第二章 智猪博弈
- 格式:ppt
- 大小:3.68 MB
- 文档页数:71
智猪博弈理论编辑本段介绍在博弈论(Game Theory)经济学中,“智猪博弈”是一个著名的纳什均衡的例子。
假设猪圈里有一头大猪、一头小猪。
猪圈的一头有猪食槽,另一头安装着控制猪食供应的按钮,按一下按钮会有10个单位的猪食进槽,但是谁按按钮就会首先付出2个单位的成本,若大猪先到槽边,大小猪吃到食物的收益比是9∶1;同时到槽边,收益比是7∶3;小猪先到槽边,收益比是6∶4。
那么,在两头猪都有智慧的前提下,最终结果是小猪选择等待。
实际上小猪选择等待,让大猪去按控制按钮,而自己选择“坐船”(或称为搭便车)的原因很简单:在大猪选择行动的前提下,小猪也行动的话,小猪可得到1个单位的纯收益(吃到3个单位食品的同时也耗费2个单位的成本,以下纯收益计算相同),而小猪等待的话,则可以获得4个单位的纯收益,等待优于行动;在大猪选择等待的前提下,小猪如果行动的话,小猪的收入将不抵成本,纯收益为-1单位,如果小猪也选择等待的话,那么小猪的收益为零,成本也为零,总之,等待还是要优于行动。
在小企业经营中,学会如何“搭便车”是一个精明的职业经理人最为基本的素质。
在某些时候,如果能够注意等待,让其他大的企业首先开发市场,是一种明智的选择。
这时候有所不为才能有所为!高明的管理者善于利用各种有利的条件来为自己服务。
“搭便车”实际上是提供给职业经理人面对每一项花费的另一种选择,对它的留意和研究可以给企业节省很多不必要的费用,从而使企业的管理和发展走上一个新的台阶。
这种现象在经济生活中十分常见,却很少为小企业的经理人所熟识。
博弈与制度由智猪博弈故事得到的启示在这个例子中,对小猪而言,无论大猪是否踩动踏板,不去踩踏板总比踩踏板好。
反观大猪,明知小猪不会去踩踏板,但是去踩踏板总比不踩强,所以只好亲历亲为了。
这个案例令我们不得不思考——【博弈与制度】“智猪博弈”故事给了竞争中的弱者(小猪)以等待为最佳策略的启发。
在博弈中,每一方都要想方设法攻击对方、保护自己,最终取得胜利;但同时,对方也是一个与你一样理性的人,他会这么做吗?这时就需要更高明的智慧。
在经济学中,在经济学中,智猪博弈”(PigS ' PayoffS(BoXed PigS)是一个著名博弈论例子。
这个例子讲的是:猪圈里有两头猪,一头大猪,一头小猪。
猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。
如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。
当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。
那么,两只猪各会采取什么策略?答案是:小猪将选择搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。
原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。
对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。
反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。
小猪躺着大猪跑”的现象是由于故事中的游戏规则所导致的。
规则的核心指标是:每次落下的事物数量和踏板与投食口之间的距离。
如果改变一下核心指标,猪圈里还会出现同样的小猪躺着大猪跑”的景象吗?试试看。
改变方案一:减量方案。
投食仅原来的一半分量。
结果是小猪大猪都不去踩踏板了。
小猪去踩,大猪将会把食物吃完;大猪去踩,小猪将也会把食物吃完。
谁去踩踏板,就意味着为对方贡献食物,所以谁也不会有踩踏板的动力了。
如果目的是想让猪们去多踩踏板,这个游戏规则的设计显然是失败的。
改变方案二:增量方案。
投食为原来的一倍分量。
结果是小猪、大猪都会去踩踏板。
谁想吃,谁就会去踩踏板。
反正对方不会一次把食物吃完。
小猪和大猪相当于生活在物质相对丰富的共产主义”社会,所以竞争意识却不会很强。
对于游戏规则的设计者来说,这个规则的成本相当高(每次提供双份的食物);而且因为竞争不强烈,想让猪们去多踩踏板的效果并不好。
