2017高考四川文科数学试题和答案解析[word解析版]
- 格式:doc
- 大小:796.96 KB
- 文档页数:6
绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是 A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学 科&网则此点取自黑色部分的概率是A .14B .π8C .12D .π 45.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF的面积为 A .13B .1 2C .2 3D .3 26.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .38..函数sin21cos xy x=-的部分图像大致为9.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称10.如图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
****
----
2017年普通高等学校招生全国统一考试
文科数学
(适用地区:云南、贵州、广西、四川)
第Ⅰ卷(选择题共60分)
一、选择题(本大题共12 个小题,每小题 5 分,共60 分.在每小题给出的四个选项中,只有一个选项
是符合题目要求的.)
1.已知集合A={1 ,2,3,4} ,B={2 ,4,6,8} ,则A∩B 中元素的个数为( )
A .1 B.2 C.3 D.4
[解析] 由题意可得A∩B={2 ,4} ,故选B.
答案: B
2.复平面内表示复数z=i(–2+i)的点位于( )
A .第一象限B.第二象限C.第三象限D.第四象限
[解析] 由题意z=-1-2i,故选B.
答案: B
3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年 1 月至2016 年12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是( )
A .月接待游客逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8 月
D.各年 1 月至 6 月的月接待游客量相对于7 月至12 月,波动性更小,变化比较平稳
[解析] 由折线图,7 月份后月接待游客量减少, A 错误,故选A.
答案: A
- 1 -。
绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
12560分。
在每小题给出的四个选项中,只有一项是符合题一、选择题:本大题共分,共小题,每小题目要求的。
????0???22xx|3x|x B1A==,则.已知集合,3???|xx ABABAB= ??..??2??3???x|x?ABRCADB=..??2??2n.nkgxx…,.为评估一种农作物的种植效果,选了块地作试验田)分别为这,块地的亩产量(单位:,21x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是n Axx…xBxx…x 的标准差,..,,,,,的平均数nn2211Cxx…xDxx…x 的中位数,的最大值,.,,.,,nn21123 .下列各式的运算结果为纯虚数的是222Di(1+i)i B (1-i)C(1+i)i(1+i)A....4ABCD.正方形内切圆中的黑色部分和白色部分关于正方形如图,正方形内的图形来自中国古代的太极图.. 在正方形内随机取一点,则此点取自黑色部分的概率是的中心成中心对称ππ11 CAD B....82442y25FCx-=1PCPFxA(1,3).APF△是双曲线上一点,且:的坐标是.已知与的右焦点,则是轴垂直,点 3 的面积为1123 D B C A ....22336ABMNQ为所在棱的中点,则在这四个正方为正方体的两个顶点,,.如图,在下列四个正方体中,,,ABMNQ 不平行的是体中,直接与平面x?3y?3,??x?y?1,zy=x+y 7x的最大值为满足约束条件.设,则??y?0,?A0 B1 C2 D3 ....sin2x?y 8.的部分图像大致为函数.1?cosxf(x)?lnx?ln(2?x) 9,则.已知函数f(x)f(x)0,2AB0,2 )单调递减在(.)单调递增在(.f(x)f(x)1,0=1Cy=Dy= x)对称对称的图像关于点(..的图像关于直线nn10n1000??23两个空白框中,可以分别填入的最小偶数,那么在.如图是为了求出满足和AA>1000n=n+1BA>1000n=n+2 和.和.CA≤1000n=n+1DA≤1000n=n+2和..和sinB?sinA(sinC?cosC)?0、、、、==2cb11ABCAcBaCa,.△,的内角的对边分别为,。
2017年普通高等学校招生全国统一考试1卷文科数学60125分。
在每小题给出的四个选项中,只有一项是符合题目要求一、选择题:本大题共分,共小题,每小题的。
)–2x>0}( 1A={x|x<2}B={x|3,则、已知集合,33CA.A∩.A∪B={x|x<} BD..AA∩∪B={x|x<B} B=R =Φ222nn(kg)xx...x,单位:,、为评估一种农作物的种植效果,选了分别为块地作试验田。
这,块地的亩产量,n12( ) 下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是Axx (x)Bxx…x 的标准差,.,,的平均数.,,,n1122n Cxx…x Dxx…x 的中位数,,的最大值.,,,.,n2n2113( ) 、下列各式的运算结果为纯虚数的是222DC(1+i)i(1+i)Bi (1–i) Ai(1+i) ....41ABCD内的图形来自中国古代的太极图。
正方形内切圆中的黑色部分和白色部分关于正图,正方形、如下左( )方形的中心成中心对称。
在正方形内随机取一点,则此点取自黑色部分的概率是1π1πA.B.C.D.42482y2的面APF(1,3)。
则△与x轴垂直,点A的坐标是x是双曲线C:–=1的右焦点,P是C上一点,且PF5、已知F3)( 积为3211 .D.B.C.A2332QMNA2–5B6为所在棱的中点,则在这四个,图,在下列四个正方体中,为正方体的两个顶点,、如上左,,)ABMNQ( 不平行的是正方体中,直接与平面x+3y≤3??–y≥1x)的最大值为y满足约束条件( ,则z=x+y、设7x,?y≥03D2 CA0 B1 ....sin2x)( 8、函数y=的部分图像大致为cosx1–) f(x)=lnx+ln(2–x)( 9,则、已知函数f(x)(0,2)B f(x)A(0,2) 单调递减.在在单调递增.x=1Cy=f(x)(1,0)D y=f(x)对称的图像关于点..的图像关于直线对称nn>1000n3)( 10–2,那么在的最小偶数、如图是为了求出满足两个空白框中,可以分别填入和n=n+2n=n+1 DA≤1000A>1000n=n+1 BA>1000n=n+2CA≤1000A和和和....和)C=( sinB+sinA(sinC–cosC)=0a=2c=211△ABCABCabc,则,、。
2017年四川省成都市高考数学二诊试卷〔文科〕一、选择题:本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一个是符合题目要求的.1.〔5分〕设集合A=[﹣1,2],B={y|y=x2,x∈A},则A∩B=〔〕A.[1,4]B.[1,2]C.[﹣1,0]D.[0,2]2.〔5分〕假设复数z1=a+i〔a∈R〕,z2=1﹣i,且为纯虚数,则z1在复平面内所对应的点位于〔〕A.第一象限B.第二象限C.第三象限D.第四象限3.〔5分〕已知平面向量,的夹角为,且||=1,||=,则|﹣2|=〔〕A.1 B.C.2 D.4.〔5分〕在等比数列{a n}中,已知a3=6,a3+a5+a7=78,则a5=〔〕A.12 B.18 C.24 D.365.〔5分〕假设实数x,y满足不等式,则x﹣y的最大值为〔〕A.﹣5 B.2 C.5 D.76.〔5分〕两位同学约定下午5:30~6:00在图书馆见面,且他们在5:30~6:00之间到达的时刻是等可能的,先到的同学须等待,15分钟后还未见面便离开,则两位同学能够见面的概率是〔〕A.B.C.D.7.〔5分〕已知m,n是空间中两条不同的直线,α、β是两个不同的平面,且m⊂α,n⊂β.有以下命题:①假设α∥β,则m∥n;②假设α∥β,则m∥β;③假设α∩β=l,且m⊥l,n⊥l,则α⊥β;④假设α∩β=l,且m⊥l,m⊥n,则α⊥β.其中真命题的个数是〔〕A.0 B.1 C.2 D.38.〔5分〕已知函数f〔x〕的定义域为R,当x∈[﹣2,2]时,f〔x〕单调递减,且函数f〔x+2〕为偶函数,则以下结论正确的选项是〔〕A.f〔π〕<f〔3〕<f〔〕B.f〔π〕<f〔〕<f〔3〕C.f〔〕<f〔3〕<f〔π〕D.f〔〕<f〔π〕<f〔3〕9.〔5分〕执行如下图的程序框图,假设输入a,b,c分别为1,2,0.3,则输出的结果为〔〕10.〔5分〕设双曲线C:﹣=1〔a>0,b>0〕的左右顶点分别为A1,A2,左右焦点分别为F1,F2,以F1F2为直径的圆与双曲线左支的一个交点为P,假设以A1A2为直径的圆与PF2相切,则双曲线C的离心率为〔〕A.B.C.2 D.11.〔5分〕已知函数f〔x〕=sin〔ωx+2φ〕﹣2sinφcos〔ωx+φ〕〔ω>0,φ∈R〕在〔π,〕上单调递减,则ω的取值范围是〔〕A.〔0,2]B.〔0,]C.[,1]D.[,]12.〔5分〕把平面图形M上的所有点在一个平面上的射影构成的图形M′叫作图形M在这个平面上的射影.如图,在长方体ABCD﹣EFGH中,AB=5,AD=4,AE=3,则△EBD在平面EBC 上的射影的面积是〔〕A.2B.C.10 D.30二、填空题:本大题共4小题,每题5分,共20分〕.13.〔5分〕设抛物线C:y2=2x的焦点为F,假设抛物线C上点P的横坐标为2,则|PF|=.14.〔5分〕在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未污损,即9,10,11,,那么这组数据的方差s2可能的最大值是.15.〔5分〕假设曲线y=lnx+ax2﹣2x〔a为常数〕不存在斜率为负数的切线,则实数a的取值范围是.16.〔5分〕在数列{a n}中,a1=1,a1+++…+=a n〔n∈N*〕,则数列{a n}的通项公式a n=.三、解答题:本大题共5小题,共70分.解答写出文字说明、证明过程或演算过程.17.〔12分〕如图,在平面四边形ABCD中,已知∠A=,∠B=,AB=6,在AB边上取点E,使得BE=1,连接EC,ED.假设∠CED=,EC=.〔Ⅰ〕求sin∠BCE的值;〔Ⅱ〕求CD的长.18.〔12分〕某项科研活动共进行了5次试验,其数据如表所示:特征量第1次第2次第3次第4次第5次x555559 551563552y601605 597 599 598〔Ⅰ〕从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;〔Ⅱ〕求特征量y关于x的线性回归方程=x+;并预测当特征量x为570时特征量y的值.〔附:回归直线的斜率和截距的最小二乘法估计公式分别为=,=﹣〕19.〔12分〕如图,已知梯形CDEF与△ADE所在的平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9,CD=12,连接BC,BF.〔Ⅰ〕假设G为AD边上一点,DG=DA,求证:EG∥平面BCF;〔Ⅱ〕求多面体ABCDEF的体积.20.〔12分〕在平面直角坐标系xOy中,已知椭圆E:+=1〔a>b>0〕,圆O:x2+y2=r2〔0<r<b〕.当圆O的一条切线l:y=kx+m与椭圆E相交于A,B两点.〔Ⅰ〕当k=﹣,r=1时,假设点A,B都在坐标轴的正半轴上,求椭圆E的方程;〔Ⅱ〕假设以AB为直径的圆经过坐标原点O,探究a,b,r是否满足+=,并说明理由.21.〔12分〕已知函数f〔x〕=〔a+〕lnx﹣x+,其中a>0.〔Ⅰ〕假设f〔x〕在〔0,+∞〕上存在极值点,求a的取值范围;〔Ⅱ〕设a∈〔1,e],当x1∈〔0,1〕,x2∈〔1,+∞〕时,记f〔x2〕﹣f〔x1〕的最大值为M〔a〕,那么M〔a〕是否存在最大值?假设存在,求出其最大值;假设不存在,请说明理由.[选修4-4:坐标系与参数方程选讲]22.〔10分〕在直角坐标系xOy中,曲线C的参数方程为〔α为参数〕,直线l的参数方程为〔t为参数〕,在以坐标原点O为极点,x轴为正半轴为极轴的极坐标系中,过极点O的射线与曲线C相交于不同于极点的点A,且点A的极坐标为〔2,θ〕,其中θ∈〔,π〕〔Ⅰ〕求θ的值;〔Ⅱ〕假设射线OA与直线l相交于点B,求|AB|的值.[选修4-5:不等式选讲]23.已知函数f〔x〕=4﹣|x|﹣|x﹣3|〔Ⅰ〕求不等式f〔x+〕≥0的解集;〔Ⅱ〕假设p,q,r为正实数,且++=4,求3p+2q+r的最小值.2017年四川省成都市高考数学二诊试卷〔文科〕参考答案与试题解析一、选择题:本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一个是符合题目要求的.1.