共价键理论
- 格式:ppt
- 大小:3.70 MB
- 文档页数:87
一、共价键理论1.1、价键理论价键的形成是原子轨道的重叠或电子配对的结果,如果两个原子都有未成键电子,并且自旋方向相反,就能配对形成共价键。
例如:碳原子可与四个氢原子形成四个C—H键而生成甲烷。
HH..*.C4HHH*HHC+**.*HH由一对电子形成的共价键叫做单键,用一条短直线表示,如果两个原子各用两个或三个未成键电子构成的共价键,则构成的共价键为双键或三键CCCC双键三键共价键形成的基本要点:(1)成键电子自旋方向必需相反;(2)共价键的饱和性;(3)共价键的方向性——成键时,两个电子的原子的轨道发生重叠,而P电子的原子轨道具有一定的空间取向,只有当它从某一方向互相接近时才能使原子轨道得到最大的重叠,生成的分子的能量得到最大程度的降低,才能形成稳定的反之。
重叠最大H稳定结合Cl(1)H重叠较小 + 不稳定结合Cl (2)H(1s)Cl(2p)H不能结合(3)ClS 和P电子原子轨道的三种重叠情况1.2、分子轨道理论分子轨道理论是1932年提出了来的,它是从分子的整体出发去研究分子中每一个电子的运动壮态,认为形成的化学键的电子是在整个分子中运动的。
通过薛定谔方程的解,可以求出描述分子中的电子运动状态的波函数ψ,ψ称为分子轨道,每一个分子轨道ψ有一个相应的能量E, E近似的表示在这个轨道上的电子的电离能。
基本观点:(1)当任何数目的原子轨道重叠时,就可形成同样数目的分子轨道。
例如:两个原子轨道可以线性的组合成两个分子轨道,其中一个比原来的原子轨道的能量低,叫成键轨道(由符号相同的两个原子轨道的波函数相加而成),另一个是由符号不同的两个原子轨道的波函数相减而成,其能量比两个原子轨道的能量高,这中种分子轨道叫做反键轨道。
-=ψ(反键轨道)ψψ2ψA 2B能ψψ(原子轨道) AB量+=ψ1ψψ(成键轨道)1ψBA分子轨道能级图(2)和原子轨道一样,每一个分子轨道只能容纳两个自旋相反的电子,电子总是优先进入能量低的分子轨道,在依次进入能量较高的轨道。
什么是共价键理论
共价键理论是一种描述化学键的理论,主要内容如下:
1. 共价键的本质是电性的,共价键的结合力是两个原子核外共用电子对形成负电区域的吸引力,而不是正、负离子的之间的库伦作用力。
2. 如果A、B两个原子各有一个未成对的电子,若两个单电子所在轨道对称性一致则可以互相重叠,电子以自旋相反的方式成对,两原子形成共价单键,体系的能量降低。
3. 共用电子对也可由其中一个原子提供,称为共价配键。
4. 共价键具有方向性和饱和性。
方向性成因是原子轨道分布具有方向性,饱和性成因是原子价层的单电子数有限。
5. 共价键的特征可以用键能、键长、键角等几个物理量来描述,键角决定几何构型。
以上是共价键理论的主要内容,此理论主要解决H2分子成键实质的问题。
如需了解更多信息,建议查阅化学领域相关书籍文献或咨询化学领域专业人士。
共价键理论(1)共价键两种常见的化学键:离子键——电子得失共价键——共用电子对原子的电子配对成键,形成稳定的8电子构型。
4 H + CH C H HH H C H HH路易斯式凯库勒式共价键理论(VB,valence bond theory)杂化轨道理论(hybrid orbital theory)价键理论原子轨道重叠共价键的形成定域性:自旋反平行的两个电子绕核做高速运动,属于成键原子共有。
电子对在两核之间出现的几率最大。
方向性:相连原子轨道重叠成键要满足最大重叠条件。
饱和性:一个电子和另一个电子配对以后,就不能和其他电子配对,原子中的成单电子数决定成键总数。
杂化轨道理论1931年,鲍林(Pauling L)提出轨道杂化理论。
