探索图形与数的规律的练习题
- 格式:ppt
- 大小:1.91 MB
- 文档页数:7
五年级数学探索规律试题答案及解析1.边长6米的正方形花坛,在它周围每隔2米摆一盆花(四角都摆),一共要摆()A.3盆 B.12盆 C.18盆【答案】B【解析】解:6÷2+1=3+1=4(盆)4×4﹣4=16﹣4=12(盆)答:一共要摆12盆.故选:B.【点评】此题主要考查植树问题中封闭图形中:棵数=每边棵数×4﹣4的计算应用.2.找规律填数字6.25,2.5,1,,0.16.【答案】0.4.【解析】根据数列中所给数据得出:数列中的数从左向右依次除以2.5;据此解答即可.解:6.25÷2.5=2.5;2.5÷2.5=1;1÷2.5=0.4;0.4÷2.5=0.16;所以数列为:6.25,2.5,1,0.4,0.16.故答案为:0.4.【点评】解决本题的关键是根据已知数据找出变化规律,再利用规律解答.3.如图,用小棒搭成六边形,搭一个六边形要6根小棒,搭二个六边形要11根小棒,搭三个六边形要16根小棒.(1)搭四个六边形要根小棒;(2)根据上面的规律,搭n个六边形要根小棒.【答案】21,5n+1.【解析】据题意可知,摆1个用6根;摆2个,有一条边是重复的,所以用2×6﹣1=11根,摆3个,有两条边是重复的,所以用3×6﹣2=16根,…那么摆n个,就有n﹣1条边是重复的,所以要用n×6﹣(n﹣1)=6n﹣n+1=5n+1根;摆4个六边形要5×4+1=21根小棒;然后再根据题意进一步解答即可.解:根据题意可得:摆1个用6根;摆2个,有一条边是重复的,所以用2×6﹣1=11根,摆3个,有两条边是重复的,所以用3×6﹣2=16根,拼4个,有3条边是重复的,要6×4﹣3=21根,…摆n个要用:n×6﹣(n﹣1)=6n﹣n+1=5n+1(根);答:拼4个六边形要21根小棒,拼n个六边形要用5n+1根小棒.故答案为:21,5n+1.【点评】根据题意与图形,找出摆n个图形的规律,然后再进一步解答即可.4.下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数是________。
奥数思维拓展-数与形规律探索问题(试题)-小学数学六年级上册苏教版一、选择题1.过2个点可以画出1条线段,过3个点可以画3条线段,过10个点可以画()条线段。
A.10B.54C.45D.无数条2.一些正六边形卡片按下图方式摆放。
如果用n表示第几个图形,用y表示正六边形的个数,下面式子可以表示第几个图形与正六边形个数之间的关系的是()。
A.y=1+2+…+n B.y=l+n C.y=2n-13.如下图,一只蚂蚁从O点出发,沿着半圆的边缘爬了一周,又回到O点,下面可以描述蚂蚁与O点距离变化的是()。
A.B.C.D.4.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”。
从上图中可以发现:任何一个大于1的“正方形数”都可以看作两个相邻的“三角形数”之和,例如4=1+3。
把“正方形数”36写成两个相邻的“三角形数”之和,正确的是()。
A.36=10+26B.36=12+24C.36=15+21D.36=16+205.如下图所示,用白色小正方形和黑色长方形按照下面的摆法,组成不同的长方形。
当摆5个黑色长方形时,四周需要摆()个白色小正方形。
A.16B.20C.26D.366.如图,按照规律拼成下列图案,第8个图形一共是由()根小棒搭配的。
A.105B.106C.107D.1087.在一个平面上有68个点,一共可以连()条线段。
A.68B.2278C.2346D.11908.观察下面图形的规律,其中第1个图形由4个小正方形组成,第2个图形由7个小正方形组成,第3个图形由10个小正方形组成,……按此规律排列下去,则第n个图形由()个小正方形组成。
A.4n B.2n-1C.3n+1D.3n-1二、填空题9.按照如图所示的图形与对应数的排列规律,第6个图形对应的数是( ),第n个图形对应的数是( )。
……18276410.根据图和字母的规律补充图,bc的图是( )。
浙江省历年(2018-2022年)真题分类汇编专题探索数、式、图的规律和定义新运算一、单选题(共3题;共6分)1.(2分)(2021·绍兴)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是()A.用3个相同的菱形放置,最多能得到6个菱形B.用4个相同的菱形放置,最多能得到16个菱形C.用5个相同的菱形放置,最多能得到27个菱形D.用6个相同的菱形放置,最多能得到41个菱形【答案】B【解析】【解答】解:用2个相同的菱形放置,最多能得到3个菱形,用3个相同的菱形放置,最多能得到8个菱形,用4个相同的菱形放置,最多能得到16个菱形,用5个相同的菱形放置,最多能得到22个菱形,用6个相同的菱形放置,最多能得到29个菱形,故答案为:B.【分析】分别根据题意画出图形,求出用2个、3个、4个、5个和6个相同的菱形放置时,最多得到的菱形的数量,即可解答.2.