〔5分〕〔2017•成都模拟〕设集合A=[﹣1,2],B={y|y=x2,x∈A},则A∩B=〔〕A.[1,4]B.[1,2]C.[﹣1,0]D.[0,2]【分析】先分别求出集合A和B,由此利用交集定义能求出A∩B.【解答】解:∵集合A=[﹣1,2],B={y|y=x2,x∈A}=[0,4],∴A∩B=[0,2].故选:D.【点评】此题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.〔5分〕〔2017•成都模拟〕假设复数z1=a+i〔a∈R〕,z2=1﹣i,且为纯虚数,则z1在复平面内所对应的点位于〔〕A.第一象限B.第二象限C.第三象限D.第四象限【分析】利用复数的运算法则、纯虚数的定义、几何意义即可得出.【解答】解:复数z1=a+i〔a∈R〕,z2=1﹣i,且===+i为纯虚数,∴=0,≠0,∴a=1.则z1在复平面内所对应的点〔1,1〕位于第一象限.故选:A.【点评】此题考查了复数的运算法则、纯虚数的定义、几何意义,考查了推理能力与计算能力,属于基础题.3.〔5分〕〔2017•成都模拟〕已知平面向量,的夹角为,且||=1,||=,则|﹣2|=〔〕A.1 B.C.2 D.【分析】结合题意设出,的坐标,求出﹣2的坐标,从而求出﹣2的模即可.【解答】解:平面向量,的夹角为,且||=1,||=,不妨设=〔1,0〕,=〔,〕,则﹣2=〔,﹣〕,故|﹣2|==1,故选:A.【点评】此题考查了向量求模问题,考查向量的坐标运算,是一道基础题.4.〔5分〕〔2017•成都模拟〕在等比数列{a n}中,已知a3=6,a3+a5+a7=78,则a5=〔〕A.12 B.18 C.24 D.36【分析】设公比为q,由题意求出公比,再根据等比数列的性质即可求出.【解答】解:设公比为q,∵a3=6,a3+a5+a7=78,∴a3+a3q2+a3q4=78,∴6+6q2+6q4=78,解得q2=3∴a5=a3q2=6×3=18,故选:B【点评】此题考查了等比数列的性质,考查了学生的计算能力,属于基础题.5.〔5分〕〔2017•成都模拟〕假设实数x,y满足不等式,则x﹣y的最大值为〔〕A.﹣5 B.2 C.5 D.7【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图:由图得A〔0,﹣2〕,令z=x﹣y,化为y=x﹣z,由图可知,当直线y=x﹣z过A时,直线在y轴上的截距最小,z有最大值为2.故选:B.【点评】此题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.6.〔5分〕〔2017•成都模拟〕两位同学约定下午5:30~6:00在图书馆见面,且他们在5:30~6:00之间到达的时刻是等可能的,先到的同学须等待,15分钟后还未见面便离开,则两位同学能够见面的概率是〔〕A.B.C.D.【分析】由题意知此题是几何概型问题,试验发生包含的所有事件对应的集合是Ω:{〔x,y〕|0≤x≤30,0≤y≤30},做出集合对应的面积是边长为30的正方形面积,写出满足条件的事件对应的集合与面积,根据面积之比计算概率.【解答】解:因为两人谁也没有讲好确切的时间,故样本点由两个数〔甲、乙两人各自到达的时刻〕组成;以5:30作为计算时间的起点建立如下图的平面直角坐标系,设甲、乙各在第x分钟和第y分钟到达,则样本空间为:Ω:{〔x,y〕|0≤x≤30,0≤y≤30},画成图为一正方形;会面的充要条件是|x﹣y|≤15,即事件A={可以会面}所对应的区域是图中的阴影线部分,∴由几何概型公式知所求概率为面积之比,即P〔A〕==.故选:D.【点评】此题考查了把时间分别用x,y坐标来表示,把时间一维问题转化为平面图形的二维面积问题,计算面积型的几何概型问题.7.〔5分〕〔2017•成都模拟〕已知m,n是空间中两条不同的直线,α、β是两个不同的平面,且m⊂α,n⊂β.有以下命题:①假设α∥β,则m∥n;②假设α∥β,则m∥β;③假设α∩β=l,且m⊥l,n⊥l,则α⊥β;④假设α∩β=l,且m⊥l,m⊥n,则α⊥β.其中真命题的个数是〔〕A.0 B.1 C.2 D.3【分析】根据空间直线和平面,平面和平面平行或垂直的判定定理,分别判断,即可得出结论.【解答】解:①假设α∥β,则m∥n或m,n异面,不正确;②假设α∥β,根据平面与平面平行的性质,可得m∥β,正确;③假设α∩β=l,且m⊥l,n⊥l,则α与β不一定垂直,不正确;④假设α∩β=l,且m⊥l,m⊥n,l与n相交则α⊥β,不正确.故选:B.【点评】此题主要考查命题的真假判断,涉及空间直线和平面,平面和平面平行或垂直的判定,根据相应的判定定理和性质定理是解决此题的关键.8.〔5分〕〔2017•成都模拟〕已知函数f〔x〕的定义域为R,当x∈[﹣2,2]时,f〔x〕单调递减,且函数f〔x+2〕为偶函数,则以下结论正确的选项是〔〕A.f〔π〕<f〔3〕<f〔〕B.f〔π〕<f〔〕<f〔3〕C.f〔〕<f〔3〕<f〔π〕D.f〔〕<f〔π〕<f〔3〕【分析】根据函数的奇偶性,推导出f〔﹣x+2〕=f〔x+2〕,再利用当x∈[﹣2,2]时,f〔x〕单调递减,即可求解.【解答】解:∵y=f〔x+2〕是偶函数,∴f〔﹣x+2〕=f〔x+2〕,∴f〔3〕=f〔1〕,f〔π〕=f〔4﹣π〕,∵4﹣π<1<,当x∈[﹣2,2]时,f〔x〕单调递减,∴f〔4﹣π〕>f〔1〕>f〔〕,∴f〔〕<f〔3〕<f〔π〕,故选C.【点评】此题考查函数单调性、奇偶性,考查学生的计算能力,正确转化是关键.9.〔5分〕〔2017•成都模拟〕执行如下图的程序框图,假设输入a,b,c分别为1,2,0.3,则输出的结果为〔〕【分析】|a﹣b|<0.3,退出循环,输出的值为1.375.【解答】解:模拟程序的运行,可得执行循环体,m=,不满足条件f〔m〕=0,满足条件f〔a〕f〔m〕<0,b=1.5,不满足条件|a﹣b|<c,m=1.25,不满足条件f〔m〕=0,不满足条件f〔a〕f〔m〕<0,a=1.25,满足条件|a﹣b|<c,退出循环,输出的值为1.375.故选:D.【点评】此题考查了程序框图的应用,模拟程序的运行,正确依次写出每次循环得到的a,b 的值是解题的关键,属于基础题.10.〔5分〕〔2017•成都模拟〕设双曲线C:﹣=1〔a>0,b>0〕的左右顶点分别为A1,A2,左右焦点分别为F1,F2,以F1F2为直径的圆与双曲线左支的一个交点为P,假设以A1A2为直径的圆与PF2相切,则双曲线C的离心率为〔〕A.B.C.2 D.【分析】根据双曲线的定义和以及圆的有关性质可得PF1=2a,PF2=4a,再根据勾股定理得到a,c的关系式,即可求出离心率.【解答】解:如下图,由题意可得OQ∥F1P,OQ=OA2=a,OF2=C,F1F2=2c,∴==,∴PF1=2a,∵点P为双曲线左支的一个点,∴PF2﹣PF1=2a,∴PF2=4a,∵以F1F2为直径的圆与双曲线左支的一个交点为P,∴∠F1PF2=90°∴〔2a〕2+〔4a〕2=〔2c〕2,∴=3,∴e==,故选:B【点评】此题要求学生掌握定义:到两个定点的距离之差等于|2a|的点所组成的图形即为双曲线.考查了数形结合思想、此题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径.11.〔5分〕〔2017•成都模拟〕已知函数f〔x〕=sin〔ωx+2φ〕﹣2sinφcos〔ωx+φ〕〔ω>0,φ∈R〕在〔π,〕上单调递减,则ω的取值范围是〔〕A.〔0,2]B.〔0,]C.[,1]D.[,]【分析】利用积化和差公式化简2sinφcos〔ωx+φ〕=sin〔ωx+2φ〕﹣sinωx.可将函数化为y=Asin 〔ωx+φ〕的形式,在〔π,〕上单调递减,结合三角函数的图象和性质,建立关系可求ω的取值范围.【解答】解:函数f〔x〕=sin〔ωx+2φ〕﹣2sinφcos〔ωx+φ〕〔ω>0,φ∈R〕.化简可得:f〔x〕=sin〔ωx+2φ〕﹣sin〔ωx+2φ〕+sinωx=s inωx,由+,〔k∈Z〕上单调递减,得:+,∴函数f〔x〕的单调减区间为:[,],〔k∈Z〕.∵在〔π,〕上单调递减,可得:∵ω>0,ω≤1.故选C.【点评】此题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决此题的关键.属于中档题.12.〔5分〕〔2017•成都模拟〕把平面图形M上的所有点在一个平面上的射影构成的图形M′叫作图形M在这个平面上的射影.如图,在长方体ABCD﹣EFGH中,AB=5,AD=4,AE=3,则△EBD在平面EBC上的射影的面积是〔〕A.2B.C.10 D.30【分析】如下图,△EBD在平面EBC上的射影为△OEB,即可求出结论.【解答】解:如下图,△EBD在平面EBC上的射影为△OEB,面积为=2,故选A.【点评】此题考查射影的概念,考查面积的计算,确定△EBD在平面EBC上的射影为△OEB 是关键.二、填空题:本大题共4小题,每题5分,共20分〕.13.〔5分〕〔2017•成都模拟〕设抛物线C:y2=2x的焦点为F,假设抛物线C上点P的横坐标为2,则|PF|=.【分析】直接利用抛物线的定义,即可求解.【解答】解:抛物线y2=2x上横坐标为2的点到其焦点的距离,就是这点到抛物线的准线的距离.抛物线的准线方程为:x=﹣,所以抛物线y2=2x上横坐标为2的点到其焦点的距离为+2=.故答案为:.【点评】此题考查抛物线的简单性质的应用,抛物线的定义的应用,考查计算能力.14.〔5分〕〔2017•成都模拟〕在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未污损,即9,10,11,,那么这组数据的方差s2可能的最大值是36.【分析】设这组数据的最后2个分别是:10+x,y,得到x+y=10,表示出S2,根据x的取值求出S2的最大值即可.【解答】解:设这组数据的最后2个分别是:10+x,y,则9+10+11+〔10+x〕+y=50,得:x+y=10,故y=10﹣x,故S2=[1+0+1+x2+〔﹣x〕2]=+x2,显然x最大取9时,S2最大是36,故答案为:36.【点评】此题考查了求数据的平均数和方差问题,是一道基础题.15.〔5分〕〔2017•成都模拟〕假设曲线y=lnx+ax2﹣2x〔a为常数〕不存在斜率为负数的切线,则实数a的取值范围是[,+∞〕.【分析】由题意可知y′≥0在〔0,+∞〕上恒成立,别离参数得a≥,求出右侧函数的最大值即可得出a的范围.【解答】解:y′=,x∈〔0,+∞〕,∵曲线y=lnx+ax2﹣2x〔a为常数〕不存在斜率为负数的切线,∴y′=≥0在〔0,+∞〕上恒成立,∴a≥恒成立,x∈〔0,+∞〕.令f〔x〕=,x∈〔0,+∞〕,则f′〔x〕=,∴当0<x<1时,f′〔x〕>0,当x>1时,f′〔x〕<0,∴f〔x〕在〔0,1〕上单调递增,在〔1,+∞〕上单调递减,∴当x=1时,f〔x〕=取得最大值f〔1〕=,∴a.故答案为[,+∞〕.【点评】此题考查了导数的几何意义,导数与函数单调性的关系,函数最值的计算,属于中档题.16.〔5分〕〔2017•成都模拟〕在数列{a n}中,a1=1,a1+++…+=a n〔n∈N*〕,则数列{a n}的通项公式a n=.【分析】a1=1,a1+++…+=a n〔n∈N*〕,n≥2时,a1+++…+=a n﹣1.相减可得:=.再利用递推关系即可得出.【解答】解:∵a1=1,a1+++…+=a n〔n∈N*〕,n≥2时,a1+++…+=a n﹣1.∴=a n﹣a n﹣1,化为:=.∴=…=2a1=2.∴a n=.故答案为:.【点评】此题考查了数列递推关系、通项公式,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共5小题,共70分.解答写出文字说明、证明过程或演算过程.17.〔12分〕〔2017•成都模拟〕如图,在平面四边形ABCD中,已知∠A=,∠B=,AB=6,在AB边上取点E,使得BE=1,连接EC,ED.假设∠CED=,EC=.〔Ⅰ〕求sin∠BCE的值;〔Ⅱ〕求CD的长.【分析】〔Ⅰ〕在△CBE中,正弦定理求出sin∠BCE;〔Ⅱ〕在△CBE中,由余弦定理得CE2=BE2+CB2﹣2BE•CBcos120°,得CB.由余弦定理得CB2=BE2+CE2﹣2BE•CEcos∠BEC⇒cos∠BEC⇒sin∠BEC、cos∠AED在直角△ADE中,求得DE=2,在△CED中,由余弦定理得CD2=CE2+DE2﹣2CE•DEcos120°即可【解答】解:〔Ⅰ〕在△CBE中,由正弦定理得,sin∠BCE=,〔Ⅱ〕在△CBE中,由余弦定理得CE2=BE2+CB2﹣2BE•CBcos120°,即7=1+CB2+CB,解得CB=2.由余弦定理得CB2=BE2+CE2﹣2BE•CEcos∠BEC⇒cos∠BEC=.⇒sin∠BEC=,sin∠AED=sin〔1200+∠BEC〕=,⇒cos∠AED=,在直角△ADE中,AE=5,═cos∠AED=,⇒DE=2,在△CED中,由余弦定理得CD2=CE2+DE2﹣2CE•DEcos120°=49∴CD=7.【点评】此题考查了正余弦定理在解三角形中的应用,是中档题18.