事业单位数量关系:数列趋势
- 格式:docx
- 大小:13.81 KB
- 文档页数:3
浙江事业单位考试:行测——数量关系题规律总结-浙江事业单位考试网【导语】在数学题中,我们经常会总结出一些规律。
它们可以帮助大家在考试中跟快速的解题,下面总结了十三个规律,希望帮助大家更好地解答行测中的数量提。
一、当一列数中出现几个整数,而只有一两个分数而且是几分之一的时候,这列数往往是负幂次数列。
【例】1、4、3、1、1/5、1/36、( )A.1/92B.1/124C.1/262D.1/343二、当一列数几乎都是分数时,它基本就是分式数列,我们要注意观察分式数列的分子、分母是一直递增、递减或者不变,并以此为依据找到突破口,通过“约分”、“反约分”实现分子、分母的各自成规律。
【例】1/16 2/13 2/5 8/7 4 ( )A 19/3B 8C 39D 32三、当一列数比较长、数字大小比较接近、有时有两个括号时,往往是间隔数列或分组数列。
【例】33、32、34、31、35、30、36、29、( )A. 33B. 37C. 39 D . 41四、在数字推理中,当题干和选项都是个位数,且大小变动不稳定时,往往是取尾数列。
取尾数列一般具有相加取尾、相乘取尾两种形式。
【例】6、7、3、0、3、3、6、9、5、( )A.4B.3C.2D.1五、当一列数都是几十、几百或者几千的“清一色”整数,且大小变动不稳定时,往往是与数位有关的数列。
【例】448、516、639、347、178、( )A.163B.134C.785D.896官方微信:【zjsydwks】浙江事业单位考试网六、幂次数列的本质特征是:底数和指数各自成规律,然后再加减修正系数。
对于幂次数列,考生要建立起足够的幂数敏感性,当数列中出现6?、12?、14?、21?、25?、34?、51?、312?,就优先考虑43、112(53)、122、63、44、73、83、55。
【例】0、9、26、65、124、( )A. 165B. 193C. 217D. 239七、在递推数列中,当数列选项没有明显特征时,考生要注意观察题干数字间的倍数关系,往往是一项推一项的倍数递推。
数量关系一.数字推理一.题型特点(一)数列填空推理(简单数列+多重数列)——注意考虑变式:常数和项数类型特点解题要点质、合数数列(1)质数数列:由只能被1和它本身整除的正整数(质数)组成的数列。
(2)合数数列:由除了1和它本身外还有其他约数的正整数(合数)组成的数列。
其中,1既不是质数,也不是合数;2是最小的质数,4是最小的合数。
(3)非质数数列:由1和合数组成的数列。
(4)非合数数列:由1和质数组成的数列。
1)质数数列:2,3,5,7,11,13,17,19,23,29,312)合数数列:4,6,8,9,10,12,14,15,16,3)非质数数列1,4,6,8,9,10,12,4)非合数数列1,2,3,5,7,11,13,间接考察:25,49,121,169,289,361(质数5,7,11,13,17,19的平方)二次做差后2 3 5 7 接下来注意是11,不是9,注意区分质数和奇数列:奇数列没有2等差数列相邻两项之差相等,等于一个常数逐差法(得到新数列)。
适用情况:多级等差数列及其变式。
整体变化幅度较小(有单调性)等比数列相邻两项之比相等,等于一个常数逐商法。
适用情况:数列满足等比数列特点,且无其他明显规律。
整体变化幅度较大(公比为正数时有单调性,公比为负数时,无单调性,呈现一正一负)注意:公比分数化,公比负数化。
多次方数列数列各项均为某项的多次方。
平方立方是特殊的多次方数列。
适用情况:有明显的平方项或立方项及变式。
整体变化幅度很大(有单调性)递推数列(递推和,递推差,递推积,递推平方,立方)递推考虑常数和项数某一项都是它的前两项或三项通过一定的运算法则得到的(一般是圈三法)观察趋势,尝试:1.整体递增:考虑和,倍,积,乘方增长较慢:先和,后倍,再积增长较快:积增长很快:乘方2整体递减:差,倍,商,开方减少较慢:先差,后倍,再商减少较块:商减少很快:开方根式数列数列中含根式的数列1根次之间存在关系2根次相同时,可以把根号外面的数化到根号里面去(或把根号里面的数化到外面去),看底数关系3根式的底数存在关系4.根次,底数分别存在一定的关系。
2019事业单位考试行测数量关系解题——如何分析题目才有效中公事业单位为帮助各位考生顺利通过事业单位招聘考试!今天为大家带来数量关系解题技巧:如何分析题目才有效。
进入事业单位最后的冲刺阶段,在这个时期,我们主要应该做两个事情了,第一就是刷真题,分析历年的考试情况,考试的内容,从而能够得出一些自己的心得和想法,做出一些针对性更强的复习工作;第二个则是做模拟卷了。
但是在实际的过程中,很多同学虽然去做了真题卷,但是却没有足够的分析,或者是不知道如何去分析。