(2分)(2018·义乌)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合),现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图),若有34枚图钉可供选用,则最多可以展示绘画作品()A.16张B.18张C.20张D.21张【答案】D【解析】【解答】A. 16=1×16=2×8=4×4,最少需要图钉(4+1)(4+1)=25枚,A不符合题意.B. 18=1×18=2×9=3×6,最少需要图钉(3+1)(6+1)=28枚,B不符合题意.C. 20=1×20=2×10=4×5,最少需要图钉(4+1)(5+1)=30枚,C不符合题意.D. 21=1×21=3×7,最少需要图钉(4+1)(7+1)=32枚.还剩余2枚图钉,D符合题意.故答案为:D.【分析】分别算出四个答案中给定的画全部展出的各种展出方法,根据展出方法中求出需要的图钉的最少数量,再比较即可得出答案。
七年级数学(上)探索规律类 问题班级 学号 姓名 成绩一、数字规律类:1、一组按规律排列的数:41,93,167,2513,3621,…… 请你推断第9个数是 .2、(2005年山东日照)已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62;④ 13+23+33+43=102 ;…………由此规律知,第⑤个等式是 .3、(2005年内蒙古乌兰察布)观察下列各式;①、12+1=1×2 ;②、22+2=2×3; ③、32+3=3×4 ;………请把你猜想到的规律用自然数n 表示出来 。
4、(2005年辽宁锦州)观察下面的几个算式:①、1+2+1=4; ②、1+2+3+2+1=9; ③、1+2+3+4+3+2+1=16;④、1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接写出第n 个式子 5、(2005年江苏宿迁)观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ) A .1 B . 2 C .3 D .4 6、(2005年山东济南市)把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围的一列,从上至下依次为1、5、13、25、……,则第10个数为________。
第1行 1第2行 -2 3第3行 -4 5 -6第4行 7 -8 9 -10(第6题图) 第5行 11 -12 13 -14 15 ……………… (第7题图) 7、(05年江苏省金湖实验区)已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成如上所示的形式:按照上述规律排下去,那么第10行从左边数第5个数等于 . 二、图形规律类: 8、(2005年云南玉溪)一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到1条 2条 3条 图1 图2 图 3 O 2A 的中点3A 处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为 。
2023年人教版数学七年级上册《探索规律问题》专项练习一、选择题1.小王利用计算机设计了一个计算程序,输入和输出的数据如表:输入…12345…输出……那么,当输入数据为8时,输出的数据为( )A. B. C. D.2.找出以如图形变化的规律,则第20个图形中黑色正方形的数量是( )A.28B.29C.30D.313.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为( )A.2998B.3001C.3002D.30054.观察图并寻找规律,x处填上的数字是( )A.﹣136B.﹣150C.﹣158D.﹣1625.将一个边长为1的正方形按如图所示的方法进行分割:部分①是整个正方形面积通过计算此图形中部分①、部分②、部分③…的面积之和,可得到式子12+14+18+…的近似值为()A.0.5B.1C.2D.46.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为22024的末位数字是( )A.2B.4C.6D.87.如图所示,图①中的多边形(边数为12)是由等边三角形“扩展”而来的,图②中的多边形是由正方形“扩展”而来的,…,依此类推,则由正n 边形“扩展”而来的多边形的边数为( )A.n(n ﹣1)B.n(n +1)C.(n +1)(n ﹣1)D.n 2+28.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2…已知按一定规律排列的一组数:250,251,252,…,299,2100.若250=a ,用含a 的式子表示这组数的和是( )A.2a 2-2aB.2a 2-2a -2C.2a 2-aD.2a 2+a9.已知一组数a 1,a 2,a 3,…,a n ,…,其中a 1=1,对于任意的正整数n ,满足a n +1a n +a n +1﹣a n =0,通过计算a 2,a 3,a 4的值,猜想a n 可能是( )A.1n B.nC.n 2D.110.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A.12B.14C.16D.18二、填空题11.