〔12分〕〔2017•成都模拟〕某项科研活动共进行了5次试验,其数据如表所示:特征量第1次第2次第3次第4次第5次x555559 551563552y601605 597 599 598〔Ⅰ〕从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;〔Ⅱ〕求特征量y关于x的线性回归方程=x+;并预测当特征量x为570时特征量y的值.〔附:回归直线的斜率和截距的最小二乘法估计公式分别为=,=﹣〕【分析】〔Ⅰ〕利用对立事件的概率公式,可得结论;〔Ⅱ〕求出回归系数,即可求特征量y关于x的线性回归方程=x+;并预测当特征量x 为570时特征量y的值.【解答】解:〔Ⅰ〕从5次特征量y的试验数据中随机地抽取两个数据,共有=10种方法,都小于600,有=3种方法,∴至少有一个大于600的概率==0.7;〔Ⅱ〕=554,=600,===0.25,=﹣=461.5,∴+461.5,x=570,=604,即当特征量x为570时特征量y的值为604.【点评】此题考查概率的计算,考查独立性检验知识的运用,正确计算是关键.19.〔12分〕〔2017•成都模拟〕如图,已知梯形CDEF与△ADE所在的平面垂直,AD⊥DE,CD ⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9,CD=12,连接BC,BF.〔Ⅰ〕假设G为AD边上一点,DG=DA,求证:EG∥平面BCF;〔Ⅱ〕求多面体ABCDEF的体积.【分析】〔Ⅰ〕由已知可得DA、DE、DC两两互相垂直,以D为坐标原点,分别以ED、DC、DA所在直线为x,y,z轴建立空间直角坐标系,求出平面BCF的一个法向量,由平面法向量与平行证明EG∥平面BCF;〔Ⅱ〕把多面体ABCDEF的体积分解为两个棱锥的体积求解.【解答】〔Ⅰ〕证明:∵梯形CDEF与△ADE所在的平面垂直,AD⊥DE,∴AD⊥平面CDEF,则AD⊥DC,又CD⊥DE,∴以D为坐标原点,分别以ED、DC、DA所在直线为x,y,z轴建立空间直角坐标系,∵AB∥CD∥EF,AE=2DE=8,AB=3,EF=9,CD=12,且DG=DA,∴E〔﹣4,0,0〕,G〔0,0,〕,C〔0,12,0〕,F〔﹣4,9,0〕,B〔0,3,〕,,.设平面BCF的一个法向量为,则由,取z=,得.,∴.∵EG⊄平面BCF,∴EG∥平面BCF;〔Ⅱ〕解:连接BD,BE,则V ABCDEF=V B﹣CDEF+V B﹣ADE==.【点评】此题考查直线与平面平行的判定,训练了利用空间向量证明线面平行,训练了多面体体积的求法,是中档题.20.〔12分〕〔2017•成都模拟〕在平面直角坐标系xOy中,已知椭圆E:+=1〔a>b>0〕,圆O:x2+y2=r2〔0<r<b〕.当圆O的一条切线l:y=kx+m与椭圆E相交于A,B两点.〔Ⅰ〕当k=﹣,r=1时,假设点A,B都在坐标轴的正半轴上,求椭圆E的方程;〔Ⅱ〕假设以AB为直径的圆经过坐标原点O,探究a,b,r是否满足+=,并说明理由.【分析】〔Ⅰ〕利用点到直线的距离公式求得d==1,即可求得m的值,由点A,B都在坐标轴的正半轴上,即可求得a和b的值,求得椭圆方程;〔Ⅱ〕利用点到直线的距离公式,求得m2=r2〔1+k2〕,将直线方程代入椭圆方程,由韦达定理及向量数量积的坐标运算x1x2+y1y2=0,即可求得a,b与r的关系.【解答】解:〔Ⅰ〕当k=﹣,r=1时,则切线l:y=﹣x+m,即2y+x﹣2m=0,由圆心到l的距离d==1,解得:m=±,点A,B都在坐标轴的正半轴上,则m>0,∴直线l:y=﹣x+,∴A〔0,〕,B〔,0〕,∴B为椭圆的右顶点,A为椭圆的上顶点,则a=,b=,∴椭圆方程为:;〔Ⅱ〕a,b,r满足+=成立,理由如下:设点A、B的坐标分别为A〔x1,y1〕、B〔x2,y2〕,直线l与圆x2+y2=r2相切,则=r,即m2=r2〔1+k2〕,①则,〔b2+a2k2〕x2+2a2kmx+a2m2﹣a2b2=0.则x1+x2=﹣,x1x2=,所以y1y2=〔kx1+m〕〔kx2+m〕=k2x1x2+km〔x1+x2〕+m2=,AB为直径的圆经过坐标原点O,则∠AOB=90°,则⊥=0,∴x1x2+y1y2=+==0,则〔a2+b2〕m2=a2b2〔1+k2〕,②将①代入②,=,∴+=.【点评】此题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,弦长公式,点到直线的距离公式及向量数量积的坐标运算,考查计算能力,属于中档题.21.〔12分〕〔2017•成都模拟〕已知函数f〔x〕=〔a+〕lnx﹣x+,其中a>0.〔Ⅰ〕假设f〔x〕在〔0,+∞〕上存在极值点,求a的取值范围;〔Ⅱ〕设a∈〔1,e],当x1∈〔0,1〕,x2∈〔1,+∞〕时,记f〔x2〕﹣f〔x1〕的最大值为M〔a〕,那么M〔a〕是否存在最大值?假设存在,求出其最大值;假设不存在,请说明理由.【分析】〔Ⅰ〕求出f′〔x〕=,x∈〔0,+∞〕,由此根据a=1,a>0且a≠1,利用导数性质进行分类讨论,能求出a的取值范围.〔Ⅱ〕当a∈〔1,e]时,,f〔x〕在〔0,〕上单调递减,在〔,a〕上单调递增,在〔a,+∞〕上单调递减,对∀x1∈〔0,1〕,有f〔x1〕≥f〔〕,对∀x2∈〔1,+∞〕,有f 〔x2〕≤f〔a〕,从而[f〔x2〕﹣f〔x1〕]max=f〔a〕﹣f〔〕,由此能求出M〔a〕存在最大值.【解答】解:〔Ⅰ〕∵f〔x〕=〔a+〕lnx﹣x+,其中a>0,∴=,x∈〔0,+∞〕,①当a=1时,≤0,f〔x〕在〔0,+∞〕上单调递减,不存在极值点;②当a>0时,且a≠1时,f′〔a〕=f′〔〕=0,经检验a ,均为f〔x〕的极值点,∴a∈〔0,1〕∪〔1,+∞〕.〔Ⅱ〕当a∈〔1,e]时,,f〔x〕在〔0,〕上单调递减,在〔,a〕上单调递增,在〔a,+∞〕上单调递减,对∀x1∈〔0,1〕,有f〔x1〕≥f 〔〕,对∀x2∈〔1,+∞〕,有f〔x2〕≤f〔a〕,∴[f〔x2〕﹣f〔x1〕]max=f〔a〕﹣f 〔〕,∴M〔a〕=f〔a〕﹣f 〔〕=[〔a +〕lna﹣a +]﹣[〔a +〕ln ﹣+a]=2[〔a +〕lna﹣a +],a∈〔1,e],M′〔a〕=2〔1﹣〕lna+2〔a +〕+2〔﹣1﹣〕=2〔1﹣〕lna,a∈〔1,e].∴M′〔a〕>0.即M〔a〕在〔1,e]上单调递增,∴[M〔a〕]max=M〔e〕=2〔e +〕+2〔〕=,∴M〔a 〕存在最大值.【点评】此题考查了利用导数研究函数的单调性极值与最值,考查了恒成立问题的等价转化方法,考查了推理能力与计算能力,属于难题.[选修4-4:坐标系与参数方程选讲]22.〔10分〕〔2017•成都模拟〕在直角坐标系xOy中,曲线C 的参数方程为〔α为参数〕,直线l 的参数方程为〔t为参数〕,在以坐标原点O为极点,x轴为正半轴为极轴的极坐标系中,过极点O的射线与曲线C相交于不同于极点的点A,且点A的极21页坐标为〔2,θ〕,其中θ∈〔,π〕〔Ⅰ〕求θ的值;〔Ⅱ〕假设射线OA与直线l相交于点B,求|AB|的值.【分析】〔Ⅰ〕曲线C的极坐标方程,利用点A的极坐标为〔2,θ〕,θ∈〔,π〕,即可求θ的值;〔Ⅱ〕假设射线OA与直线l相交于点B,求出A,B的坐标,即可求|AB|的值.【解答】解:〔Ⅰ〕曲线C 的参数方程为〔α为参数〕,普通方程为x2+〔y﹣2〕2=4,极坐标方程为ρ=4sinθ,∵点A的极坐标为〔2,θ〕,θ∈〔,π〕,∴θ=;〔Ⅱ〕直线l 的参数方程为〔t为参数〕,普通方程为x +y﹣4=0,点A 的直角坐标为〔﹣,3〕,射线OA的方程为y=﹣x,代入x +y﹣4=0,可得B〔﹣2,6〕,∴|AB|==2.【点评】此题考查三种方程的转化,考查两点间距离公式的运用,属于中档题.[选修4-5:不等式选讲]23.〔2017•成都模拟〕已知函数f〔x〕=4﹣|x|﹣|x﹣3|〔Ⅰ〕求不等式f〔x +〕≥0的解集;〔Ⅱ〕假设p,q,r 为正实数,且++=4,求3p+2q+r的最小值.【分析】〔I〕由题意,分类讨论,去掉绝对值,解不等式即可;〔Ⅱ〕运用柯西不等式,可3p+2q+r的最小值.【解答】解:〔Ⅰ〕f〔x +〕≥0,即|x +|+|x ﹣|≤4,x ≤﹣,不等式可化为﹣x ﹣﹣x +≤4,∴x≥﹣2,∴﹣2≤x ≤﹣;﹣<x <,不等式可化为x +﹣x +≤4恒成立;x ≥,不等式可化为x ++x ﹣≤4,∴x≤2,∴≤x≤2,综上所述,不等式的解集为[﹣2,2];〔Ⅱ〕∵〔++〕〔3p+2q+r〕≥〔1+1+1〕2=9,++=422页∴3p+2q+r ≥,∴3p+2q+r 的最小值为.【点评】此题考查不等式的解法,考查运用柯西不等式,考查运算和推理能力,属于中档题.23页。
2017年高考文数真题试卷(新课标Ⅰ卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={x|x <2},B={x|3﹣2x >0},则( )A. A∩B={x|x < 32 }B. A∩B=∅C. A ∪B={x|x < 32 } D. AUB=R2.为评估一种农作物的种植效果,选了n 块地作试验田,这n 块地的亩产量(单位:kg )分别是x 1 , x 2 , …,x n , 下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A. x 1 , x 2 , …,x n 的平均数B. x 1 , x 2 , …,x n 的标准差C. x 1 , x 2 , …,x n 的最大值D. x 1 , x 2 , …,x n 的中位数3.下列各式的运算结果为纯虚数的是( )A. i (1+i )2B. i 2(1﹣i )C. (1+i )2D. i (1+i )4.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A. 14B. π8C. 12D. π45.已知F 是双曲线C :x 2﹣y 23 =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为( )A. 13B. 12C. 23D. 326.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A. B.C. D.7.设x ,y 满足约束条件 {x +3y ≤3x −y ≥1y ≥0,则z=x+y 的最大值为( )A. 0B. 1C. 2D. 38.函数y=sin2x 1−cosx 的部分图象大致为( )A. B.C. D.9.已知函数f (x )=lnx+ln (2﹣x ),则( )A. f (x )在(0,2)单调递增B. f (x )在(0,2)单调递减C. y=f (x )的图象关于直线x=1对称D. y=f (x )的图象关于点(1,0)对称10.如图程序框图是为了求出满足3n ﹣2n >1000的最小偶数n ,那么在和 两个空白框中,可以分别填入( )A. A >1000和n=n+1B. A >1000和n=n+2C. A≤1000和n=n+1D. A≤1000和n=n+211.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinB+sinA (sinC ﹣cosC )=0,a=2,c= √2 ,则C=( )A. π12B. π6C. π4D. π312.设A ,B 是椭圆C :x 23 + y 2m =1长轴的两个端点,若C 上存在点M 满足∠AMB=120°,则m 的取值范围是( )A. (0,1]∪[9,+∞)B. (0, √3 ]∪[9,+∞)C. (0,1]∪[4,+∞)D. (0, √3 ]∪[4,+∞) 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量 a ⃗ =(﹣1,2), b ⃗⃗ =(m ,1),若向量 a ⃗ + b ⃗⃗ 与 a ⃗ 垂直,则m=________.14.曲线y=x 2+ 1x 在点(1,2)处的切线方程为________.15.已知α∈(0, π2 ),tanα=2,则cos (α﹣ π4 )=________.16.已知三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S ﹣ABC 的体积为9,则球O 的表面积为________.三、解答题:共60分.解答应写出文字说明、证明过程或演算过程.17.记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(12分)(1)求{a n }的通项公式;(2)求S n , 并判断S n+1 , S n , S n+2是否能成等差数列.18.如图,在四棱锥P ﹣ABCD 中,AB ∥CD ,且∠BAP=∠CDP=90°.(12分)(1)证明:平面PAB ⊥平面PAD ;(2)若PA=PD=AB=DC ,∠APD=90°,且四棱锥P ﹣ABCD 的体积为 83 ,求该四棱锥的侧面积.19.为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:(12分)经计算得 x̅ = 116∑16i=1x i =9.97,s= √116∑16i=1(x i −x̅)2 = √116(∑16i=1x i 2−16x̅2) =0.212,√∑(i −8.52)16i=1 ≈18.439, ∑16i=1 (x i ﹣ x̅ )(i ﹣8.5)=﹣2.78,其中x i 为抽取的第i 个零件的尺寸,i=1,2, (16)(1)求(x i , i )(i=1,2,…,16)的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在( x̅ ﹣3s , x̅ +3s )之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在( x̅ ﹣3s , x̅ +3s )之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(x i , y i )(i=1,2,…,n )的相关系数r=∑(x −x̅)n i=1(y −y ̅)√∑i=1(x i −x̅)2√∑i=1(y i −y ̅)2 , √0.008 ≈0.09. 20.设A ,B 为曲线C :y=x 24 上两点,A 与B 的横坐标之和为4.(12分)(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.21.已知函数 f (x )=e x (e x ﹣a )﹣a 2x .(12分)(1)讨论 f (x )的单调性;(2)若f (x )≥0,求a 的取值范围.四、选考题:共10分。
