函数f(x)=2x,x>0,x+1,x≤0.若f(a)+f(1)=0,则实数a=________.1.下列各组函数中,表示同一函数的是()A.y=x2-9x-3与y=x+3B.y=2x-1与y=x-1C.y=x0(x≠0)与y=1(x≠0)D.y=2x+1,x∈Z与y=2x-1,x∈Z2.(2015·重庆)函数f(x)=log2(x2+2x-3)的定义域是()A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)3.若二次函数g(x)满足g(1)=1,g(-1)=5,且图象过原点,则g(x)的解析式为() A.g(x)=2x2-3x B.g(x)=3x2-2xC .g (x )=3x 2+2xD .g (x )=-3x 2-2x4.(2015·陕西)设f (x )=1-x ,x ≥0,2x,x <0,则f (f (-2))等于()A .-1 B.14C.12D.325.(2016·安徽六校联考)已知函数f (x )=x |x |,若f (x 0)=4,则x 0的值为()A .-2B .2C .-2或2D.2*6.(2016·唐山期末)已知f (x )=(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是()A .(-∞,-1]B .(-1,12)C .[-1,12)D .(0,12)7.(2016·济南模拟)已知函数f(1-x1+x)=x,则f(2)=________.8.设函数f(x)=113e,1,,1,x xx x-⎧<⎪⎨⎪⎩≥则使得f(x)≤2成立的x的取值范围是________________.9.(2015·浙江)已知函数f(x)=x+2x-3,x≥1,lg(x2+1),x<1,则f(f(-3))=________,f(x)的最小值是________.*10.设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数,下列关于高斯函数的说法正确的有________.①[-x ]=-[x ];②x -1<[x ]≤x ;③∀x ,y ∈R ,[x ]+[y ]≤[x +y ];④∀x ≥0,y ≥0,[xy ]≤[x ][y ];⑤离实数x 最近的整数是-[-x +12].11.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,求函数f (x )的解析式.12.已知f(x)=f(x+1),-2<x<0,2x+1,0≤x<2,x2-1,x≥2.(1)求f(-32)的值;(2)若f(a)=4且a>0,求实数a的值.。
(二) 函数及其表示1.函数xx x y 432+--=的定义域为( ) ]1,4[-⋅A )0,4[-⋅B ]1,0(⋅C ]1,0()0,4[ -⋅D2.函数)13lg(13)(2++-=x xx x f 的定义域是( ) ),31.(+∞-A )1,31.(-B )31,31.(-C )31,(--∞⋅D3.已知x x f sin :-→是集合])2,0[(π⊆A A 到集合B }21,0{=的一个映射,则集合A 中的元素最多有 ( )A .4个B .5个C .6个D .7个4.已知函数⎪⎩⎪⎨⎧>≤=)0(lo )0(3)(2x x g x x f x 那么)]41([f f 的值为( ) 9.A 91.B 9.-C 91.-D5.列各组函数中表示同一函数的是( )2)()()(x x g x x f A ==⋅与 33)(||)(x x g x x f B ==⋅与x x ex g e x f C ln )(ln )(==⋅与 )1(1)(11)(2=/+=--=⋅t t t g x x x f D 与6下列函数中,图象关于坐标原点对称的是( )x y A lg =⋅ x y B cos =⋅ ||x y C =⋅ x y D sin =⋅7.已知函数⎩⎨⎧>-≤=)1()1(3)(x x x x x f 若,2)(=x f 则x=8.已知全集,R U =集合A 为函数)1ln()(-=x x f 的定义域,则=A C U9.函数)lg()(2x x x f -=的定义域为10.如图2-1,在△AOB 中,点),0,3(),1,2(B A 点E 在射线OB 上自0开始移动,设,x OE =过E 作OB 的垂线L ,记△AOB 在直线L 左边部分的面积为S ,试写出S 与X 的函数关系式,并画出大致的图象.。
高一数学《函数及其表示》知识讲解高一数学《函数及其表示》知识讲解《函数及其表示》是高一数学的一个知识点,下面小编为大家介绍高一数学《函数及其表示》知识讲解,希望能帮到大家!考点一映射的概念1.了解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多2.映射:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任意一个元素x,在集合B中都存在唯一的一个元素y 与之对应,那么,就称对应f:A→B为集合A到集合B的一个映射(mapping).映射是特殊的对应,简称“对一”的对应。
包括:一对一多对一考点二函数的概念1.函数:设A和B是两个非空的数集,如果按照某种确定的对应关系f,对于集合A中的任意一个数x,在集合B中都存在唯一确定的数y与之对应,那么,就称对应f:A→B为集合A到集合B的一个函数。
记作y=f(x),xA.其中x叫自变量,x的.取值范围A叫函数的定义域;与x的值相对应的y的值函数值,函数值的集合叫做函数的值域。
函数是特殊的映射,是非空数集A到非空数集B的映射。
2.函数的三要素:定义域、值域、对应关系。
这是判断两个函数是否为同一函数的依据。
3.区间的概念:设a,bR,且a<b.我们规定:①(a,b)={xa<x<b}②[a,b]={xa≤x≤b}③[a,b)={xa≤x<b}④(a,b]= {xa<x≤b}⑤(a,+∞)={xx>a}⑥[a,+∞)={xx≥a}⑦(-∞,b)={xx<b}⑧(-∞,b]={xx≤b}⑨(-∞,+∞)=R考点三函数的表示方法1.函数的三种表示方法列表法图象法解析法2.分段函数:定义域的不同部分,有不同的对应法则的函数。