用●表示实心圆,用○表示空心圆,现有若干个实心圆与空心圆,按一定的规律排列如下:●○●●○●●●○●○●●○●●●○●○●●○●●●○…,在前2029个圆中,有 个实心圆.12.下图是某同学一次旅游时在沙滩上用石子摆成的小房子.观察图形的变化规律,写出第n个小房子用了块石子.13.下面是按照一定规律画出的一列“树型”图:经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出 个“树枝”.14.有一串式子:﹣x,2x2,﹣3x3,4x4,…,﹣19x19,20x20,… ,写出第n个 .15.按下列图示的程序计算,若开始输入的值为x=﹣6,则最后输出的结果是 .16.观察下列各正方形图案,每条边上有n(n≥2)个圆点,每个图案中圆点的总数是s,按此规律推断出s与n的关系为 .17.如图,将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中的一个正方形剪裁成四个小正方形,如此继续下去,…,根据以上操作方法,请你填写表:操作次数N 12345…n 正方形的个数47101316…a n则a n = (用含n 的代数式表示).18.如图是用小棒按一定规律摆成的一组图案,第1个图案中有5根小棒,第2个图案中有9个小棒,…,若第n 个图案中有65根小棒,则n 的值为 .三、解答题19.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n 个最小的连续偶数相加时,它们的和S 与n 之间有什么样的关系,用公式表示出来;(2)按此规律计算:①2+4+6+…+200值;②162+164+166+…+400值.20.下面的图形是由边长为l 的正方形按照某种规律排列而组成的.(1)观察图形,填写下表:图形①②③正方形的个数8 图形的周长18 (2)推测第n个图形中,正方形的个数为 ,周长为 (都用含n的代数式表示).(3)这些图形中,任意一个图形的周长y与它所含正方形个数x之间的关系可表示为y = .21.用火柴棒摆出下列一组图形:(1)填写下表:图形编号123图形中的火柴棒数 (2)照这样的方式摆下去,写出摆第n个图形中的火柴棒数;(用含n的代数式表示)(3)如果某一图形共有2027根火柴棒,你知道它是第几个图形吗?22.观察下列等式:13+23=3213+23+33=6213+23+33+43=102…(1)根据观察得到规律写出:13+23+33+43+53= .(2)根据观察得到规律写出13+23+33+43+…+1003= .(3)13+23+33+43+53+…+n3= .23.阅读材料:求1+2+22+23+24+…+22023的值.解:设S=1+2+22+23+24+…+22022+22023,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22023+22024将下式减去上式得2S﹣S=22024﹣1即S=22024﹣1即1+2+22+23+24+…+22023=22024﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).答案1.C2.C.4.D.5.B.6.C.7.B.8.C9.A10.C11.答案为:1353.12.答案为:(n2+4n).13.答案为:80.14.答案为:(﹣1)n nx n .15.答案为:120.16.答案为:S=4(n﹣1).17.答案为:1+3n.18.答案为:16.19.解:(1))∵1个最小的连续偶数相加时,S=1×(1+1),2个最小的连续偶数相加时,S=2×(2+1),3个最小的连续偶数相加时,S=3×(3+1),…∴n个最小的连续偶数相加时,S=n(n+1);(2)①根据(1)得:2+4+6+…+200=100×(100+1)=10100;②162+164+166+ (400)=(2+4+6+…+400)﹣(2+4+6+…+160),=200×201﹣80×81,=40200﹣6480,=33720.20.解:(1)∵n=1时,正方形有8个,即8=5×1+3,周长是18,即18=10×1+8;n=2时,正方形有13个,即13=5×2+3,周长是28,即28=10×2+8;n=3时,正方形有18个,即18=5×3+3,周长是38,即38=10×3+8;(2)由(1)可知,n=n时,正方形有5n+3个,周长是10n+8.(3)∵y=10n+8,x=5n+3,∴y=2x+2.21.解:(1)第一个图形中火柴棒数=2+5=7,第二个图形中火柴棒数=2+5+5=12,第三个图形中火柴棒数=2+5+5+5=17;故答案为:7;12;17;(2)由(1)的规律可知第n个图形的火柴棒根数=2+5n;(3)由题意可知2027=2+5n,解得n=407,∴是第402个图形.22.解:(1)依题意,得13+23+33+43+53=(1+2+3+4+5)2=152=225;(2)依题意,得13+23+33+…+1003=(1+2+3+…+100)2=50502;(3)一般规律为:13+23+33+…+n3=(1+2+3+…+n)2=[]2.故答案为225;50502;[]2.23.解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘以2得:2S=2+22+23+24+…+210+211,将下式减去上式得:2S﹣S=211﹣1,即S=211﹣1,则1+2+22+23+24+…+210=211﹣1;(2)设S=1+3+32+33+34+…+3n①,两边同时乘以3得:3S=3+32+33+34+…+3n+3n+1②,②﹣①得:3S﹣S=3n+1﹣1,即S=12(3n+1﹣1),则1+3+32+33+34+…+3n=12(3n+1﹣1).。