这就是我在这里想和大家去分享的东西了。
下面我们以2018年上半年事业单位真题中的数字推理为例,来做一些分析的工作,去说明我们可以从哪几个角度去思考这个出题的方向。
1.16,23,34,40,52,57,( ),74A.62B.65C.70D.72【答案】C。
数列较长,考虑组合数列。
两两作差,得到7,6,5,4,即可。
2. 12,13,25,50,88,163,( )A.251B.301C.326D.329【答案】B。
变化趋势不大,考虑和差。
前三项之和等于第四项,即可。
3. 342,215,124,63,26,( )A.7B.8C.9D.10【答案】A。
都是多次方数字附近的数字,可表示为,73 -1,63 -1,53 -1,43 -1,33 -1,23 -1,即可。
4. 38,16,30,1,29.5,( )A.14.75B.13.75C.-13.75D.-14.75【答案】C。
题干有特殊数字0.5,答案中有0.75,所以可以考虑存在除以2的情况,第一项减去第二项的一半等于第三项。
5. 82,73,64,54,44,33,22,( )A.10B.11C.12D.13【答案】A。
单调,且变化不大,考虑差。
作差,结果为9,9,10,10,11,11,12,12。
通过以上的题目我们可以去分析出什么呢?第一点,解题的过程都比较的简单,并没有复杂的二次计算的量。
泉州行政能力测试数量关系之数字推理六大数列解析在近些年事业单位考试中,出现形式主要体现在等差数列、等比数列、和数列、积数列、平方数列、立方数列这六大数列形式中,在此,中公事业单位针对上述六大数字推理的基本形式,根据具体的例题一一为考生做详细解析。
第一:等差数列等比数列分为基本等差数列,二级等差数列,二级等差数列及其变式。
1.基本等差数列例题:12,17,22,,27,32,( )解析:后一项与前一项的差为5,括号内应填27。
2.二级等差数列:后一项减前一项所得的新的数列是一个等差数列。
【例题】 -2,1,7,16,( ),43A.25B.28C.31D.353.二级等差数列及其变式:后一项减前一项所得的新的数列是一个基本数列,这个数列可能是自然数列、等比数列、平方数列、立方数列有关。
【例题】15. 11 22 33 45 ( ) 71A.53B.55C.57D. 59『解析』二级等差数列变式。
后一项减前一项得到11,11,12,12,14,所以答案为45+12=57。
第二:等比数列分为基本等比数列,二级等比数列,二级等比数列及其变式。
1.基本等比数列:后一项与前一项的比为固定的值叫做等比数列。
【例题】3,9,( ),81,243解析:此题较为简单,括号内应填27。
2.二级等比数列:后一项与前一项的比所得的新的数列是一个等比数列。
【例题】1,2,8,( ),1024解析:后一项与前一项的比得到2,4,8,16,所以括号内应填64。
3.二级等比数列及其变式二级等比数列变式概要:后一项与前一项所得的比形成的新的数列可能是自然数列、平方数列、立方数列。
【例题】6 15 35 77 ( )A.106B.117C.136D.163『解析』典型的等比数列变式。
6×2+3=15,15×2+5=35,35×2+7=77,接下来应为64×2+9=163。
第三:和数列和数列分为典型和数列,典型和数列变式。
1.等差数列通项公式:ܽܽ= ܽͳ+ ܽ−ͳܽ = ܽܽ+ (ܽ− ܽ)ܽ求和公式:ܽܽ= = ܽܽͳ+ܽܽͳ ܽ= 中位数×项数2.等比数列通项公式:ܽܽ= ܽͳݍܽ−ͳ= ܽܽݍ݉q n )(q≠1)求和公式:ܽܽ=ܽͳ(ݍ3.平方差公式:ܽʹ− ܽʹ=ሺܽ + ܽሻሺܽ− ܽሻʹ4.完全平方公式:(a ±b)= ܽʹ±ʹܽܽ + ܽʹ1.基础公式:总量=效率×时间(1)给完工时间型:①将工作总量赋值为完工时间的最小公倍数总量计算各主体效率②根据效率=时间③据题意列式求解(2)给效率比例型:①求出效率比例,对效率赋值②根据总量=效率×时间求出总量③据题意列式求解(3)给具体单位型:①设未知数 ②据题意列式求解2.牛吃草问题:Y=(N-X ) ×T,Y 代表原有草量(消耗量),N 代表牛数量(消耗),X 代表草生长速度(生长),T 代表吃草时间(消耗时间)1.基础公式:路程=速度×时间,平均速度=总总时路间程2.火车过桥:火车从进桥至完全驶离桥,所走路程=车长+桥长3.等距离平均速度= - -(适用于“上下坡”、“往返”等行驶路程相同但速度不同的情况)v 1+v 24. 