2017年普通高等学校招生全国统一考试(全国II )数学(文科)一、 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2017年全国Ⅱ,文1,5分】设集合{1,2,3},{2,3,4}A B ==,则A B = ( )(A ){}123,4,, (B ){}123,, (C ){}234,, (D ){}134,, 【答案】A【解析】由题意{1,2,3,4}A B = ,故选A .(2)【2017年全国Ⅱ,文2,5分】()()12i i ++=( )(A )1i - (B )13i + (C )3i + (D )33i + 【答案】B【解析】由题意()()1213i i i ++=+,故选B .(3)【2017年全国Ⅱ,文3,5分】函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的最小正周期为( )(A )4π (B )2π (C )π (D )2π【答案】C【解析】由题意22T ππ==,故选C . (4)【2017年全国Ⅱ,文4,5分】设非零向量a ,b 满足a b a b +=-则( )(A )a b ⊥ (B )a b = (C )//a b (D )a b > 【答案】A【解析】由||||a b a b +=- 平方得2222()2()()2()a ab b a ab b ++=-+ ,即0ab = ,则a b ⊥,故选A . (5)【2017年全国Ⅱ,文5,5分】若1a >,则双曲线2221x y a-=的离心率的取值范围是( )(A))∞ (B)) (C)(1 (D )()12,【答案】C【解析】由题意的22222221111,1,112,1c a e a e a a a a+===+>∴<+<∴<< C .(6)【2017年全国Ⅱ,文6,5分】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) (A )90π (B )63π (C )42π (D )36π 【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V πππ=⋅⋅⋅+⋅⋅=,故选B .(7)【2017年全国Ⅱ,文7,5分】设x 、y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )(A )15- (B )9- (C )1 (D )9 【答案】A【解析】绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点()6,3B --处取得最小值12315z =--=-,故选A .(8)【2017年全国Ⅱ,文8,5分】函数()2()ln 28f x x x =-- 的单调递增区间是( )(A )(),2-∞- (B )(),1-∞- (C )()1,+∞ (D )()4,+∞【答案】D【解析】函数有意义,则2280x x -->,解得2x <-或4x >,结合二次函数的单调性,对数函数的单调性和复合函数同增异减的原则可得函数的单调区间为()4,+∞,故选D . (9)【2017年全国Ⅱ,文9,5分】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( )(A )乙可以知道两人的成绩 (B )丁可能知道两人的成绩 (C )乙、丁可以知道对方的成绩 (D )乙、丁可以知道自己的成绩 【答案】D【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲丁一人优秀一人良好,乙看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果,故选D .(10)【2017年全国Ⅱ,文10,5分】执行右面的程序框图,如果输入的1a =-,则输出的S =( )(A )2 (B )3 (C )4 (D )5 【答案】B 【解析】阅读流程图,初始化数值1,1,0a k S =-==,循环结果执行如下:第一次:1,1,2S a k =-==;第二次:1,1,3S a k ==-=;第三次:2,1,4S a k =-==;第四次:2,1,5S a k ==-=; 第五次:3,1,6S a k =-==;第六次:3,1,7S a k ==-=;循环结束,输出3S =,故选B .(11)【2017年全国Ⅱ,文11,5分】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )(A )110 (B )15(C )310 (D )25【答案】D【解析】如下表所示,表中的点横坐标表示第一次取到的数,纵坐标表示第二次取到的数总计有25种情况,满足条件的有10种,所以所求概率为102255=,故选D .(12)【2017年全国Ⅱ,文12,5分】过抛物线2:4C y x =的焦点F ,且斜C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为( ) (A(B) (C) (D)【答案】C【解析】由题意):1MF y x -,与抛物线24y x =联立得231030x x -+=,解得113x =,23x =,所以(3,M , 因为M N l ⊥,所以(1,N -,因为()1,0F,所以):1NF y x =-,所以M 到NF 的距离为=C .二、填空题:本大题共4小题,每小题5分,共20分. (13)【2017年全国Ⅱ,文13,5分】函数()=2cos sin f x x x +的最大值为______.【解析】()f x .(14)【2017年全国Ⅱ,文14,5分】已知函数()f x 是定义在R 上的奇函数,当x ()∈∞-,0时,()322f x x x =+,则()2f =__ ____.【答案】12【解析】(2)(2)[2(8)4]12f f =--=-⨯-+=. (15)【2017年全国Ⅱ,文15,5分】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O的表面积为_______. 【答案】14π【解析】球的直径是长方体的对角线,所以2414R S R ππ==∴==. (16)【2017年全国Ⅱ,文16,5分】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A =+,则B =_______.【答案】3π 【解析】由正弦定理可得1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=. 三、解答题:共70分。
2017年普通高等学校招生全国统一考试文科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则A .A IB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A I B =∅C .A U B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A U B=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14 B .π8 C .12 D .π45.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为A .13 B .1 2 C .2 3 D .32 6.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是7.设x,y满足约束条件33,1,0,x yx yy+≤⎧⎪-≥⎨⎪≥⎩则z=x+y的最大值为A.0 B.1 C.2 D.38..函数sin21cosxyx=-的部分图像大致为9.已知函数()ln ln(2)f x x x=+-,则A.()f x在(0,2)单调递增B.()f x在(0,2)单调递减C.y=()f x的图像关于直线x=1对称D.y=()f x的图像关于点(1,0)对称10.如图是为了求出满足321000n n->的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1000和n=n+1 B.A>1000和n=n+2 C.A≤1000和n=n+1 D.A≤1000和n=n+211.△ABC的内角A、B、C的对边分别为a、b、c。
数学试卷 第1页(共46页) 数学试卷 第2页(共46页)绝密★启用前2017年普通高等学校招生全国统一考试全国卷1文科数学本试卷满分150分,考试时间120分钟考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,监考员将试题卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|2A x x =<,{}|320B x x =->,则( ) A .3|2A B x x ⎧⎫=<⎨⎬⎩⎭IB .A B =∅IC .3|2A B x x ⎧⎫=<⎨⎬⎩⎭UD .A B =R U2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为1x ,2x ,……,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,……,n x 的平均数B .1x ,2x ,……,n x 的标准差C .1x ,2x ,……,n x 的最大值D .1x ,2x ,……,n x 的中位数3.下列各式的运算结果为纯虚数的是( ) A .2(1)i i +B .2(1)i i -C .2(1)i +D .(1)i i +4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .π8C .12D .π 45.已知F 是双曲线C :1322=-y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A的坐标是(1,3),△APF 的面积为( )A .13B .1 2C .2 3D .326.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A .B .C .D .-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名_____________ 考生号_____________ ____________________________________________________数学试卷 第3页(共46页) 数学试卷 第4页(共46页)7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z x y =+的最大值为( )A .0B .1C .2D .38.函数sin21cos xy x=-的部分图像大致为( )A .B .C .D .9.已知函数()ln ln(2)f x x x =+-,则( ) A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()y f x =的图像关于直线1x =对称D .()y f x =的图像关于点(1,0)对称10.下面程序框图是为了求出满足321000nn->的最小偶数n ,个空白框中,可以分别填入( )A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin (sin cos )0B A C C +-=,2a =,c =C =( )A .π12B .π6C .4D .π312.设A ,B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足120AMB ∠=︒,则m 的取值范围是( )A .