数字与图形规律探索1.若1×22﹣2×32=﹣1×2×7;(1×22﹣2×32)+(3×42﹣4×52)=﹣2×3×11;(1×22﹣2×32)+(3×42﹣4×52)+(5×62﹣6×72)=﹣3×4×15;则(1×22﹣2×32)+(3×42﹣4×52)+…+[(2n﹣1)(2n)2﹣2n(2n+1)2]=.2.设a1,a2,…,a2014是从1,0,﹣1这三个数中取值的一列数,若a1+a2+…+a2014=69,(a1+1)2+(a2+1)2+…+(a2014+1)2=4001,则a1,a2,…,a2014中为0的个数是.3.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6=.4.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.5.按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的块数是.6.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由个组成的,依此,第n个图案是由个组成的.7.观察下列砌钢管的横截面图:则第n个图的钢管数是(用含n的式子表示)8.如图1,是我们平时使用的等臂圆规,即CA=CB.若n个相同规格的等臂圆规的两脚依次摆放在同一条直线上如图2所示,其张角度数变化如下:∠A1C1A2=160°,∠A2C2A3=80°,∠A3C3A4=40°,∠A4C4A5=20°,….,根据上述规律请你写出∠A n+1A n∁n=°.(用含n的代数式表示)9.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=.10.如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC 的三个顶点和它内部的点P1、P2、P3、…、P n,把△ABC分成个互不重叠的小三角形.11.求1+2+22+23+...+22012的值,可令S=1+2+22+23+...+22012,则2S=2+22+23+24+ (22013)因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为()A.52012﹣1B.52013﹣1C.D.12.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1B.2,1,4C.1,4,2D.2,4,113.在数学兴趣小组活动中,小明为了求…+的值,在边长为1的正方形中,设计了如图所示的几何图形.则…+的值为(结果用n表示).14.图中是一幅“苹果图”,第一行有1个苹果,第二行有2个,第三行有4个,第四行有8个,…,你是否发现苹果的排列规律?猜猜看,第六行有个苹果、第十行有个.(可用乘方形式表示)15.王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n为整数时,+++…+=.16.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出右表,此表揭示了(a+b)n (n为非负数)展开式的各项系数的规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1;根据以上规律,(a+b)4展开式共有五项,系数分别为.17.观察下列二次根式的化简:,,,…从计算结果中找到规律,再利用这一规律计算下列式子的值.=.18.阅读下列文字与例题将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)试用上述方法分解因式a2+2ab+ac+bc+b2=.19.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.20.阅读理解:给定次序的n个数a1,a2,…,a n,记S k=a1+a2+…a k,为前k个数的和(1≤k≤n),定义A=(S1+S2+…+Sn)÷n称它们的“凯森和”,如a1=2,a2=3,a3=3,则s1=2,s2=5,s3=8,凯森和A=(2+5+8)÷3=5,若有99个数a1,a2,…,a99的“凯森和”为100,则添上21后的100个数21,a1,a2,…,a99的凯森和为.试题解析1.若1×22﹣2×32=﹣1×2×7;(1×22﹣2×32)+(3×42﹣4×52)=﹣2×3×11;(1×22﹣2×32)+(3×42﹣4×52)+(5×62﹣6×72)=﹣3×4×15;则(1×22﹣2×32)+(3×42﹣4×52)+…+[(2n﹣1)(2n)2﹣2n(2n+1)2]=﹣n(n+1)(4n+3).