相遇追及公式:①相遇路程=速度和×相遇时间(S 和 = V 和 x T 遇)2v 1v 2②追及路程=速度差×追及时间(ܽ差= ܽ差ൈ ܽ追)③线性两端出发第 n 次相遇:所走路程和=(2n-1) ×单次路程=速度和×相遇时间;( ʹn −ͳS = ܽ和 ൈ ܽ遇)④线性一端出发第n 次相遇:所走路程和=2n×单次路程=速度和×相遇时间(ʹnS = ܽ和ൈܽ遇)⑤环形路程第 n 次相遇:所走路程和=n 圈=速度和×相遇时间(ܽ圈 = ܽ和ൈ ܽ遇)⑥环形路程第 n 次追及:所走路程差=n 圈=速度差×追及时间(ܽ 圈= ܽ差ൈ ܽ追)5.比例行程①路程一定,速度与时间成反比②时间一定,路程与速度成正比③速度一定,路程与时间成正比6.流水行船相关公式:①顺水速度=船速+水速;②逆水速度=船速-水速;顺水速度+逆水速度③船速= ;ʹ顺水速度-逆水速度④水速= ;ʹ⑤静水速度=船速;漂流速度=水速1.基础公式: ②利润率=成利本润= 售本= 成本售价−ͳ①利润=售价-成本3 售价=成本×(1+利润率)=成本+利润1.基本公式:4 折扣=折折前后价价⑤总价=单价×数量;总进价=单个进价×数量;总利润=单个利润×数量=总售价-总进价2.分段计费:题型特征: 问在不同收费标准下,一共需要的费用。
行测数量关系公式汇总工作量=工作效率×工作时间; 工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。
★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。
3.N 边行每边有a 人,则一共有N(a-1)人。
4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-45.方阵:总人数=N 2N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。
线型棵数=总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。
(5)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2N×M +1)段⑴ 路程=速度×时间; 平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v +(2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。
《行测》数量关系八句口诀一、关于国家公务员考试数量关系题的八句口诀一个目标:保3争4两种思维:单数字发散,多数字联系三步流程:看特征,做差,递推四种方式:分数线,约分与通分,反约分,根号五大题型:多级,多重,分数,幂次,递推六种趋势:差,商,和,方,积,倍七种数列:常数,等差,等比,质数,周期,对称,简单递推八大特征:倍数关系,长数列,两个括号,少数分数,幂次数,带分数与小数,多位数,-n、0型二、详解国家公务员考试数量关系题的八句口诀1、一个目标数字推理的目标:保3争4。
也就是说,针对5道数字推理题,保证做对3个,争取做对4道,放弃1道。
如果某些地方公务员考试的数字推理题是10道,则可相应把目标调整为保8争6。
有目的的放弃,将时间投入到其他模块相对容易的题目中,可以保证整体效益的最大化。
2、两种思维众所周知,行政职业能力测验核心问题就是速度。
在保证四则运算速度(尤其是三位数以内的加减法)的基础上,如果具备快速的两种思维能力(单数字发散和多数字联系),那么面对那些幂次数列和递推数列时,就很容易迅速的找到突破口,轻松解题。
例1:126因子发散:其因子有2、3、6、7、9,相邻数发散:126周围的特殊数(平方数、立方数)有125=53、128=27、121=112例2:1,4,9共性联系:都是正整数、一位数、平方数递推联系:1×5+4=9、45×+1=9、(1-4)×(-3)=9、…3、三步流程解数字推理题时,面对一陌生的数列,一般是先确定数列类型,也就是找出这个数列中数字的规律,再根据规律计算出未知项。
而最难的也就是第一步:确定数列类型。
一旦数列类型确定,后续的计算过程基本没有难度。
数字推理解题流程图如下:理解并熟练掌握这个流程图以后,可以解决90%的数字推理题,完成我们的目标“保3争4”没有任何问题。
为了更好的理解这个解题的流程图,将以上三步详细分解如下:4、四种方式分数数列的特征基本上非常明显:数列中大部分都是分数。
数量关系数列问题
嘿,朋友!咱们今天来聊聊数量关系里的数列问题,这可是个有趣
又有点小挑战的玩意儿。
你想啊,数列就像是一群排好队的小伙伴,它们有着自己的规律和
秩序。
有的数列是等差数列,就好比是一群小朋友,每次都往前走相
同的步数;有的是等比数列,就像气球每次都按相同的倍数变大。
比如说等差数列 2,5,8,11,14…… 你看,后一个数都比前一个
数多 3,这多简单明了!要是让你找出第 20 个数是多少,你会咋办?