注意两点:①分段函数是一个函数,不要误认为是几个函数。
②分段函数的定义域是各段定义域的并集,值域是各段值域的并集。
能力知识清单考点一求定义域的几种情况①若f(x)是整式,则函数的定义域是实数集R;②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;④若f(x)是对数函数,真数应大于零。
函数及其表示1.函数的基本概念 (1)函数定义设A ,B 是两个非空的________,如果按某种对应法则f ,对于集合A 中的____________,在集合B 中______________,称f :A →B 为从集合A 到集合B 的一个函数,x 的取值范围A 叫做函数的__________,函数值的集合{f (x )|x ∈A }叫做函数的________.(2)函数的三要素________、________和__________. (3)函数的表示法:________、________、________.(4)函数相等、如果两个函数的定义域和____________完全一致,则这两个函数相等,这是判定两函数相等的依据.(5)分段函数:在函数的________内,对于自变量x 的不同取值区间,有着不同的__________,这样的函数通常叫做分段函数.分段函数是一个函数,它的定义域是各段取值区间的______,值域是各段值域的______. 2.映射的概念 (1)映射的定义设A 、B 是两个非空的集合,如果按某种对应法则f ,对于集合A 中的每一个元素,在集合B 中__________确定的元素与之对应,那么这样的单值对应f :A →B 叫集合A 到集合B 的________. 基础练习1.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列4个图形,其中能表示集合M 到N 的函数关系的有________(填序号).2.(2010·湖北改编)函数y =1log 0.5(4x -3)的定义域为________.3.(2010·湖北改编)已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >02x , x ≤0,则f (f (19))=________.4.下列函数中,与函数y =x 相同的函数是________(填序号).①y =x 2x;②y =(x )2;③y =lg 10x ;④y =2log 2x .5.函数y =lg(ax 2-ax +1)的定义域是R ,求a 的取值范围. 例题讲解探究点一 函数与映射的概念例1、下列对应法则是集合P 上的函数的是________(填序号).(1)P =Z ,Q =N *,对应法则f :对集合P 中的元素取绝对值与集合Q 中的元素相对应; (2)P ={-1,1,-2,2},Q ={1,4},对应法则:f :x →y =x 2,x ∈P ,y ∈Q ;(3)P ={三角形},Q ={x |x >0},对应法则f :对P 中三角形求面积与集合Q 中元素对应.变式迁移1、已知映射f :A →B .其中A =B =R ,对应法则f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是________. 探究点二 求函数的定义域例2、求下列函数的定义域:(1)y =x +1+(x -1)0lg (2-x );(2)已知函数f (2x +1)的定义域为(0,1),求f (x )的定义域.变式迁移2、已知函数y =f (x )的定义域是[0,2],那么g (x )=f (x 2)1+lg (x +1)的定义域是___________________.探究点三 求函数的解析式例3、(1)已知f (2x+1)=lg x ,求f (x );(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x );(3)已知f (x )满足2f (x )+f (1x)=3x ,求f (x ).变式迁移3、给出下列两个条件:(1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式.探究点四 分段函数的应用例4、设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c , x ≤0,2, x >0.若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为________变式迁移4、已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1, x <0,则满足不等式f (1-x 2)>f (2x )的x 的范围为______________课后反馈一、填空题1.下列各组中的两个函数是同一函数的为________(填序号).①y 1=(x +3)(x -5)x +3,y 2=x -5;②y 1=x +1x -1,y 2=(x +1)(x -1);③f (x )=x ,g (x )=x 2;④f (x )=3x 4-x 3,F (x )=x 3x -1;⑤f 1(x )=(2x -5)2,f 2(x )=2x -5.2.函数y =f (x )的图象与直线x =1的公共点数目是________. 3.(2014·南京模拟)已知f (x )=⎩⎪⎨⎪⎧x +2(x ≤-1),x 2(-1<x <2),2x (x ≥2),若f (x )=3,则x 的值为________.4.(2013·江西改编)函数y =ln (x +1)-x 2-3x +4的定义域为________. 5.设f :x →x 2是从集合A 到集合B 的映射,如果B ={1,2},则A ∩B 为____________.6.下列四个命题:(1)f (x )=x -2+1-x 有意义;(2)函数是其定义域到值域的映射;(3)函数y =2x (x ∈N )的图象是一条直线;(4)函数y =⎩⎪⎨⎪⎧x 2, x ≥0,-x 2,x <0的图象是抛物线.其中正确的命题个数为________.7.