解:∵1×22﹣2×32=﹣1×2×7=﹣1×2×(4×1+3);(1×22﹣2×32)+(3×42﹣4×52)=﹣2×3×11=﹣2×3×(4×2+3);(1×22﹣2×32)+(3×42﹣4×52)+(5×62﹣6×72)=﹣3×4×15═﹣3×4×(4×3+3);…(1×22﹣2×32)+(3×42﹣4×52)+…+[(2n﹣1)(2n)2﹣2n(2n+1)2]=﹣n(n+1)(4n+3),故答案为:﹣n(n+1)(4n+3).2.设a1,a2,…,a2014是从1,0,﹣1这三个数中取值的一列数,若a1+a2+…+a2014=69,(a1+1)2+(a2+1)2+…+(a2014+1)2=4001,则a1,a2,…,a2014中为0的个数是165.解:(a1+1)2+(a2+1)2+…+(a2014+1)2=a12+a22+…+a20142+2(a1+a2+…+a2014)+2014=a12+a22+…+a20142+2×69+2014=a12+a22+…+a20142+2152,设有x个1,y个﹣1,z个0∴,化简得x﹣y=69,x+y=1849,解得x=959,y=890,z=165∴有959个1,890个﹣1,165个0,故答案为:165.3.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6.解:(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6故本题答案为:a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b64.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.5.按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的块数是365.解:第1个图案只有1块黑色地砖,第2个图案有黑色与白色地砖共32=9,其中黑色的有5块,第3个图案有黑色与白色地砖共52=25,其中黑色的有13块,…第n个图案有黑色与白色地砖共(2n﹣1)2,其中黑色的有[(2n﹣1)2+1],当n=14时,黑色地砖的块数有[(2×14﹣1)2+1]=×730=365.故答案为:365.6.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由16个组成的,依此,第n个图案是由3n+1个组成的.解:由图可得,第1个图案基础图形的个数为4,第2个图案基础图形的个数为7,7=4+3,第3个图案基础图形的个数为10,10=4+3×2,…,第5个图案基础图形的个数为4+3(5﹣1)=16,第n个图案基础图形的个数为4+3(n﹣1)=3n+1.故答案为:16,3n+1.7.观察下列砌钢管的横截面图:则第n个图的钢管数是n2+n(用含n的式子表示)解:第一个图中钢管数为1+2=3;第二个图中钢管数为2+3+4=9;第三个图中钢管数为3+4+5+6=18;第四个图中钢管数为4+5+6+7+8=30,依此类推,第n个图中钢管数为n+(n+1)+(n+2)+…+2n=+=n2+n,故答案为:n2+n.8.如图1,是我们平时使用的等臂圆规,即CA=CB.若n个相同规格的等臂圆规的两脚依次摆放在同一条直线上如图2所示,其张角度数变化如下:∠A1C1A2=160°,∠A2C2A3=80°,∠A3C3A4=40°,∠A4C4A5=20°,….,根据上述规律请你写出∠A n+1A n∁n=(90﹣)°.(用含n的代数式表示)解:由张角度数变化可知顶角∠A n+1∁n A n=,则∠A n+1A n∁n=(180﹣)÷2=90﹣.故答案为:(90﹣).9.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=9.解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°的度数,∠A4A3C=45°,…,∴9°n<90°,解得n<10.由于n为整数,故n=9.故答案为:9.10.如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC 的三个顶点和它内部的点P1、P2、P3、…、P n,把△ABC分成2n+1个互不重叠的小三角形.解:如图,△ABC的三个顶点和它内部的点P1,把△ABC分成的互不重叠的小三角形的个数=3+2×0,△ABC的三个顶点和它内部的点P1、P2,把△ABC分成的互不重叠的小三角形的个数=3+2×1,△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P1、P2、P3、…、P n,把△ABC分成的互不重叠的小三角形的个数=3+2(n﹣1).故答案为:2n+1.11.求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为()A.52012﹣1B.52013﹣1C.D.解:设S=1+5+52+53+...+52012,则5S=5+52+53+54+ (52013)因此,5S﹣S=52013﹣1,S=.故选:C.12.