(0,1][9,)+∞UB .[9,)+∞UC .(0,1][4,)+∞UD .[4,)+∞U二、填空题:本题共4小题,每小题5分,共20分.13.已知向量)2(–1,=a ,)1(,m =b .若向量+a b 与a 垂直,则m =________. 14.曲线21y x x=+在点(1,2)处的切线方程为______________. 15.已知π(0)2α∈,,tan 2α=,则πcos ()4α-=__________.16.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为________.数学试卷 第5页(共46页) 数学试卷 第6页(共46页)三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22.23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-. (1)求{}n a 的通项公式;(2)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.18.(12分)如图,在四棱锥P ABCD -中,AB CD ∥,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=o ,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min ,从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16经计算得119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78ii x x i =--=-∑,其中ix 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.20.(12分)设A ,B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程. 21.(12分)已知函数2()()xxe ef x a a x =--. (1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.毕业学校_____________ 姓名_____________ 考生号_________________________________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共46页) 数学试卷 第8页(共46页)(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩(t 为参数). (1)若1-=a ,求C 与l 的交点坐标;(2)若C 上的点到la . 23.[选修4−5:不等式选讲](10分)已知函数2()4f x x ax =-++,g()|1||1|x x x =++-. (1)当1a =时,求不等式()g()f x x ≥的解集;(2)若不等式()g()f x x ≥的解集包含[1,1]-,求a 的取值范围.2017年普通高等学校招生全国统一考试全国卷1文科数学答案解析一、选择题 1.【答案】A【解析】由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x ⋂=<⋂<=<,选A .2.【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B 3.【答案】C【解析】由2(1)2i i +=为纯虚数,选C . 4.【答案】B【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积π2S =,则对应概率ππ248P ==,故选B .5.【答案】D【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3y =±,所以3PF =,又A 的坐标是(1,3),故APF 的面积为133(21)22⨯⨯-=,选D .6.【答案】A【解析】由B ,AB MQ ∥,则直线AB ∥平面MNQ ;由C ,AB MQ ∥,则直线AB ∥平面MNQ ;由D ,AB NQ ∥,则直线AB ∥平面MNQ .故A 不满足,选A . 7.【答案】D【解析】如图,目标函数z x y =+经过(3,0)A 时最大,故max 303z =+=,故选D .数学试卷 第9页(共46页) 数学试卷 第10页(共46页)8.【答案】C【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当πx =时,0y =,排除D ;当1x =时,sin 201cos2y =>-,排除A ,故选C .9.【答案】C【解答】解:Q 函数()ln ln(2)f x x x =+-,(2)ln(2)ln f x x x ∴-=-+,即()(2)f x f x =-,即()y f x =的图象关于直线1x =对称,故选:C . 10.【答案】D【解析】由题意选择321000n n ->,则判定框内填1000A ≤,由因为选择偶数,所以矩形框内填2n n =+,故选D . 11.【答案】B【解析】由题意sin()sin (sin cos )0A C A C C ++-=得sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,即πsin (sin cos )sin()0C A A C A +=+=,所以3π4A =.由正弦定理sin sin a c A C =得23πsin 4=1sin 2C =,得π6C =,故选B . 12.【答案】A【解析】当03m <<,焦点在x 轴上,要使C 上存在点M满足120AMB ∠=o,则tan 60ab ≥o≥01m <≤;当3m >,焦点在y轴上,要使C 上存在点M 满足120AMB ∠=o ,则tan 60ab ≥=o ≥,得9m ≥,故m 的取值范围为(0,1][9,)⋃+∞,选A .二、填空题 13.【答案】7【解析】由题得(1,3)m +=-a b , 因为()0+=g a b a ,所以(1)230m --+⨯=解得7m =14.【答案】1y x =+ 【解析】设()y f x = 则21()2f x x x'=-所以(1)211f '=-=所以在(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+.15. 【解析】π(0,)2α∈Q ,tan 2α=,sin2cos αα∴=,22sin cos 1αα+=Q,解得sinα=,cos α=πππcos()cos cos sin sin 444ααα∴-=+=,16.【答案】36π【解析】取SC 的中点O ,连接,OA OB 因为,SA AC SB BC == 所以,OA SC OB SC ⊥⊥因为平面SAC ⊥平面SBC数学试卷 第11页(共46页) 数学试卷 第12页(共46页)所以OA ⊥平面SBC 设OA r =3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=所以31933r r =⇒=所以球的表面积为24π36πr = 三、解答题17.【答案】(1)(2)n n a =- (2)1n S +,n S ,2n S +成等差数列.【解析】(1)设等比数列{}n a 首项为1a ,公比为q ,则332628a S S ==--=--,则31228a a q q -==,328a a q q-==, 由122a a +=,2882q q--+=,整理得2440q q ++=, 解得:2q =-,则12a =-,1(2)(2)(2)n n n a =--=﹣-. (2)由(1)可知:11(1q )1[2(2)]13n n n a S q +-==-+--, 则211[2(2)]3n n S ++=-+-,321[2(2)]3n n S ++=-+-,由231211[2(2)][2(2)]33n n n n S S +++++=-+--+-=12114(2)(2)[](2)(2)3n n ++-+-⨯-+-⨯-111142(2)2(2(2)33[][)]n n ++=-+⨯-=⨯-⨯+-2n S =,即122n n n S S S +++=所以1n S +,n S ,2n S +成等差数列.18.【答案】(1)90BAP AB PA ∠=︒⇒⊥Q ,90CDP CD PD ∠=︒⇒⊥AB CD Q ∥,PA PD P =I ,AB PAD ∴⊥平面 AB PAD ⊂Q 平面PAB PAD ∴平面⊥平面(2)6+【解析】(1)见答案(2)由(1)知AB PAD ⊥平面,90APB ∠=︒Q ,PA PD AB DC ===.取AD 中点O ,所以OP ABCD ⊥底面,,OP AB AD =,1833P ABCDV AB AB -∴=⨯= 2AB ∴=AD BC ∴==,2PA PD AB DC ====,POPB PC ∴===11112222PAD PAB PDC PBC PA PD PA PB DC PD BC S S S S S =⨯⨯+⨯⨯+⨯⨯+⨯∴=+++V V V V 侧111122222222226=⨯⨯+⨯⨯+⨯⨯+⨯=+ 19.【答案】(1)0.18-(2)(i )需要对当天的生产过程进行检查. (ii )均值为10.02,标准差约为0.09. 【解析】(1)16()(8.5)0.18ixx i r --==≈-∑因为||0.25r <,所以可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)(i )39.9730.2129.334x s -=-⨯=,39.9730.21210.636x s +=+⨯=所以合格零件尺寸范围是(9.334,10.606),显然第13号零件尺寸不在此范围之内, 因此需要对当天的生产过程进行检查. (ii )剔除离群值后,剩下的数据平均值为169.22169.979.2210.021515x -⨯-==,数学试卷 第13页(共46页) 数学试卷 第14页(共46页)0.09s =≈.20.【答案】(1)1 (2)7y x =+【解析】(1)设()()1122,,,A x y B x y , 则2221212121214414ABx xy y x x K x x x x --+====-- (2)设200(,)4x M x ,则C 在M 处的切线斜率'00112AB y K K x x x ====- 02x ∴=,则()12,1A ,又AM BM ⊥,22121212121111442222AM BM x x y y K K x x x x ----==----g g g()()()121212222411616x x x x x x +++++===-即()12122200x x x x +++= 又设AB :y x m =+,代入24x y = 得2440x x m --=124x x ∴+=,124x x m =-48200m =-++7m ∴=故AB :y x =+721.【答案】(1)当0a =时,()f x 在R 上单调递增,当0a >时,()f x 在(ln )a -∞,上单调递减,在(ln )a +∞,上单调递增, 当0a <时,()f x 在(,ln())2a -∞-上单调递减,在(ln())2a -+∞,上单调递增, (2)34]21[,e -.【解析】(1)222()x x x x f x e e a a x e e a a x =-=-()--, 222(2)()x x x x f x e ae a e a e a ∴'==-+-()﹣,①当0a =时,()0f x '>恒成立,()f x ∴在R 上单调递增.②当0a >时,20x e a +>,令()0f x '=,解得ln x a =, 当ln x a <时,()0f x '<,函数()f x 单调递减, 当ln x a >时,()0f x '>,函数()f x 单调递增,③当0a <时,0x e a -<,令()0f x '=,解得ln()2a x =-,当ln()2ax -<时,()0f x '<,函数()f x 单调递减,当ln()2ax ->时,()0f x '>,函数()f x 单调递增.综上所述,当0a =时,()f x 在R 上单调递增,当0a >时,()f x 在(ln )a -∞,上单调递减,在(ln )a +∞,上单调递增, 当0a <时,()f x 在(,ln())2a-∞-上单调递减,在(ln())2a -+∞,上单调递增, (2)①当0a =时,2()0x f x e =>恒成立,②当0a >时,由(1)可得2()()ln 0min f x f lna a a ==-≥,ln 0a ∴≤,01a ∴≤<.③当0a <时,由(1)可得:223()(ln(-))ln(-)0242mina a af x f a ==-≥,3ln(-)24a ∴≤,3420e a ∴≤﹣<,综上所述a 的取值范围为34]21[,e -. 22.