碳原子化合价应该为2,最外层电子排布碳原子的电子排布实际上CH 4中碳原子为4价?1.碳原子的杂化6杂化:成键原子的几种能量相近的原子轨道混合起来,重新组合成一组新轨道的过程。
所形成的新轨道称为杂化轨道。
2p x 2p y 2p z2s基态2p x 2p y 2p z2s激发态激发s p 3杂化杂化轨道理论(2)孤立的原子不发生杂化,只有形成分子的过程中才发生。
(3)条件不同,杂化轨道类型可能不同。
(4)碳原子的杂化:sp3 sp2sp7杂化的三种类型sp 杂化——1个s 轨道+1个p 轨道,生成2个sp 杂化轨道。
sp 2杂化——1个s 轨道+2个p 轨道,生成3个sp 2杂化轨道。
sp 3杂化——1个s 轨道+3个p 轨道,生成4个sp 3杂化轨道。
杂化轨道的空间结构正四面体形轨道夹角109.50甲烷分子89杂化轨道理论SP 3杂化杂化的三种类型sp 杂化——1个s 轨道+1个p 轨道,生成2个sp 杂化轨道。
sp 2杂化——1个s 轨道+2个p 轨道,生成3个sp 2杂化轨道。
sp 3杂化——1个s 轨道+3个p 轨道,生成4个sp 3杂化轨道。
杂化轨道的空间结构平面三角形轨道夹角1200正四面体形轨道夹角109.50甲烷分子1011杂化轨道理论SP 2杂化杂化的三种类型sp 杂化——1个s 轨道+1个p 轨道,生成2个sp 杂化轨道。
1927年,Heitler 和London 用量子力学处理氢气分子H2,解决了两个氢原子之间化学键的本质问题,并将对H2 的处理结果推广到其它分子中,形成了以量子力学为基础的共价键理论(V. B. 法)。
1共价键理论2共价键的形成A、B 两原子各有一个成单电子,当A、B 相互接近时,两电子以自旋相反的方式结成电子对,即两个电子所在的原子轨道能相互重叠,则体系能量降低,形成化学键,亦即一对电子则形成一个共价键。
形成的共价键越多,则体系能量越低,形成的分子越稳定。
因此,各原子中的未成对电子尽可能多地形成共价键。
配位键形成条件:一种原子中有孤对电子,而另一原子中有可与孤对电子所在轨道相互重叠的空轨道。
在配位化合物中,经常见到配位键。
、3共价键的特征——饱和性、方向性饱和性:几个未成对电子(包括原有的和激发而生成的),最多形成几个共价键。
例如:O 有两个单电子,H有一个单电子,所以结合成水分子,只能形成2个共价键;C最多能与H 形成4个共价键。
方向性:各原子轨道在空间分布是固定的,为了满足轨道的最大重叠,原子间成共价键时,当然要具有方向性。
1940年Sidgwick 提出价层电子对互斥理论,用以判断分子的几何构型. 分子ABn 中,A 为中心,B 为配体,B均与A有键联关系. 本节讨论的ABn 型分子中,A为主族元素的原子.4理论要点ABn 型分子的几何构型取决于中心 A 的价层中电子对的排斥作用. 分子的构型总是采取电子对排斥力平衡的形式.1)中心价层电子对总数和对数a)中心原子价层电子总数等于中心A 的价电子数(s + p)加上配体在成键过程中提供的电子数,如CCl4 4 + 1×4 = 8b)氧族元素的氧族做中心时:价电子数为6,如H2O,H2S;做配体时:提供电子数为0,如在CO2中.c)处理离子体系时,要加减离子价d)总数除以2 ,得电子对数:总数为奇数时,对数进1,例如:总数为9,对数为5 2)电子对和电子对空间构型的关系电子对相互排斥,在空间达到平衡取向. 3)分子的几何构型与电子对构型的关系若配体数和电子对数相一致,各电子对均为成键电对,则分子构型和电子对构型一致。
第六讲 共价键理论一、经典共价键理论− Lewis Structure (八电子规则)1916年,美国化学家路易斯(G.N.Lewis )提出:分子中每个原子应具有稳定的稀有气体原子的电子层结构。