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1B.2,1,4C.1,4,2D.2,4,1解:A、把x=4代入得:=2,把x=2代入得:=1,本选项不合题意;B、把x=2代入得:=1,把x=1代入得:3+1=4,把x=4代入得:=2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得:=2,把x=2代入得:=1,本选项不合题意;D、把x=2代入得:=1,把x=1代入得:3+1=4,把x=4代入得:=2,本选项符合题意,故选:D.13.在数学兴趣小组活动中,小明为了求…+的值,在边长为1的正方形中,设计了如图所示的几何图形.则…+的值为1﹣(结果用n表示).解:…+=1﹣.答:…+的值为1﹣.故答案为:1﹣.14.图中是一幅“苹果图”,第一行有1个苹果,第二行有2个,第三行有4个,第四行有8个,…,你是否发现苹果的排列规律?猜猜看,第六行有25个苹果、第十行有29个.(可用乘方形式表示)解:第六行有25个苹果、第十行有29个.15.王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n为整数时,+++…+=1﹣.解:结合图形,得+++…+=1﹣.16.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出右表,此表揭示了(a+b)n (n为非负数)展开式的各项系数的规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1;根据以上规律,(a+b)4展开式共有五项,系数分别为1,4,6,4,1.解:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1;所以(a+b)4展开的五项系数应该为:1,4,6,4,1.故答案为:1,4,6,4,1.17.观察下列二次根式的化简:,,,…从计算结果中找到规律,再利用这一规律计算下列式子的值.=2009.解:原式=(﹣1+﹣+﹣+…+﹣)(+1)=(﹣1)(+1)=2009.18.阅读下列文字与例题将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)试用上述方法分解因式a2+2ab+ac+bc+b2=(a+b)(a+b+c).解:原式=(a2+2ab+b2)+(ac+bc)=(a+b)2+c(a+b)=(a+b)(a+b+c).故答案为(a+b)(a+b+c).19.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.解:(1)2※4=2×4+1=9;(2)(1※4)※(﹣2)=(1×4+1)×(﹣2)+1=﹣9;(3)(﹣1)※5=﹣1×5+1=﹣4,5※(﹣1)=5×(﹣1)+1=﹣4;(4)∵a※(b+c)=a(b+c)+1=ab+ac+1,a※b+a※c=ab+1+ac+1=ab+ac+2.∴a※(b+c)+1=a※b+a※c.20.阅读理解:给定次序的n个数a1,a2,…,a n,记S k=a1+a2+…a k,为前k个数的和(1≤k≤n),定义A=(S1+S2+…+Sn)÷n称它们的“凯森和”,如a1=2,a2=3,a3=3,则s1=2,s2=5,s3=8,凯森和A=(2+5+8)÷3=5,若有99个数a1,a2,…,a99的“凯森和”为100,则添上21后的100个数21,a1,a2,…,a99的凯森和为120.解:∵99个数a1,a2,…,a99的“凯森和”为100,∴(S1+S2+…+S99)÷99=100,∴S1+S2+…+S99=9900,(21+S1+21+S2+21+…+S99+21)÷100=(21×100+S1+S2+…+S99)÷100=(21×100+9900)÷100=21+99=120.。
三、规律探索问题规律性问题(又叫归纳猜想型问题),其特点是给出一组具有某种特定关系的数、式、图形;或给出与图形有关的操作变化过程;或给出某一具体的问题情境,通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论。
主要包括:题型一.数列型规律探索题1.数字或字母型数列(1).(2015·临沂)观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2 015个单项式是( )A.2 015x2 015B.4 029x2 014C.4 029x2 015D.4 031x2 015(2).(2017·郴州中考)已知123357a a a2510=-==-,,,45911a a1726==-,,…,则a8=________.(3).(2005年威海市中考题)一组按规律排列的数:,,,,,……请你推断第9个数是2.由图形转化成数列(1).(2017·烟台中考)用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为( ) A.3n B.6n C.3n+6 D.3n+3(2). (2011内蒙古乌兰察布)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n 个图形有个小圆. (用含n 的代数式表示)(3)(2017·酒泉中考)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为________,第2017个图形的周长为________.