【答案】(1)(3,0)和(,2125)4225- (2)16a =-或8a =【解析】(1)当1a =-时,14,:1,x t L y t =-+⎧⎨=-⎩(t 为参数),L 消参后的方程为430x y +-=,数学试卷 第15页(共46页) 数学试卷 第16页(共46页)曲线C 消参后为221x y y +=,与直线联立方程221,430,x y y x y ⎧+=⎪⎨⎪+-=⎩解得3,0,x y =⎧⎨=⎩或21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩椭圆C 和直线L 的交点为(3,0)和(,2125)4225-.(2)L 的普通方程为440x y a +--=, 设曲线C 上任一点为()3cos ,sin P θθ,由点到直线的距离公式,d =,d=,max d =∴()max5sin 417aθϕ+--=,当()sin 1θϕ+=时最大,即5417a --=时,16a =-, 当()sin 1θϕ+=-时最大,即917a +=时,8a =, 综上:16a =-或8a =.23.【答案】(1)(1.(2)a 的取值范围是[]1,1-.【解析】(1)当1a =时,21()4a f x x x ==-++时,,是开口向下,对称轴为12x =的二次函数,2,1,()112|,1,|12,1,x x g x x x x x x ⎧⎪=++-=-⎨⎪--⎩>≤≤<当(1)x ∈+∞,时,令242x x x ++=-,解得x =,()g x 在(1)+∞,上单调递增,()f x 在(1)+∞,上单调递减,此时()()f xg x ≥的解集为(1;当,1[]1x ∈-时,()2g x =,()(1)2f x f ≥-=.当(1)x ∈-∞,-时,()g x 单调递减,()f x 单调递增,且(1)(1)2g f -=-=.综上所述,()()fx g x ≥的解集为(1; (2)依题意得:242x ax -++≥在[]1,1-恒成立,即220x ax -≤-在[]1,1-恒成立,则只需221120,(1)(1)20,a a ⎧--⎨----⎩g ≤≤解得11a -≤≤, 故a 的取值范围是[]1,1-.数学试卷 第17页(共46页) 数学试卷 第18页(共46页)绝密★启用前2017年普通高等学校招生全国统一考试全国卷2文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2017年四川卷高考数学计算题真题解析 2017年的高考数学试卷对于考生来说是一个挑战,本文将对四川卷高考数学计算题进行真题解析,帮助考生更好地理解题目和解题思路。
一、选择题分析 第一题:设函数f(x)在区间[0,2]上的导函数f'(x)如图所示。则f(x)在区间[0,2]上
这是一道关于函数的题目,要求根据导函数f'(x)的图像来判断函数f(x)在区间[0,2]上的情况。解答该题需要注意图像对应的数学概念,例如导数的正负性和函数的单调性。
第二题:已知不等式5x-3<2x+9,则x的取值范围是 这是一道关于不等式的题目,要求求出不等式5x-3<2x+9的解集。解该题需要利用不等式求解的一般步骤,即变形、合并同类项、移项等。
二、填空题分析 第三题:填入图表中所缺的数值 该题是要求填写一个图表中所缺的数值,根据已知条件和填写规律,填写正确的数值。解答该题需要仔细观察给出的图表,找出其中的规律,并根据规律选择合适的数值填入空缺处。
三、解答题分析 第四题:设函数f(x)在区间[0,2]上连续。已知f(0)=3,f(2)=5,且对于任意x∈[0,2],有f'(x)≤-1。证明:对于任意x∈[0,2],恒有f(x)≤-x+4。
这是一道证明题,要求证明对于任意x∈[0,2],恒有f(x)≤-x+4。解答该题需要使用函数的连续性和导数的性质,结合已知条件进行推导和证明。
第五题:已知平面内直角坐标系中,F1(-3,0),F2(3,0),以及一个动点P(x,y)。若PF1+PF2=10,则点P的轨迹方程为________。
该题是要求求解点P的轨迹方程,根据已知条件"PF1+PF2=10",利用坐标系中距离公式可以推导出点P的轨迹方程。解答该题需要注意距离公式的使用和方程的推导过程。
综上所述,2017年四川卷高考数学试卷中的数学计算题多样且涉及的知识点较多。通过对选择题、填空题和解答题的分析,我们可以更好地理解题目要求,掌握解题技巧,提高解题能力。希望以上解析对考生们的备考有所帮助,祝愿大家能在高考中取得优异的成绩!
2017年全国高考文科数学试题及参考答案-全国卷1(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年全国高考文科数学试题及参考答案-全国卷1(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年全国高考文科数学试题及参考答案-全国卷1(word版可编辑修改)的全部内容。
绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭ D .A B=R 2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是A .i (1+i )2B .i 2(1—i ) C .(1+i)2D .i(1+i) 4.如图,正方形ABCD 内的图形来自中国古代的太极图。
绝密★启用前2017 年一般高等学校招生全国一致考试(全国卷2)文科数学注意事项:1.答题前,考生务势必自己的姓名、准考据号填写在本试卷和答题卡相应地点上。
2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:此题共 12 小题,每题 5 分,共 60 分。
在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
1. 设会合 A {1,2,3}, B{2,3,4} ,则A U BA. 1,2,3,4B. 1,2,3C. 2,3,4D. 13,,42. (1 i )(2 i )A. 1 iB. 1 3iC. 3 iD. 3 3i3. 函数 f (x) sin(2 x3) 的最小正周期为C. D.24.设非零向量 a ,b知足a+b = a-b则A. a⊥bB. a = bC. a∥bD. ab5. 若a 1 ,则双曲线x2y2 1的离心率的取值范围是a2( 2,+ )( 2,2)(1,2)(1,2)A. B. C. D.6. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为2x+3y 3 07. 设 x, y 知足拘束条件2x 3 y 3 0 。
则 z 2x y 的最小值是y 3 0D98. 函数 f (x) ln( x2 2x 8) 的单一递加区间是A.(-,-2)B.(- ,-1)C.(1,+ )D.(4,+ )9. 甲、乙、丙、丁四位同学一同去处老师咨询成语比赛的成绩,老师说,你们四人中有 2 位优异, 2 位优异,我此刻给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我仍是不知道我的成绩,依据以上信息,则A. 乙能够知道两人的成绩B. 丁可能知道两人的成绩C. 乙、丁能够知道对方的成绩D. 乙、丁能够知道自己的成绩10.履行右边的程序框图,假如输入的 a 1 ,则输出的S=11. 从分别写有1,2,3,4,5的5张卡片中随机抽取 1 张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为11A. 10B. 523C.10D.512. 过抛物线C : y24x 的焦点F,且斜率为 3 的直线交C于点M(M在 x 轴上方),l为C的准线,点N在l 上且 MN l ,则 M 到直线 NF 的距离为A.5B.22C.23D.3 3二、填空题,此题共 4 小题,每题 5 分,共 20 分.13. 函数 f ( x) 2cos x sin x 的最大值为.14. 已知函数 f (x) 是定义在R上的奇函数,当 x ( ,0) 时, f (x) 2x3 x2,则 f (2)15. 长方体的长、宽、高分别为3, 2, 1,其极点都在球O 的球面上,则球O 的表面积为16.ABC 的内角 A, B, C 的对边分别为 a,b, c ,若 2b cosB a cosC c cosA ,则 B三、解答题:共 70 分。
2017年高考文科数学试题及答案-全国卷1(word版.)D(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,90∠=,且四棱锥P-ABCD的体积为APD8,求该四棱锥的侧面积.319.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78ii x x i =--=-∑,其中ix 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)ix i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小). (2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)iix y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.20.(12分)设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.21.(12分)已知函数()f x =e x (e x ﹣a )﹣a 2x .(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.(二)选考题:共10分。
2017年普通高等学校招生全国统一考试文科数学(适用地区:云南、贵州、广西、四川)第Ⅰ卷(选择题共60分)一、选择题(本大题共12 个小题,每小题 5 分,共60 分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.)1.已知集合A={1 ,2,3,4} ,B={2 ,4,6,8} ,则A∩B 中元素的个数为( )A .1 B.2 C.3 D.4[解析] 由题意可得A∩B={2 ,4} ,故选B.答案:B2.复平面内表示复数z=i(–2+i)的点位于( )A .第一象限B.第二象限C.第三象限D.第四象限[解析] 由题意z=-1-2i,故选B.答案:B3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年1 月至2016 年12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A .月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8 月D.各年 1 月至6 月的月接待游客量相对于7 月至12 月,波动性更小,变化比较平稳[解析] 由折线图,7 月份后月接待游客量减少, A 错误,故选A.答案:A- 1 -4,则s in2α=( ) 4.已知sinα-cosα=3A .-79B.-2929C.D.792-1(sinα-cosα)[解析] sin2α=2sinαcosα==-1 79,故选A.答案:A3x+2y-6≤0x≥0,则z=x-y 的取值范围是( )5.设x,y 满足约束条件y≥0A .[–3,0] B.[–3,2] C.[0,2] D.[0,3][解析] 绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点A(0,3) 处取得最小值z =0-3=-3.在点B(2,0) 处取得最大值z=2-0=2,故选A.答案:B6.函数 f (x)=sin x+π+cos x-3π的最大值为()665 A .35B.1 C.15D.[解析] 由诱导公式可得cos x-π=cos6ππ-x+2 3π=sin x+,31π则f(x)=sin x+5 3 +sin x+π 66 π=sin x+,函数的最大值为,故选A.3 5 3 5答案:A7.函数y=1+x+s in x2 的部分图像大致为( ) x[解析] 当x=1 时,f(1)=1+1+sin1=2+sin1>2,故排除A,C,当x→+∞时,y→1+x,故排除B,D.D,故选满足条件的只有答案:D- 2 -8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N的最小值为( ) A .5 B.4 C.3 D.2[解析] 若N=2,第一次进入循环,1≤2成立,S=100,M =-10010=-10,i=2≤2成立;第二次进入循环,此时S=100-10=90,M=--10=1,i=3≤2不成立,∴输出S=90<91 成立,∴输入的正整数N 10的最小值是2,故选D.答案:D9.已知圆柱的高为1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的体积为( )3πA .πB.4πC.2πD.4[解析] 如果,画出圆柱的轴截面12,∴r=BC=AC=1,AB=3 32h=π×,那么圆柱的体积是V=πr2 22×1=3π,故选B.4答案:B10.