这种稳定结构通过原子间共用一对或若干对电子来实现。
这种分子中原子间通过共用电子对结合而成的化学键称为共价键。
1.基本思想:当n s 、n p 原子轨道充满电子,成为八电子构型,该电子构型稳定,所以在共价分子中,每个原子都希望成为八电子构型(H 原子为2电子构型)。
2.共价分子中成键数和孤电子对数的计算:计算步骤:a .令n o − 共价分子中,所有原子形成八电子构型(H 为2电子构型)所需要的电子总数b .令n v − 共价分子中,所有原子的价电子数总和阴离子的价电子总数:各原子的价电子数之和加负电荷数 阳离子的价电子总数:各原子的价电子数之和减正电荷数 c .令n s − 共价分子中,所有原子之间共用电子总数n s = n o - n v ,n s /2 = (n o - n v ) / 2 = 成键电子对数(成键数) d .令n l − 共价分子中,存在的孤电子数。
(或称未成键电子数) n l = n v - n s ,n l /2 = (n v - n s )/2 = 孤对电子对数例如:P 4S 3、HN 3、N +5、H 2CN 2(重氮甲烷)、NO -33.Lewis 结构式的书写 例如:P 4S 3HN 3HN N N H N N HNNNN 5+,,,NN N NN N N N N N N N NNN N N NCH 2N 2(重氮甲烷) ,HCHNN HCH NN(有时,孤对电子省略不写。
)练习:下列各Lewis 结构式中,能正确表示出NO 3-离子的Lewis 结构式是A. N O OOB. NO OOC. NO O OD. NO OO当Lewis 结构式不只一种形式时,如何来判断这些Lewis 结构式的稳定性呢?4.Lewis 结构式稳定性的判据 −− 形式电荷Q F (1) Q F 的由来: 以CO 为例n o = 2 ⨯ 8 = 16 n v = 4 + 6 =10 n s / 2 = (16 - 10) / 2 = 3 n l / 2 = (10 - 6) / 2 = 2为了形成三对平等的共价键,可以看作O 原子上的一个价电子转移给C 原子,即:,所以氧原子的Q F 为+1,碳原子的Q F 为-1。
第六讲共价键理论一、经典共价键理论− Lewis Structure(八电子规则)1916年,美国化学家路易斯(G.N.Lewis)提出:分子中每个原子应具有稳定的稀有气体原子的电子层结构。
这种稳定结构通过原子间共用一对或若干对电子来实现。
这种分子中原子间通过共用电子对结合而成的化学键称为共价键。
1.基本思想:当n s、n p原子轨道充满电子,成为八电子构型,该电子构型稳定,所以在共价分子中,每个原子都希望成为八电子构型(H原子为2电子构型)。
2.共价分子中成键数和孤电子对数的计算:计算步骤:a.令n o−共价分子中,所有原子形成八电子构型(H为2电子构型)所需要的电子总数b.令n v−共价分子中,所有原子的价电子数总和阴离子的价电子总数:各原子的价电子数之和加负电荷数阳离子的价电子总数:各原子的价电子数之和减正电荷数c.令n s−共价分子中,所有原子之间共用电子总数n s = n o - n v,n s/2 = (n o- n v) / 2 = 成键电子对数(成键数)3.Lewis 结构式的书写例如:N 5+,,,NN N NN NN N NN NN N NN NN N N NCH 2N 2(重氮甲烷) ,HCHNN HC HNN(有时,孤对电子省略不写。
)练习:下列各LewisA.N O OOB. NO OOD.N O OO当Lewis 4.Lewis 结构式稳定性的判据 −− 形式电荷Q F (1) Q F 的由来: 以CO 为例nn v = 4 + 6 =10 n l / 2 = (10 - 6) / 2 = 2O 原子上的一个价电子转移给 ,所以氧原子的Q F 为+1,碳原子的Q F 为-1。
