第4章 声波3
- 格式:ppt
- 大小:1.29 MB
- 文档页数:11
第四章 海洋中的声传播理论水声传播常用的方法:波动理论(简正波方法)——研究声信号的振幅和相位在声场中的变化;射线理论(射线声学)——研究声场中声强随射线束的变化,它是近似处理方法,且适用于高频,但它能有效、清晰地解决海洋中地声场问题。
4.1 波动方程和定解条件1、波动方程当介质声学特性是空间坐标的函数,则可得小振幅波的运动方程、连续性方程和状态方程:p t u -∇=∂∂ρ 0=⋅∇+∂∂u tρρρd c dp 2= 状态方程可写为:tc t p ∂∂=∂∂ρ2由状态方程和连续性方程可得:012=⋅∇+∂∂u tp c ρ 利用运动方程从上式中消去u可得0112222=∇⋅∇-∂∂-∇ρρp tp c p当介质密度是空间坐标的函数时,波动方程的形式和密度均匀介质中波动方程的形式不同。
引入新的从变量:ρϕp=,则可得0432********=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∇-∇+∂∂-∇ρρρρϕϕt c 对于简谐波,222ω-=∂∂t ,则上式可写为:()0,,22=+∇ϕϕz y x K式中,2224321⎪⎪⎭⎫⎝⎛∇-∇+=ρρρρk K 。
ϕ不是声场势函数,K 也不是波数。
在海水中,与声速相比密度变化很小,可将其视为常数,则()z y x c k K ,,ω==,于是()0,,22=+∇ϕϕz y x k ()0,,22=+∇p z y x k p如果介质中有外力作用F,例如有声源情况,则有()ρϕϕFz y x K ⋅∇=+∇,,22在密度等于常数时,有()ρϕϕFz y x k ⋅∇=+∇,,22()F p z y x k p⋅∇=+∇,,22上述赫姆霍茨方程是变系数的偏微分方程——泛定方程。
2、定解条件满足物理问题的具体条件——定解条件。
物理量在介质边界上必须满足的条件。
(1)绝对软边界绝对软边界条件:声压为零界面方程表示为()t y x z ,,η=,()()0,,,,,==t y x z t y x p ηη——不平整海面 也称为第一类齐次边界条件如果已知边界面上的压力分布,则()()s t y x z p t y x p ==,,,,,ηη,称为第一类非齐次边界条件。
四、习题解答4-1 如果某声压幅值增加至原来的3倍,问该声波的声强增至原来的几倍?如果使声波的声强增至原来的16倍,声压幅值必须增大多少倍?解:(1)已知312=m m p p 由声强与声压幅值的关系公式up I mρ22=得93)(2222122122212212=====m m m mm m p p p p up u p I I ρρ (2)已知1612=I I 则:212212212)(m m m mp p p p I I ==,4161212===I I p p m m 4-2 距一点声源10 m 的地方,某声强级是20 dB,若不计吸收衰减,求:(1)距离声源5 m 处的声强级?(2)距离声源多远,声音会听不见了?解:已知10=r m 处,20=L dB,声强为1I 。
5=r m 处,声强为2I ,声强级为2L 。
(1)根据声强级公式0lg10I IL =,1210110lg 10lg 1020-==I I I , 10101-=I W/m 2对于点声源(球面波)在不计吸收衰减的情况下,22212144I r I r ππ=,222121I r I r = 10102212121042510100--⨯=⨯==r I r I W/m 226104lg 1010104lg 10lg 102121002=⨯=⨯==--I I L dB (2)因为 323121I r I r =,则41210312123101010100=⨯==--I I r r m,2310=r m 4-3 由许多声源发至某一点的声波强度是各声波强度的和。
如果有5个相同的喇叭同时广播,所测得的声强级较一个喇叭多多少分贝?解:已知一个喇叭广播的声强和声强级分别为I 和1L ,则5个相同喇叭同时广播时的声强和声强级分别为I 5和2L ,则两者声强级的差值为75lg 105lg 10lg 10lg 10lg1012010212====-=-=II I I I I I I L L L ∆dB 4-4 一个窗户的面积是1 m 2,向街而开,窗外的声强级是60 dB,问传入窗内声波的声功率是多少?解:已知窗户面积1=S m 2,声强级60=L dB 根据声强级公式0lg 10I IL =可得 1210lg1060-=I ,610-=I W/m 2 声功率为 6610110--=⨯==IS P W4-5 震耳欲聋的雷声声强级是110 dB,树叶微动声约为10 dB,问其声强比是多少?解:已知雷声声强级为1101=L dB,树叶微动的声强级为102=L dB, 根据声强级公式0lg10I I L = 二者声强之比为:21020121lg 10lg 10lg10I I I I I I L L =-=- 2121lg 1010010110I I L L ==-=- 10lg21=I I ,102110=I I4-6一列火车以30 m/s 的速度在静止的空气中行驶,火车汽笛声的频率是500 Hz,声波在空气中传播速度为340 m/s。
八年级第4章物理知识点
在八年级的第4章中,我们学习了物理方面的知识。
这些知识点可以让我们更好地理解物理学的基本规律,为将来的学习打下坚实的基础。
以下是本章的几个重要知识点:
1. 声音的产生
声音是由物体振动产生的,也就是说,当物体振动时,周围的空气密度也随之变化,形成了声波。
这些振动会以一定的频率传播,我们所听到的声音的音高与这些频率有关。
2. 声的特性
声音在传播过程中具有一些特殊的物理特性,例如声波的振动方向与振动方向相同,声音的速度随着媒介的变化而变化,音量与声波的振幅有关等等。
3. 火的产生
火的产生是物理学中一个很基本的问题。
我们知道,火需要氧气、燃料和一定的温度才能产生。
当这三个条件都满足时,就会
产生火焰。
在物理学中,火的产生可以从化学反应角度来加以理解。
4. 感应电流
感应电流是指当电磁场线穿过一定面积时,在这个面积内就会
产生感应电流的现象。
这种电流可以用来实现电磁感应、发电等
重要应用。
在实际应用中,感应电流被广泛用于生产和科研领域。
5. 气体压强及其应用
气体压强是指气体分子对物体单位面积施加的压力。
气体压强
的大小受到气体分子总数、气体温度等因素的影响。
在实际生活中,我们可以用气体压强来进行一些测量或者进行压力的调节。
以上是本章中的几个重要知识点。
这些知识可以帮助我们更好
地理解物理学中常见问题的原理和规律,同时也能够启发我们进
行创新和实践应用。