设f (x )=⎩⎪⎨⎪⎧ 3x +1 (x ≥0)x 2 (x <0),g (x )=⎩⎪⎨⎪⎧2-x 2(x ≤1)2 (x >1),则f [g (3)]=________,g [f (-12)]=________.8.(2014·陕西)已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =______.9.((2015·苏州期末)(1)若f (x +1)=2x 2+1,求f (x )的表达式;(2)若2f (x )-f (-x )=x +1,求f (x )的表达式;(3)若函数f (x )=xax +b,f (2)=1,又方程f (x )=x 有唯一解,求f (x )的表达式.10、某商场促销饮料,规定一次购买一箱在原价48元的基础上打9折,一次购买两箱可打8.5折,一次购买三箱可打8折,一次购买三箱以上均可享受7.5折的优惠.若此饮料只整箱销售且每人每次限购10箱,试用解析法写出顾客购买的箱数x 与每箱所支付的费用y 之间的函数关系,并画出其图象.11、某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x (百台),其总成本为G (x )万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R (x )(万元)满足R (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x -0.8, 0≤x ≤5,10.2, x >5.假定该产品产销平衡,那么根据上述统计规律:(1)要使工厂有盈利,产品x 应控制在什么范围?(2)工厂生产多少台产品时盈利最大?此时每台产品的售价为多少?函数的单调性与最值1.单调性(1)定义:一般地,设函数y =f (x )的定义域为A ,如果对于区间I 内的任意两个值x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间I 上是单调________________.(2)单调性的定义的等价形式:设x 1,x 2∈[a ,b ],那么(x 1-x 2)(f (x 1)-f (x 2))>0⇔f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是单调________;(x 1-x 2)(f (x 1)-f (x 2))<0⇔f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是单调________.(3)单调区间:如果函数y =f (x )在某个区间上是单调增函数或减函数,那么说函数y =f (x )在区间I 上具有单调性,单调增区间和单调减区间统称为__________.(4)函数y =x +ax (a >0)在 (-∞,-a ),(a ,+∞)上单调________;在(-a ,0),(0,a )上单调________;函数y =x +ax(a <0)在____________上单调递增.2.最值一般地,设函数y =f (x )的定义域为A ,如果存在x 0∈A ,使得对于任意的x ∈A ,都有f (x )≤f (x 0)(或≥f (x 0)),则称f (x 0)为y =f (x )的最____(或最____)值.1.若函数y =ax 与y =-bx在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是________________.(用“单调减函数”、“单调增函数”、“不单调”填空) 2.(2015·连云港模拟)设f (x )是(-∞,+∞)上的增函数,a 为实数,则有f (a 2+1)________f (a ).(填“>”、“<”或“=”)3.下列函数在(0,1)上是增函数的是________(填序号).①y =1-2x ;②y =x -1;③y =-x 2+2x ;④y =5. 4.若f (x )=x 2+2(a -1)x +4是区间(-∞,4]上的减函数,则实数a 的取值范围是________. 5.当x ∈[0,5]时,函数f (x )=3x 2-4x +c 的值域为______________________. 例题讲解探究点一 函数单调性的判定及证明例1、设函数f (x )=x +ax +b(a >b >0),求f (x )的单调区间,并说明f (x )在其单调区间上的单调性.变式迁移1、已知f (x )是定义在R 上的增函数,对x ∈R 有f (x )>0,且f (5)=1,设F (x )=f (x )+1f (x ),讨论F (x )的单调性,并证明你的结论.探究点二 函数的单调性与最值例2、已知函数f (x )=x 2+2x +a x ,x ∈[1,+∞).(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.变式迁移2、已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,求实数a 的取值范围.探究点三 抽象函数的单调性例3、已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值.变式迁移3、已知定义在区间(0,+∞)上的函数f (x )满足f (x 1x 2)=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2.分类讨论及数形结合思想例4、求f (x )=x 2-2ax -1在区间[0,2]上的最大值和最小值.课后反馈1、已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围.2、已知f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围.3、已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b>0成立.(1)判断f (x )在[-1,1]上的单调性,并证明;(2)解不等式:f (x +12)<f (1x -1);(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围.。