改变方案三:减量加移位方案。
投食仅原来的一半分量,但同时将投食口移到踏板附近。
市场竞争中的“智猪”模型分析学号姓名摘要:随着市场竞争的越来越激烈,运营商之间的竞争也变得越来越激烈。
其本身的实力不容忽视,但其运用的策略也至关重要。
本文运用“智猪”博弈模型来谈谈对其的一点看法。
关键词:智猪博弈市场竞争制度一:什么是博弈论?(一)博弈是指一些个人、团队或其他组织,面对一定的环境条件,在一定的约束条件下,依靠所掌握的信息,同时或先后,一次或多次,从各自可能的行为或策略集合中进行选择并实施,各自从中取得相应结果或收益的过程。
(二)博弈论是一种关于游戏的理论,又叫做对弈论,是一门以数学为基础,研究对抗冲突中最优解问题的学科。
(三)一个标准的博弈应当包括:1.博弈的参与人,又称局中人,是指博弈中独立决策、独立承担后果,一自身利益最大化来选择行动的决策主体,局中人以最终实现自身利益最大化为目标。
2.博弈行为,是指参与人的所有可能的策略或行动的集合。
3.博弈信息,是指参与人在博弈过程中所掌握的对选择策略有帮助的情报知识,特别是有关其他参与人的特征和行动的知识,即该参与人所掌握的其他参与人的对其决策有影响的所有知识。
4.博弈策略,又称战略,是指参与人可选择的全部行为或策略的集合。
5.博弈的次序,即博弈参加者做出策略选择的先后顺序。
6.博弈方的收益,是指参与人从博弈中做出决策选择后的所得和所失。
7.结果,是指博弈分析者感兴趣的要素集合。
8.均衡,是指所有参与人的最优策略或行动的组合。
二、“智猪”博弈模型(一)智猪博弈是经济学中经常讲的一个经典博弈实例。
这个案例讲的是:有一大一小两头猪在同一个食槽进食,在食槽的另一端安装有一个控制猪食供应量的按钮,在每次进食前,至少要有一头猪过去按按钮,他们才能获得食物。
模型还假定:每按一次按钮可出8单位食物,但按按钮要付出2个单位的成本。
若大猪先到食槽,则大猪得到7单位的食物,而小猪仅得到1单位的食物:若小猪先到,则大猪小猪各得到4单位得食物;若两猪同时到,则大猪得到5单位,小猪得到3单位食物。
博弈论经典案例《智猪博弈》第一篇:博弈论经典案例《智猪博弈》智猪博弈在经济学中,“在经济学中,“智猪博弈(”Pigs’payoffs)(Boxed Pigs)是一个著名博弈论例子。
这个例子讲的是:猪圈里有两头猪,一头大猪,一头小猪。
猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。
如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。
当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。
那么,两只猪各会采取什么策略?答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。
原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。
对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。
反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。
“小猪躺着大猪跑”的现象是由于故事中的游戏规则所导致的。
规则的核心指标是:每次落下的事物数量和踏板与投食口之间的距离。
如果改变一下核心指标,猪圈里还会出现同样的“小猪躺着大猪跑”的景象吗?试试看。
改变方案一:减量方案。
投食仅原来的一半分量。
结果是小智猪博弈猪大猪都不去踩踏板了。
小猪去踩,大猪将会把食物吃完;大猪去踩,小猪将也会把食物吃完。
谁去踩踏板,就意味着为对方贡献食物,所以谁也不会有踩踏板的动力了。
如果目的是想让猪们去多踩踏板,这个游戏规则的设计显然是失败的。
改变方案二:增量方案。
投食为原来的一倍分量。
结果是小猪、大猪都会去踩踏板。
谁想吃,谁就会去踩踏板。
反正对方不会一次把食物吃完。
小猪和大猪相当于生活在物质相对丰富的“共产主义”社会,所以竞争意识却不会很强。