- 孤电子数2 = -1 Q F(O) = 6 -3 - 2 = +1H N N NH N N 02H N N N 0(I)(II)(III)形式(I)、(III)中形式电荷小,相对稳定,而形式(II)中形式电荷高,而且相邻两原子之间的形式电荷为同号,相对不稳定,应舍去。
化学键的价键理论共价键价电子对化学键是化学反应中最基本的概念之一,它描述了原子之间的结合方式。
化学键的形成涉及到共享或转移电子,其中共价键是最常见的一种化学键类型。
共价键形成的基本单位是价电子对,本文将探讨化学键的价键理论及共价键价电子对的性质。
1. 共价键的概念共价键是原子之间通过电子的共享形成的化学键。
在共享过程中,原子通过共享价电子对形成共价键,使得原子能量降低并达到更稳定的状态。
共价键可以形成在同种元素之间(如氢气分子H2)或不同元素之间(如氧气分子O2)。
2. 价键理论2.1 原子轨道和价电子对根据价键理论,原子由核心和围绕核心的电子组成。
电子存在于不同的轨道中,其中价电子是参与形成化学键的电子。
价电子对是共价键的基本单位,可以是一个或多个共享的电子对。
2.2 原子轨道的杂化原子的轨道通过杂化可以重新组合成新的轨道,以适应共享电子对的形成。
常见的杂化类型包括sp、sp2和sp3杂化。
sp杂化产生线性共价键,sp2杂化产生三角平面共价键,sp3杂化产生四面体共价键。
2.3 共价键的形成共价键的形成通过轨道重叠实现。
共价键的形成有两种基本的重叠方式:头-头重叠和边-边重叠。
在共价键形成中,电子云发生重叠,形成化学键。
3. 共价键价电子对的性质3.1 共价键的长度和键能共价键的长度取决于原子核间的距离,较短的键对应于较强的共价键。
共价键的键能是破坏化学键所需的能量,与键的强度相关。
3.2 共价键的极性共价键可以是非极性的或极性的。
非极性共价键是由相同或相似元素之间的共享电子对形成的,如氢气分子H2。
极性共价键是由不同元素之间的共享电子对形成的,电子云偏向电负性较高的原子。
3.3 共价键的结构和分子形状共价键决定了分子的结构和形状。
共价键的方向性以及原子杂化方式对分子形状产生重要影响。
杂化sp3形成四面体分子结构,sp2杂化形成平面三角形分子结构。
4. 应用和意义共价键的理论对于解释化学反应、分子形状及性质具有重要意义。
第二章共价键理论和分子结构讲解第二章:共价键理论和分子结构共价键理论是描述化学键形成的理论,它解释了原子是如何通过共享电子来形成化学键的。
共价键是一种通过共享电子对来使两个原子相互吸引的化学键。
共价键的形成基于原子的电子云的重叠,当两个原子靠近时,它们的电子云开始重叠,形成一个共享电子对。
共享的电子对对两个原子的原子核产生吸引力,将两个原子结合在一起形成稳定的分子。
共享电子对的数目通常取决于原子需要准确达到八个电子(称为八原则)。
共价键可以是单个、双重或三重键,这取决于原子之间共享的电子对数。
单共价键是仅共享一个电子对的化学键,双重键是共享两个电子对的化学键,三重键则共享三对电子。
共价键的形成可以通过独立原子的轨道重叠和自由基重叠来解释。
在共价键的理论中,有两个重要的概念需要了解:价电子和杂化。
价电子是处于最外层能级的原子的电子,它们决定了原子的化学性质和元素的周期表位置。
杂化是指在形成共价键时,原子轨道的重组,以便使电子重叠形成共享电子对。
分子结构是描述分子中原子排列和化学键连接方式的方式。
分子结构可以通过不同的方法确定,如实验技术(如X射线晶体学和光谱学)和理论计算方法(如量子化学计算)。
分子结构决定了分子的性质和反应行为。