其实就像爬楼梯一样,一步一步算呗,先算出相邻两个数的差 3,然后从第一个数 2 开始,每次加上 3,一直加到第 20 个,这过程虽然有点
繁琐,但只要耐心,准能算出来。
再看看等比数列 2,6,18,54…… 每个数都是前一个数乘以 3 得
到的。
那要是让你算第 10 个数,是不是感觉有点晕?别慌,咱们就把
每个数依次乘 3 就行啦。
还有那种既有等差又有等比特点的数列,就像是个调皮的小精灵,
得好好琢磨琢磨它的规律。
做数列问题啊,就像解谜一样。
你得瞪大了眼睛,仔细观察这些数
字之间的关系,找到那个隐藏的线索。
有时候可能一下子就发现了,
心里那个美呀!可要是找半天找不到,也别灰心,多试试不同的方法,说不定灵感就突然来了。
你说要是在考试的时候遇到数列问题,是不是有点紧张?其实别怕,把它当成一个好玩的游戏,放松心态,说不定就能轻松搞定。
总之,数列问题虽然有时候会让人头疼,但只要咱们多练习,多总
结规律,就一定能把它们拿下!相信自己,加油!。
首先我们先来认识一下几种常见的基础数列:
自然数数列:1,2,3,4,5,6……
奇数数列:1,3,5,7,9……
偶数数列:2,4,6,8,10……
质数数列:2,3,5,7,11,13……
合数数列:4,6,8,9,10,12……
等差数列:1,4,7,10,13,16……
等比数列:1,3,9,27,81……
和数列:2,3,5,8,13,21……
积数列:2,3,6,18,108……
同学们对于以上的基础数列或多或少都还是具有一定的敏感性,但是在考试的时候很少会遇到这种纯粹考查基础数列的题目,所以我们还需要掌握这些数列中数字之间的关系。
一. “看趋势”的方法
从大数字入手,观察数列的整体趋势,若数列的变化幅度在2倍左右或以内的,可以考虑等差数列、和数列;若数列的变化幅度在2-6倍的,可以考虑倍数数列;若数列变化幅度在8倍以上,甚至出现了一个陡增,则可以考虑多次方数列或者积数列。
二.“看趋势”的应用
例1.5,12,21,34,53,80,( )
A.115
B.117
C.119
D.121
【答案】B
【中公解析】:观察数列的趋势,发现呈现递增趋势,具体变化幅度是多少呢?我们可以从大数字入手,也就是从80入手,从后往前看。
因为前面的小数字建立关系的形式比较多,数字也还没有完全打开,就不容易找到这个数列真正的趋势,所以我们观察后几项发现,80和53,53和34等等,它们的变化幅度都在2倍以内的,所以可以优先考虑作差或作和。
作差发现12-5=7,21-12=9,34-21=13,53-34=19,80-53=27,再进行二次作差9-7=2,13-9=4,19-13=6,27-19=8,即二次作差之后所得的新数列是一个公差为2的等差数列,由此可得新数列的下一项为10,进而得到一次作差数列的下一项为37,故所求括号处为80+37=117.
