价键理论
- 格式:doc
- 大小:50.50 KB
- 文档页数:2
1、价键理论:以原子轨道作为近似基函数描述分子中电子的运动规律,在阐述共价键本质时,根据Pauli原理的要求,认为一对自旋反平行的电子相互接近时,彼此呈现互相吸引的作用,使体系能量降低,形成化学键。
2、价键理论和分子理论的比较:(1)在数学处理上选用的变分函数不同价键法以原子轨道作为基函数,进行变分法处理,定变分参数;MO(分子理论)法中,每个分子轨道都涉及整个分子,具有离域键概念。
(2)由于选用的基函数不同,所得结果也不相同(3)VB法和MO法在其初级价段都是粗略的近似方法,各有其优缺点,而改进后,两者的结果就彼此接近了。
(4)两者的电子云都在核间密集。
在MO法中,把电子云过多的几种到核间,引起排斥能增大,算得的E偏高,因而求得H2分子的解离能偏低了。
(5)将VB法和MO法推广应用到其他多原子分子:VB法用定域轨道概念描述分子的结构,配合杂化轨道法,适合于处理基态分子的性质;MO法中每个分子轨道都遍及整个分子整体,而分子中各个分子轨道都具有一定的分布和能级,非常适合于描述分子的基态和激发态的性质。
3、价电子对互斥理论:原子周围各个价电子对之间由于相互排斥,在键长一定的条件下,互相间距离愈远愈稳定。
这就要求分布在中心原子周围的价电子对尽可能离得远些,由此说明许多简单分子的几何构型。
4、杂化轨道理论:原子在化合成分子的过程中,根据原子的成键要求,在周围原子影响下,将原有的原子轨道进一步线性组合成新的原子轨道。
这种在一个原子中不同原子轨道的线性组合,称为原子轨道的杂化。
杂化时,轨道的数目不变,轨道在空间的分布方向和分布情况发生改变,能级改变。
组合所得的杂化轨道一般均和其他原子形成较强的键或安排孤对电子,而不会以空的杂化轨道的形式存在。
5、离域分子轨道理论:用分子轨道理论处理多原子分子时,最一般的方法是用非杂化的原子轨道进行线性组合,构成分子轨道,它们是离域化的,即这些分子轨道中的电子并不定域在多原子分子中的两个原子之间,而是在几个原子间离域远动。
价键理论价键理论valence-bond theory,一种获得分子薛定谔方程近似解的处理方法。
又称电子配对法。
历史上最早发展起来的化学键理论。
主要描述分子中的共价键和共价结合,其核心思想是电子配对形成定域化学键。
1产生1927年W.H.海特勒和F.W.伦敦首次完成了氢分子中电子对键的量子力学近似处理,这是近代价键理论的基础。
L.C.鲍林等加以发展,引入杂化轨道概念,综合成价键理论,成功地应用于双原子分子和多原子分子的结构。
价键理论与化学家所熟悉的经典电子对键概念相吻合,一出现就得到迅速发展。
但价键理论计算比较复杂,使得后来发展缓慢。
随着计算技术日益提高,该理论还会有新发展。
1927年,Heitler 和London 用量子力学处理氢气分子H2,解决了两个氢原子之间化学键的本质问题,使共价键理论从典型的Lewis理论发展到今天的现代共价键理论。
海特勒-伦敦方法处理氢分子氢分子的哈密顿算符是:式中rA1、rB1为核A、B与电子1之间的距离;r12为两个电子之间的距离;RAB为两个原子核之间的距离……(图1);1/RAB表示两个原子核之间的势能(氢核和电子电荷皆为1基本电荷单位);1/rA1、1/rB1、…也是势能;墷是拉普拉斯算符。
海特勒-伦敦方法的要点在于如何恰当地选取基态H2的近似波函数Ψ(1,2)(或称尝试波函数),然后用变分公式使氢分子能量E为最低(假定Ψ是归一化的):式中*表示复数共轭。
考虑两个氢原子组成的体系,若两个氢原子A(有电子1)和B(有电子2)的基态波函数为:φA⑴=πexp(-rA1)φB⑵=πexp(-rB2)假如两个氢原子相距很远,那么体系波函数是:Φ1(1,2)=φA⑴φB⑵实际上两个电子是不可区分的。