分子结构的分析方法之一是通过原子间的距离和角度来确定。
在共价键中,原子之间的距离和角度是由共价键的强度和方向性决定的。
共价键的强度通常通过键长来表示,而键的方向性则由杂化决定。
另一个重要的分子结构参数是分子几何构型,它描述了原子在空间中的排列方式。
最常见的分子几何构型包括线性、角度、平面和立体构型。
分子几何构型是由化学键数和孤对电子数决定的。
分子结构的研究对于理解化学反应和预测化学性质非常重要。
例如,分子的空间结构可以影响其对光的吸收和发射行为,这是荧光和发射光谱等实验技术的基础。
另一方面,分子结构也可以用于预测分子的稳定性和反应性,有助于设计和改进化合物的性质和用途。
总之,共价键理论和分子结构是为了解释和描述化学键的形成和原子在空间中的排列而发展的理论。
共价键的特征决定了聚合物的链式结构(1)在共价键的形成过程中,因为每个原子所能提供的未成对电子数是一定的,一个原子的一个未成对电子与其他原子的未成对电子配对后,就不能再与其它电子配对,即,每个原子能形成的共价键总数是一定的,这就是共价键的饱和性。
例如:C原子未成对电子数是4,也就是最多与其他4个原子产生共价键。
而无饱和性的离子键,只要有带正负电荷的离子间都会产生离子键,如:食盐的钠离子可能会与周围所有的氯离子产生离子键。
(2)除s轨道是球形的以外,其它原子轨道都有其固定的延展方向,所以共价键在形成时,轨道重叠也有固定的方向,共价键也有它的方向性,共价键的方向决定着分子的构形。
由此特征可知共价键只对应特定原子之间的作用,具有方向性和饱和性。
对于指定原子间产生共价键的物理量如键长、键角、键能三个参数一般为定值。
这样多个原子间组成的聚合物分子,可以很容易组成特定的链式结构。
早在1861年,胶体化学的奠基人、英国化学家格雷阿姆(T.Graham,1805~1869)曾将高分子物质与胶体相比较,认为高分子是由一些小的结晶分子形成的;并从高分子溶液具有胶体的某些性质着眼,提出了所谓“高分子的胶体理论”。
该理论在一定程度上解释了某些高分子的特性,得到较多称谓“胶体论者”的化学家们的支持。
他们套用胶体化学的理论观念来阐述高分子物质的可能存在的结构,认为:“纤维素是葡萄糖的缔合体”,即认为它是一种小分子的物理集合。
19 世纪末,随着人们对胶体一系列物理化学特性的发现及展开,一些从事胶体化学研究的物理化学家进一步助推了“高分子胶体论”,并将其引伸为“高分子聚集体论”。
该理论认为:胶体是一种物理的凝聚体,而有胶体性质的高分子化合物不仅是一种小分子的物理聚合或缔合;而且它还是由小分子借分子间的范德华力而结合产生的聚集体所组成。
该理论强调高分子特性和分子外部作用力的对应与关联。
(1)胶体论者或聚集体论者认为,天然橡胶等是通过小分子之间的范德华力而缔合起来的;这种缔合归结于异戊二烯的不饱和状态。
2.共价键理论路易斯理论价键理论价层电子对互斥理论杂化轨道理论分子轨道理论§2. 共价键理论一.路易斯理论1916年,美国的 Lewis 提出共价键理论. 认为分子中的原子都有形成稀有气体电子结构的趋势,求得本身的稳定. 而达到这种结构,并非通过电子转移形成离子键来完成, 而是通过共用电子对来实现.通过共用一对电子, 每个H均成为 He 的电子构型, 形成共价键. 又如:Lewis的贡献在于提出了一种不同于离子键的新的键型, 解释了X 比较小的元素之间原子的成键事实. 但Lewis没有说明这种键的实质, 适应性不强. 在解释BCl3, PCl5 等未达到稀有气体结构的分子时, 遇到困难:二价键理论(Valence Bond Theory)1927年, Heitler 和 London 用量子力学处理氢气分子H2, 解决了两个氢原子之间化学键的本质问题, 使共价键理论从典型的Lewis理论发展到今天的现代共价键理论.1. 