对于游戏规则的设计者来说,这个规则的成本相当高(每次提供双份的食物);而且因为竞争不强烈,想让猪们去多踩踏板的效果并不好。
博弈论-智猪博弈在经济学中,“在经济学中,“智猪博弈”(Pigs’payoffs)是一个著名博弈论例子。
这个例子讲的是:猪圈里有两头猪,一头大猪,一头小猪。
猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。
如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。
当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。
那么,两只猪各会采取什么策略?答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。
原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。
对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。
反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。
“小猪躺着大猪跑”的现象是由于故事中的游戏规则所导致的。
规则的核心指标是:每次落下的事物数量和踏板与投食口之间的距离。
如果改变一下核心指标,猪圈里还会出现同样的“小猪躺着大猪跑”的景象吗?试试看。
改变方案一:减量方案。
投食仅原来的一半分量。
结果是小猪大猪都不去踩踏板了。
小猪去踩,大猪将会把食物吃完;大猪去踩,小猪将也会把食物吃完。
谁去踩踏板,就意味着为对方贡献食物,所以谁也不会有踩踏板的动力了。
如果目的是想让猪们去多踩踏板,这个游戏规则的设计显然是失败的。
改变方案二:增量方案。
投食为原来的一倍分量。
结果是小猪、大猪都会去踩踏板。
谁想吃,谁就会去踩踏板。
反正对方不会一次把食物吃完。
小猪和大猪相当于生活在物质相对丰富的“共产主义”社会,所以竞争意识却不会很强。
对于游戏规则的设计者来说,这个规则的成本相当高(每次提供双份的食物);而且因为竞争不强烈,想让猪们去多踩踏板的效果并不好。
改变方案三:减量加移位方案。
投食仅原来的一半分量,但同时将投食口移到踏板附近。
第二卷智猪博弈案例在博弈论经济学中,有一个博弈叫“智猪博弈”,“智猪博弈”是一个著名的纳什均衡的例子。
其内容是这样的:假设猪圈里有一头大猪、一头小猪,猪圈的一头有猪食槽,另一头安装着控制猪食供应的按钮,按一下按钮会有10个单位的猪食进槽,但是谁按按钮就会首先付出2个单位的成本,我们来分析一下,若大猪先到槽边,大小猪吃到食物的收益比是9∶1;大猪,小猪同时到槽边,收益比是7∶3;小猪先到槽边,收益比是6∶4。
从中我们可以看出,在两头猪都有智慧的前提下,最好的结果是小猪选择等待。
1在博弈论经济学中,有一个博弈叫“智猪博弈”,“智猪博弈”是一个著名的纳什均衡的例子。
其内容是这样的:假设猪圈里有一头大猪、一头小猪,猪圈的一头有猪食槽,另一头安装着控制猪食供应的按钮,按一下按钮会有10个单位的猪食进槽,但是谁按按钮就会首先付出2个单位的成本,我们来分析一下,若大猪先到槽边,大小猪吃到食物的收益比是9∶1;大猪,小猪同时到槽边,收益比是7∶3;小猪先到槽边,收益比是6∶4。
从中我们可以看出,在两头猪都有智慧的前提下,最好的结果是小猪选择等待。
实际上小猪选择等待,让大猪去按控制按钮,而自己选择“坐船”(或称为搭便车)的原因很简单:在大猪选择行动的前提下,小猪也行动的话,小猪可得到1个单位的纯收益(吃到3个单位食品的同时也耗费2个单位的成本,以下纯收益计算相同),而小猪等待的话,则可以获得4个单位的纯收益,等待优于行动;在大猪选择等待的前提下,小猪如果行动的话,小猪的收入将不抵成本,纯收益为-1单位,如果小猪也选择等待的话,那么小猪的收益为零,成本也为零,总之,等待还是要优于行动。
用博弈论中的报酬矩阵可以更清晰的刻画出小猪的选择:从矩阵中可以看出,当大猪选择行动的时候,小猪如果行动,其收益是1,而小猪等待的话,收益是4,所以小猪选择等待;当大猪选择等待的时候,小猪如果行动的话,其收益是-1,而小猪等待的话,收益是0,所以小猪也选择等待。