在正方体ABCD -A1B1C1D1 中,E 为棱C D 的中点,则( )A .A1E⊥DC1 B.A1E⊥BD C.A1E⊥BC1 D.A1E⊥AC[解析] 根据三垂线逆定理,平面内的线垂直平面的斜线,那么也垂直斜线在平面内的射线.- 3 -对于C,若A1E⊥BC1,那么BC1⊥B1C,成立,反过来BC1⊥B1C 时,也能推出BC1⊥A1E,∴C 成立,对于D,若A1E⊥AC,则AE⊥AC,显然不成立,故选C.答案:C11.已知椭圆C:2 2x y2+2=1( a>b>0)的左、右顶点分别为A1、A2,且以线段A1A2 为直径的圆与直线bx a b-ay+2ab=0 相切,则 C 的离心率为( )A .63B.33C.23D.132+y2=a2,直线bx-ay+2ab=0 与圆相切,∴圆心到直线的距离 d[解析] 以线段A1A2 为直径的圆是x=2ab=a,整理为a2=3b2,即a2=3(a2-c2) 2a2=3c2,即2=3b2,即a2=3(a2-c2) 2a2=3c2,即2+b2a2c 2 c,e==2=a 3 a6,故选 A .3答案:A2-2x+a(e x-1+e-x+112.已知函数f(x)=x )有唯一零点,则a=( )A .-12 B.1 13 C.2 D.12-2x+a(e x-1+e-x+1[解析] 方法一:由条件,f(x)=x ),得:2-2(2-x)+a(e2-x-1+ e-(2-x)+1f(2-x)=(2-x) )2 1-x x-1=x -4x+4-4+2x+a(e +e)=x2-2x+a(e x -x+1)-1+e∴f(2-x)=f(x),即x=1为f(x)的对称轴,由题意,f(x)有唯一零点,∴f(x)的零点只能为x=1,1即f(1) =12-2·1+a(e1-1+e-1+1)=0,解得a=.22 x-1 -x+1 x-1 -x+1 x-1 -x+1 x-1方法二:x -2x=-a(e +e +e ,g′x()=e -e =e),设g(x)=e -2(x-1)-11 ex-1=x-1 ,e e当g′x()=0时,x=1,当x<1时,g′x()<0,函数单调递减,当x>1时,g′x()>0,函数单调递增,当x=1时,函数取得最小值g(1)=2,设h(x)=x2-2x,当x=1时,函数取得最小值-1;若-a>0,函数h( x)和ag(x)没有1交点,当-a<0时,-ag(1)=h(1)时,此时函数h(x)和ag(x)有一个交点,即-a×2=-1 a=,故选C.2 答案:C第Ⅱ卷(非选择题共90 分)本试卷包括必考题和选考题两部分.第13 题~第21 题为必考题,每个试题考生都必须作答.第22 题~第24 题为选考题,考生根据要求作答.- 4 -二、填空题(本大题共 4 小题,每小题 5 分,共20 分.)→13.已知向量 a→→=(-2,3),b =(3,m),且 a→⊥b ,则m=.[解析] 由题意可得-2×3+3m=0,∴m=2.答案:214.双曲线2x2-a2y 3=1(a>0)的一条渐近线方程为y=9 5x,则a=.3[解析] 由双曲线的标准方程可得渐近线方程为y=±x,结合题意可得a=5.a答案:515.△ABC 的内角A,B,C 的对边分别为a,b,c.已知C=60°,b=6,c=3,则A=.[解析] 由题意b=sinBc bsinC,即sinB==sinC c36×2=32,结合b<c 可得B=45°,则A=180°-B-C2=75°.答案:75°16.设函数f(x)=x+1,x≤0则满足f(x)+f(x-x,x>0212)>1 的x 的取值范围是.[解析] 方法一:∵f(x)=x+1,x≤0 1,f(x)+f x-x,x>02 212>1,即f x->1-f(x),由图象变换可画出y=f x-12与y=1-f(x)的图象如下:y1y f(x)21 1( , )4 41 1 x2 2y 1 f (x)12 由图可知,满足f x->1-f(x)的解为(-14,+∞).11 1 x+x-11方法二:由题意得,当x> 时,2 ;当0< x≤时,2 +1>1 恒成立,即x+2x-2>1 恒成立,即x>2 2 2 20< x≤12;当x≤0时x+1+x-12+1>1 x>-14,即-1 14< x≤0;综上x的取值范围是(-4,+∞).1答案:(-,+∞)4三、解答题(本大题共 6 小题,共70 分,解答应写出文字说明、证明过程或演算步骤.)第17~21 题为必考题,每个试题考生都必须作答.第22、23 题为选考题,考生根据要求作答.- 5 -(一)必考题:共60分.17.(本小题满分12 分)设数列{ a n} 满足a1+3a2+⋯+(2n-1)a n=2n.(1)求{ a n}的通项公式;(2)求数列a n2n+1的前n 项和.[解析] (1)∵a1+3a2+⋯+(2n-1)a n=2n,①∴n≥2时,a1+3a2+⋯+(2n-1)a n-1=2(n-1),②2①-②得,(2n-1)a n=2,a n=2n-1,又n=1 时,a1=2 适合上式,2∴a n=; 2n-1(2)由(1)a n=2n+12=(2n-1)(2n+1)1 1-,2n-1 2n+1a1 a2 a n 1 1 ∴S n=++⋯+=(1-)+( -3 5 2n+1 3 3 15)+⋯+(1 1 1-)=1-=2n-1 2n+1 2n+12n.2n+118.(本小题满分12 分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶 4 元,售价每瓶6 元,未售出的酸奶降价处理,以每瓶 2 元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500 瓶;如果最高气温位于区间[20,25),需求量为300 瓶;如果最高气温低于20,需求量为200 瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40) 天数 2 16 36 25 7 4 以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300 瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450 瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.[解析] (1)需求量不超过300 瓶,即最高气温不高于25℃,从表中可知有54 天,∴所求概率为P=54 3=.90 5(2)Y 的可能值列表如下:最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40) Y -100 -100 300 900 900 900 低于20℃:y=200×6+250×2-450×4=-100;[20,25):y=300×6+150×2-450×4=300;不低于25℃:y=450×(6-4)=900,2 16 ∴Y 大于0 的概率为P=+=90 90 15.- 6 -19.(本小题满分 12 分)如图,四面体 ABCD 中,△ ABC 是正三角形, AD = CD .(1)证明: AC ⊥BD ;(2)已知△ ACD 是直角三角形, AB =BD .若 E 为棱B D 上与 D 不重合的点, 且 AE ⊥EC ,求四面体 ABCE 与四面体 ACDE 的体积比.[解析 ] (1)证明:取A C 中点 O ,连O D ,OB , ∵AD =CD ,O 为 AC 中点,∴ AC ⊥OD , 又∵△ ABC 是等边三角形,∴ AC ⊥ OB ,又∵ OB ∩OD =O ,∴ AC ⊥平面 OBD ,BD 平面 OBD , ∴AC ⊥BD ;(2)设A D =CD =2,∴ AC = 2 2,AB =CD =2 2,又∵ AB =BD ,∴ BD =2 2,∴△ ABD ≌ △ CBD ,∴ AE =EC , 又∵ AE ⊥EC ,AC =2 2,∴ AE =EC =2, 在△ ABD 中,设D E =x ,根据余弦定理cos ∠ ADB = AD 2+BD 2-AB 2 2AD ·BDAD=2+DE 2-AE 2 2AD ·DE= 2+(2 2)2-(2 2)22+x 2-22 2 2 = , 2×2×x 2×2×2 2解得 x = 2,∴点 E 是 BD 的中点,则V D -ACE =V B -ACE ,∴V D -ACE=1. V B -ACE-ACE2+mx –2 与 x 轴交于A ,B 两点,点 C 的坐标 20.(本小题满分 12 分)在直角坐标系x Oy 中,曲线 y =x为(0,1).当 m 变化时,解答下列问题:(1)能否出现A C ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在 y 轴上截得的弦长为定值.2+mx -2=0 的根, [解析 ] (1)设A (x1,0),B(x 2,0),则x 1,x 2 是方程 x∴x 1+x 2=- m ,x 1x 2=- 2,→ →则A C ·BC= (-x 1,1) ·(-x 2,1)=x 1x 2+1=- 2+1=- 1≠0, ∴不会能否出现A C ⊥BC 的情况.(2)解法一:过A ,B ,C 三点的圆的圆心必在线段A B 垂直平分线上,设圆心E(x 0, y 0),- 7 -x1+x2则x0==-2 m,由|EA |=|EC|得2x1+x2-x1 2+y02=2x1+x222+(y0-1)2,1+x1x2化简得y0==-2 1 2 ,∴圆E 的方程为x+m22+y+122=-m22+-1-1-122,令x=0 得y1=1,y2=-2,∴过A,B,C 三点的圆在y 轴上截得的弦长为1-(-2)=3,∴过A,B,C 三点的圆在y 轴上截得的弦长为定值解法二:设过A,B,C 三点的圆与y 轴的另一个交点为D,由x1x2=-2 可知原点O 在圆内,由相交弦定理可得|OD ||OC |=|OA||OB|=|x1||x2|=2,又|OC |=1,∴|OD |=2,∴过A,B,C 三点的圆在y 轴上截得的弦长为|OC |+|OD |=3,为定值.2+(2a+1) x. 21.(本小题满分12 分)已知函数 f (x)=ln x+ax3-2. (1)讨论f( x)的单调性;(2)当a<0 时,证明f(x) ≤-4a[解析] (1) f′x()=2+(2a+1)x+12ax (2 ax+1)( x+1)=(x>0),x x当a≥0 时,f′x()≥,0则f(x )在(0,+∞)单调递增,当a<0 时,则f(x)在(0,- 1)单调递增,在(-1,+∞)单调递减. 2a 2a(2)由(1) 知,当a<0 时,f( x)max=f(-12a),1f(-)-(-2a 3+2)=ln(-4a1)+2a1+1,令y=ln t+1-t(t=-2a1>0),2a则y′=1t-1=0,解得t=1,∴y 在(0,1)单调递增,在(1,+∞)单调递减,3∴y max=y(1)=0,∴y≤0,即f (x)max≤-( +2),∴f( x) ≤-4a 3-2.4a(二)选考题:共10分.请考生在第22、23 题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10 分)选修4―4坐标系与参数方程:在直角坐标系xOy 中,直线l1 的参数方程为x=2+ty=kt(t 为参数),直线l2 的参数方程为x=-2+mmky=(ml1 与l2 的交点为P,当k 变化时,P 的轨迹为曲线C.为参数).设(1)写出 C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)-2=0,M 为l3 与C 的- 8 -交点,求M 的极径.[解析] (1)将参数方程转化为普通方程1l1:y=k(x-2)⋯⋯①;l2:y=(x+2)⋯⋯②k由①②消去k可得:x2-y2=4,即P的轨迹方程为x2-y2=4;(2)将参数方程转化为一般方程l3:x+y-2=0⋯⋯③联立l3和曲线C得x+y-2=0,解得2-y2=4x3 22x=,由2y=-2x=ρcosθ,解得ρ=5,y=ρsinθ即M的极半径是5.23.(本小题满分10 分)选修4— 5 不等式选讲:已知函数f( x)=|x+1|–|x–2|.(1)求不等式f(x) ≥1的解集;2(2)若不等式f(x) ≥x –x+m 的解集非空,求m 的取值范围.-3,x≤-12x-1,-1<x<2.由f (x) ≥1可得:[解析] (1) f( x)=|x+1|–|x–2|可等价为f(x)=3,x≥2①当x≤-1时显然不满足题意;②当-1< x<2时,2x-1≥1,解得x≥1;③当x≥2时,f(x)=3≥1恒成立.综上,f( x) ≥的1解集为{ x|x≥1}.2-x+m等价为f(x)-x2+x≥m,(2)不等式f(x) ≥x令g(x)=f( x)-x2+x,则g( x) ≥m解集非空只需要[g(x)] max≥m.-x2+x-3,x≤-1而g(x)=-x2+3x-1,-1<x<2.-x2+x+3,x≥2①当x≤-1时,[ g(x)]max=g(-1)=-3-1-1=-5;3②当-1< x<2时,[g(x)]max=g(2)=-322+3·3-1=-1=5;2 4③当x≥2时,[ g(x)] max=g(2)=-22+2+3=1.综上,[g( x)]max=5 5 ,故m≤.4 45∴m 的取值范围为(-∞,].4- 9 -。