氢分子中的化学键量子力学计算表明, 两个具有2. 价键理论将对 H2 的处理结果推广到其它分子中, 形成了以量子力电子构型的 H 彼此靠近, 两个 1s 电子以自旋相反的方式形成电子对, 使体系的能量降低.H < 0, 表示由 2H 形成 H2 时, 放出热量.相反过程:吸热,即破坏 H2 的键要吸热(吸收能量), 此热量 D 的大小与 H2 分子中的键能有关.计算还表明, 若两个 1s 电子保持以相同自旋的方式, 则 r 越小, V 越大. 此时, 不形成化学键. 如图中上方红色曲线所示, 能量不降低.H2 中的化学键可以认为是电子自旋相反成对,使体系的能量降低. 从电子云角度考虑, 可认为 H 的 1s轨道在两核间重叠, 使电子在两核间出现的几率大, 形成负电区, 两核吸引核间负电区, 使 H 结合在一起. 如图:学为基础的价键理论(V. B. 法)1)共价键的形成 A, B 两原子各有一个成单电子,当 A, B 相互接近时,两电子以自旋相反的方式结成电子对, 即两个电子所在的原子轨道能相互重叠, 则体系能量降低, 形成化学键, 亦即一对电子则形成一个共价键.形成的共价键越多, 则体系能量越低, 形成的分子越稳定. 因此, 各原子中的未成对电子尽可能多地形成共价键. 例如:H2 中, 可形成一个共价键. HCl 分子中, 也形成一个共价键. N2 分子怎样呢?已知 N 原子的电子结构:每个N原子有三个单电子, 所以形成 N2 分子, N 与N 原子之间可形成三个共价键. 写成:形成 CO 分子时, 与 N2 相仿, 同样用了三对电子, 形成三个共价键.不同之处是, 其中一对电子在形成共价键时具有特殊性: C 和 O各出一个 2p 轨道, 重叠, 而其中的电子是由 O 单独提供的。
2、中心原子上有孤对电子:孤对电子也要占据中心原子周围的空间,三、杂化轨道理论1、杂化的概念:在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫杂化轨道。
(1)sp3杂化:1个s轨道和3个p轨道会发生混杂,得到4个相同的轨道,夹角109°28′,称为sp3杂化轨道。
(2)sp杂化:夹角为180°的直线形杂化轨道,sp2杂化:三个夹角为120°的平面三角形杂化轨道。
四、配位键1、“电子对给予—接受键”被称为配位键。
一方提供孤对电子;一方有空轨道,接受孤对电子。
如:[Cu(H20)2+]、NH4+中存在配位键。
表示:A B电子对给予体电子对接受体条件:其中一个原子必须提供孤对电子。
另一原子必须能接受孤对电子轨道。
2、通常把金属离子(或原子)与某些分子或离子(称为配体)以配位键结合形成的化合物称为配位化合物。
3、配合物的形成Cu2++2NH3·H2O=Cu(OH)2↓+2NH4+Cu(OH)2+4 NH3·H2O=[Cu(NH3)4]2++2OH-+4H2O([Cu (NH3)4]2+深蓝色)五、键的极性和分子的极性1、极性键:由不同原子形成的共价键。
吸电子能力较强一方呈正电性(δ+),另一个呈负电性(δ一)。
六、氢键及范德华力及其对物质的影响范德华力:分子之间存在着相互作用力。
范德华力很弱,约比化学键能小l一2数量级。
相对分子质量越大,范德华力越大;分子的极性越大,范德华力也越大。
氢键:是由已经与电负性很强的原子形成共价键的氢原子(如水分子中的氢)与另一个分子中电负性很强的原子(如水分子中的氧)之间的作用力。
氢键普遍存在于已经与N、O、F等电负性很大的原子形成共价键的氢原子与另外的N、O、F等电负性很大的原子之间。
例如,不仅氟化氢分子之间以及氨分子之间存在氢键,而且它们跟水分子之间也存在氢键。