同样合适的函数是:Φ2(1,2)=φB⑴φA⑵两个函数Φ1和Φ2都对应相同的能量。
海特勒和伦敦就取两个函数的等权线性组合作为H2的变分函数:Ψ(1,2)=c1Φ1+c2Φ2解久期方程得c1=±c2,波函数和能量是:式中s称原子轨道的重叠积分。
价键理论
自1916年路易斯提出经典的共价键理论以来,共价键理论有了很大的发展。
现代共价键理论有两种,一是价键理论,二是分子轨道理论。
(一)价键理论的基本要点
价键理论,又称电子配对法,其基本要点如下:
1.具有自旋相反的未成对电子的两个原子相互接近,可以形成稳定的共价键。
如果A、B两个原子各有一个自旋相反的未成对的电子,那么这两个未成对电子可以相互配对形成稳定的共价键,这对电子为A、B两原子所共有(共用)。
如果A、B各有两个或三个未成对的电子,则自旋相反的单电子可两两配对形成双键或叁键。
如果A原子有两个未成对电子,B原子有一个未成对电子,那么一个A原子能与两个B原子结合形成AB2型分子,…。
2.原子中未成对的电子数等于原子所能形成的共价键数目(共价键的饱和性)。
共价键是由成键原子中自旋相反的未成对电子配对形成的。
一个原子的一个电子和另一个原子的一个电子配对以后,不能再和第二个电子配对。
因为这时其中必有两个电子的自旋方向相同而相斥。
也就是说一个原子所能形成共价键的数目是一定的。
原子中未成对的电子数等于原子所能形成的共价键数目,这就是共键价的饱和性。
例如,H原子只有一个未成对电子,它和另一个H原子的未成对电子配对后,就不能再与第二个H原子的电子配对了,……。
3.成键电子的电子云重叠越多,核间电子子云密度就越大,形成的共价键就越牢固(共价健的方向性)。
共价键的生成是由于自旋相反的单电子相互配对,电子云重叠的结果。
因此,当两个原子形成分子时,电子云重叠的程度越大,则两原子间的电子云密度越大,生成的共价键就越牢固,所以,在形成共价键时,电子云总是尽可能达到最大程度的重叠。
因此,在形成共价键时,原子间总是尽可能沿着电子云最大重叠方向成键。
s电子云呈球形对称分布,p、d、f电子云在空间都有一定的伸展方向。
在形成共价键时,除了s 电子云和s电子云可以在任何方向上都能达到最大程度的重叠外,p、d电子云的重叠,只有在一定方向上才能使电子云有最大程度的重叠。
即共价键是有方向性的。
例如,当氢原子1s电子云和氯原子的3p电子云重叠形成HCL分子时,氢原子的1s电子云总是沿着氯原子未成对电子的3p电子云对称轴方向作最大程度的重叠(图4-9(a))。
其他方向都不能形成稳定的分子(图4-9(b)(c))。
电子云的三种重叠情况
图4-9 氢原子的1s电子云与氧原子的3P
x
(二)共价键的类型
共价键有两种成键方式。
一种是电子云以:“头碰头”方式相重叠,电子云及重叠部分沿键轴(两核间连线)呈圆柱形对称分布,重叠部分绕轴旋转任何角度形状不会改变,这种键叫σ键。
另一种是成键的两个电子云的对称轴相平行,以“肩并肩”方式相重叠,电子云重叠部分对通过键轴的一个平面具有对称性,这种键称为π键。
例如在N2分子中,氮原子的价层电子结构为:2p x12p y12p z1三个未成对的p电子分占三个互相垂直的p轨道。
当两个氮原子结合成N2分子时,p x电子云沿x轴方向以“头碰头”方式重叠形成一个σ键,每个原
子剩下的两个p电子云不能再沿x轴方向“头碰头”重叠,只能让p电子云的对称轴平行,以“肩并肩”方式重叠形成两个π键。
如图4-10。
4-10 N2分子形成示意图
由于σ键电子云重叠程度较π键大,因而σ键比π键牢固。
一般来说,π键容易断开,化学活泼性较强。
π键不能单独存在,只能与σ键共存于具有双键或叁键的分子中。
σ键不易断开,是构成分子的骨架,可单独存在于两原子间。
以共价键结合的两原子间只能有一个σ键。