例2.1,2,7,20,61,( )
A.101
B.142
C.156
D.182
【答案】D
【中公解析】:观察数列的趋势,题中数字整体上呈现单调递增。
从大数字入手,61和20,20和7,每相邻两项间数据大致都是3倍组左右的倍数关系,由此可以优先考虑倍数数列,61=20×3+1,20=7×3-1,7=2×3+1,2=1×3-1,发现相邻两项间倍数关系正好为3倍减1,3倍加1的交替关系,所以最后两项关系为61×3-1=182,故答案选择D。
例3.3,2,8,19,156,( )
A 2969
B 3315
C 4782
D 5514
【答案】A
【中公解析】:观察数列趋势,整体呈现递增。
从大数字入手,156和19的倍数关系已经达到8倍以上了,而且通过观察选项发现从156到选项达到陡增的状况,优先考虑乘积数列或多次方数列,又因为156正好是19的8倍多,8又是19的前一项,所以我们尝试一下乘积关系。
156=19×8+4,19=8×2+3,8=2×3+2,可以得到数列的规律为:下一项=前两项相乘+自然数列。
所以所求结果=156×19+5=2969,选A。
福建事业单位考试网为帮助各位考生顺利通过事业单位招聘考试!今天为大家带来数量关系:数列趋势
首先我们先来认识一下几种常见的基础数列:
自然数数列:1,2,3,4,5,6……
奇数数列:1,3,5,7,9……
偶数数列:2,4,6,8,10……
质数数列:2,3,5,7,11,13……
合数数列:4,6,8,9,10,12……
等差数列:1,4,7,10,13,16……
等比数列:1,3,9,27,81……
和数列:2,3,5,8,13,21……
积数列:2,3,6,18,108……
同学们对于以上的基础数列或多或少都还是具有一定的敏感性,但是在考试的时候很少会遇到这种纯粹考查基础数列的题目,所以我们还需要掌握这些数列中数字之间的关系。
一. “看趋势”的方法
从大数字入手,观察数列的整体趋势,若数列的变化幅度在2倍左右或以内的,可以考虑等差数列、和数列;若数列的变化幅度在2-6倍的,可以考虑倍数数列;若数列变化幅度在8倍以上,甚至出现了一个陡增,则可以考虑多次方数列或者积数列。
二.“看趋势”的应用
例1.5,12,21,34,53,80,( )
A.115
B.117
C.119
D.121
【答案】B
【中公解析】:观察数列的趋势,发现呈现递增趋势,具体变化幅度是多少呢?我们可以从大数字入手,也就是从80入手,从后往前看。
因为前面的小数字建立关系的形式比较多,数字也还没有完全打开,就不容易找到这个数列真正的趋势,所以我们观察后几项发现,80和53,53和34等等,它们的变化幅度都在2倍以内的,所以可以优先考虑作差或作和。
作差发现12-5=7,21-12=9,34-21=13,53-34=19,80-53=27,再进行二次作差9-7=2,13-9=4,19-13=6,27-19=8,即二次作差之后所得的新数列是一个公差为2的等差数列,由此可得新
数列的下一项为10,进而得到一次作差数列的下一项为37,故所求括号处为80+37=117.
例2.1,2,7,20,61,( )
A.101
B.142
C.156
D.182
【答案】D
【中公解析】:观察数列的趋势,题中数字整体上呈现单调递增。
从大数字入手,61和20,20和7,每相邻两项间数据大致都是3倍组左右的倍数关系,由此可以优先考虑倍数数列,61=20×3+1,20=7×3-1,7=2×3+1,2=1×3-1,发现相邻两项间倍数关系正好为3倍减1,3倍加1的交替关系,所以最后两项关系为61×3-1=182,故答案选择D。
例3.3,2,8,19,156,( )
A 2969
B 3315
C 4782
D 5514
【答案】A
【中公解析】:观察数列趋势,整体呈现递增。
从大数字入手,156和19的倍数关系已经达到8倍以上了,而且通过观察选项发现从156到选项达到陡增的状况,优先考虑乘积数列或多次方数列,又因为156正好是19的8倍多,8又是19的前一项,所以我们尝试一下乘积关系。
156=19×8+4,19=8×2+3,8=2×3+2,可以得到数列的规律为:下一项=前两项相乘+自然数列。
所以所求结果=156×19+5=2969,选A。