2017年普通高等学校招生全国统一考试文科数学(必修+选修I)解析版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题 (1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )Ið(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4 【命题意图】本题主要考查集合交并补运算.【解析】{2,3},(){1,4}U M N C M N =∴=【答案】D(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【命题意图】本题主要考查反函数的求法.【解析】由0)y x =≥反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥.【答案】B(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A(B(C(D【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+= ,所以2a b +=【答案】B(4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5. 【答案】C(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,只需由P a b ⇒>,且由a b >不能推出P ,可采用逐项验证的方法,对A ,由1a b +>,且1b b +>,所以a b >,但a b >时,并不能得到1a b +>,故答案为A 。
2017年高考文科数学试题(全国Ⅰ卷)全国卷高考真题精校Word 版含答案D14.曲线21y x x=+在点(1,2)处的切线方程为_________________________.15.已知π(0)2a ∈,,tan α=2,则πcos ()4α-=__________。
16.已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。
若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________。
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:60分。
17.(12分)记S n 为等比数列{}na 的前n 项和,已知S 2=2,S 3=-6.(1)求{}na 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。
18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P-ABCD的体积为83,求该四棱锥的侧面积. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78ii x x i =--=-∑,其中ix 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)ix i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)iix y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.20.(12分)设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程. 21.(12分)已知函数()f x =e x (e x ﹣a )﹣a 2x . (1)讨论()f x 的单调性; (2)若()0f x ≥,求a 的取值范围.(二)选考题:共10分。
完美WORD格式 范文.范例.指导.参考 2016年普通高等学校招生全国统一考试(四川卷)
数学(文科) 第Ⅰ卷(共50分) 一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年四川,文1,5分】设i为虚数单位,则复数21i( ) (A)13xx (B)|11xx (C)|12xx (D)|23xx 【答案】C 【解析】试题分析:由题意,22(1i)12ii2i,故选C. 【点评】本题考查了复数的运算法则,考查了推理能力与计算能力,属于基础题. (2)【2016年四川,文2,5分】设集合15Axx,Z为整数集,则集合AZ中元素的个数是( ) (A)6 (B)5 (C)4 (D)3 【答案】B 【解析】由题意,1,2,3,4,5AZ,故其中的元素个数为5,故选B. 【点评】本题考查了集合的运算性质,考查了推理能力与计算能力,属于基础题. (3)【2016年四川,文3,5分】抛物线24yx的焦点坐标是( ) (A)0,2 (B)0,1 (C)2,0 (D)1,0 【答案】D 【解析】由题意,24yx的焦点坐标为1,0,故选D. 【点评】本题考查的知识点是抛物线的简单性质,难度不大,属于基础题.
(4)【2016年四川,文4,5分】为了得到函数sin3yx的图象,只需把函数sinyx的图象上所有的点( )
(A)向左平行移动3个单位长度 (B)向右平行移动3个单位长度
(C)向上平行移动3个单位长度 (D)向下平行移动3个单位长度
【答案】A 【解析】由题意,为得到函数sin3yx,只需把函数sinyx的图像上所有点向左移3个单位,故选A. 【点评】本题考查的知识点是函数图象的平移变换法则,熟练掌握图象平移“左加右减“的原则,是解答的关键. (5)【2016年四川,文5,5分】设:p实数x,y满足1x且1y,:q实数x,y满足2xy,则p是q的 ( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件 【答案】A 【解析】由题意,1x且1y,则2xy,而当2xy时不能得出,1x且1y.故p是q的充分不必要条件,故选A. 【点评】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题. (6)【2016年四川卷,文6,5分】已知a函数312fxxx的极小值点,则a( ) (A)4 (B)2 (C)4 (D)2 【答案】D 【解析】2312322fxxxx,令0fx得2x或2x,易得fx在2,2上单调递减,在2,上单调递增,故fx极小值为2f,由已知得2a,故选D.
【点评】考查函数极小值点的定义,以及根据导数符号判断函数极值点的方法及过程,要熟悉二次函数的图象. (7)【2016年四川,文7,5分】某公司为激励创新,计划逐年加大研发奖金投入。若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是( )(参考数据:lg1.120.05,lg1.30.11,lg20.30) 完美WORD格式 范文.范例.指导.参考 (A)2018年 (B)2019年 (C)2020年 (D)2021年 【答案】B 【解析】设从2015年后第n年该公司全年投入的研发资金开始超过200万元,由已知得130112%200n,2001.12130n,两边取常用对数得200lg2lg1.30.30.11lg1.12lg,3.8,4130lg1.120.05nnn,故选B.
【点评】本题考查了等比数列的通项公式、不等式的性质,考查了推理能力与计算能力,属于中档题. (8)【2016年四川,文8,5分】秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他 在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所 示的程序框图给出了利用秦九韶算法求某多项式值的一个实例。若输入n,x的值分别为3,2.则 输出v的值为( ) (A)35 (B)20 (C)18 (D)9 【答案】C 【解析】初始值3n,2x,程序运行过程如下表所示1v,2i,1224v,1i, 4219v,0i,92018v,1i,跳出循环,输出18v,故选C. 【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行 解答.
(9)【2016年四川,文9,5分】已知正三角形ABC的边长为23,平面ABC内的动点P,M满足 1AP,PMMC,则2BM的最大值是( )
(A)434 (B)494 (C)37634 (D)372334 【答案】B 【解析】如图所示,建立直角坐标系.0,0B,23,0C,3,3A.∵M满足1AP,
∴点M的轨迹方程为:22331xy,令2cosx,3siny,
0,2.又PMMC,则31313cos,sin2222M,∴
22231313749
3cossin3sin2222434BM
.
∴2BM的最大值是494,故选B. 【点评】本题考查了数量积运算性质、圆的参数方程、三角函数求值,考查了推理能力与计算能力,属于中档题. (10)【2016年四川,文10,5分】设直线1l,2l分别是函数ln,01,()ln,1,xxfxxx图象上点1P,2P处的切线,
1l与 2l垂直相交于点P,且1l,2l分别与y轴相交于点A,B,则PAB的面积的取值范围是( ) (A)0,1 (B)0,2 (C)0, (D)1, 【答案】A 【解析】解法1:设11122212(,),(,)()PxyPxyxx,易知11x,21x,121211,llkkxx,121xx,则直线1l:
11
1lnxyxx,2221:ln1lyxxx,与y轴的交点为12(0,1ln),(0,ln1)xx,设21ax,则交点横
坐标为21aa,与y轴的交点为(0,ln1),(0,ln1)aa,则1222112PABSaaaa,故(0,1)PABS
解法2:特殊值法,若121xx,可算出1PABS,1x,故1PABS,排除BC;令121,22xx,算 出1PABS,故选A,故选A. 【点评】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用基本不等式求函数的最值,考查了数学转化思想方法,属中档题. 完美WORD格式 范文.范例.指导.参考 第II卷(共100分)
二、填空题:本大题共5小题,每小题5分 (11)【2016年四川,文11,5分】sin750 .
【答案】12
【解析】由三角函数诱导公式1sin750sin(72030)sin302. 【点评】本题考查运用诱导公式化简求值,着重考查终边相同角的诱导公式及特殊角的三角函数值,属于基础题. (12)【2016年四川,文12,5分】已知某三棱锥的三视图如图所示,则该三棱锥的体积是 .
【答案】33
【解析】由三视图可知该几何体是一个三棱锥,且底面积为123132S,高为1, 三棱锥的体积为11331333VSh. 【点评】本题考查了棱锥的三视图和体积计算,是基础题. (13)【2016年四川,文13,5分】从2、3、8、9任取两个不同的数值,分别记为a、b,则logab为整数的概 率= ________.
【答案】16 【解析】从2,3,8,9中任取两个数记为,ab,作为作为对数的底数与真数,共有2412A个不同的基本事件, 其中为整数的只有23log8,log9两个基本事件,所以其概率21126P. 【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用. (14)【2016年四川,文14,5分】若函数fx是定义R上的周期为2的奇函数,当01x时,4xfx,
则522ff _______. 【答案】2 【解析】∵函数fx是定义R上的周期为2的奇函数,当01x时,4xfx,∴200ff, 125511
24422222ffff
,则522022ff.
【点评】本题主要考查函数值的计算,根据函数奇偶性和周期性的性质将条件进行转化是解决本题的关键. (15)【2016年四川,文15,5分】在平面直角坐标系中,当,Pxy不是原点时,定义P的“伴随点”为
2222,yxPxyxy
,当P是原点时,定义“伴随点”为它自身,现有下列命题:①若点A的“伴随点”
是点A,则点A的“伴随点”是点A;②单元圆上的“伴随点”还在单位圆上;③若两点关于x轴对称,则他们的“伴随点”关于y轴对称;④若三点在同一条直线上,则他们的“伴随点”一定共线.其中的真命题是_______(写出所有真命题的序号). 【答案】②③
【解析】对于①,若令1,1P,则其伴随点为11,22P,而11,22P的伴随点为1,1,而不是P,故错误; 对于②,设曲线,0fxy关于x轴对称,则,0fxy对于曲线,0fxy表示同一曲线,其伴随曲 线分别为2222,0yxfxyxy与2222,0yxfxyxy也表示同一曲线,又因为其伴随曲线分别为
2222,0yxfxyxy与2222,0yxfxyxy
的图像关于y轴对称,所以正确;对于③,令单位圆
上点的坐标为cos,sinPxx其伴随点为sin,cosPxx仍在单位圆上,故正确;对于④,直线ykxb