第1个图形第 2 个图形第3个图形第 4 个图形(4).如图,小明作出了边长为1的第1个正△A 1B 1C 1,算出了正△A 1B 1C 1的面积.然后分别取△A 1B 1C 1的三边中点A 2、B 2、C 2,作出了第2个正△A 2B 2C 2,算出了正△A 2B 2C 2的面积.用同样的方法,作出了第3个正△A 3B 3C 3,算出了正△A 3B 3C 3的面积……,由此可得,第10个正△A 10B 10C 10的面积是( )A .B .C .D .(5).(2017·德州中考)观察下列图形,在一个三角形中,分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,……将这种做法继续下去(如图2、图3、…),则图6中挖去三角形的个数为3.求和型数列(1)(2017·临沂中考)将一些相同的“○”按如图所示摆放,观察每个图形中“○”的个数,若第n 个图形中“○”的个数是78,则n 的值是 ( ) A.11 B.12 C.13D.14(2)(2017·淮安中考)将从1开始的连续自然数按以下规律排列:……则2017在第________行.(3).如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)根据这个规律探索可得,第100个点的坐标为____________.(4)(2017·滨州中考)观察下列各式:211131321124242113535=-⨯=-⨯=-⨯⋯,,,,请利用所得结论,化简代数式()2222132435n n 2⋯⨯⨯⨯+++++(5).(2017·绵阳中考)如图所示,将形状、大小完全相同的“·”和线段按照一定规律摆成下列图形,第1幅图形中“·”的个数为a 1,第2幅图形中“·”的个数为a 2,第3幅图形中“·”的个数为a 3,…以此类推,则123191111a a a a +++⋯+的值为 ()2061589431A.B. C. D.21848407604.“相互联系型”数列(1)(2017·日照中考)观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为 ( ) A.23 B.75 C.77 D.139【思路点拨】由题干图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23, (26),由此可得a,b.(2)填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是A .38B .52C .66D .74 (3).如图所示的数码叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数,且两端的数均为1n,每个数是它下一行左右相邻两数的和,则第8行第3个数(从左往右数)为( )11 12 12 13 16 13 14 112 112 14A. 160B.1168C.1252D.1280题型二 循环周期型规律探索题(1)(2017·岳阳中考)观察下列等式:21=2,22=4,23=8, 24=16,25=32,26=64,…,根据这个规律,则21+22+23 +24+ (22017)的末尾数字是( ) A.0 B.2 C.4 D.6(2).(2017·扬州中考)在一列数:a 1,a 2,a 3,…,a n 中,a 1=3,a 2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是 ( ) A.1 B.3 C.7 D.9(3).(2017·天门中考)如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(-1,1),B(0,-2),C(1,0),点P(0,2)绕点A 旋转180°得到点P 1,点P 1绕点B 旋转180°得到点P 2,点P 2绕点C 旋转180°得到点P 3,点P 3绕点A 旋转180°得到点P 4,……按此作法进行下去,则点P 2017的坐标为________.0 2 8 4 2 4 6 22 4 6 844(4).(2017·连云港中考)如图所示,一动点从半径为2的☉O上的A0点出发,沿着射线A0O 方向运动到☉O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到☉O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到☉O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到☉O上的点A4处;……按此规律运动到点A2017处,则点A2017与点A0间的距离是( )A.4B.2C.2D.0题型三图形面积、弧长、线段等规律探索题(1)(2017·衢州中考)如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方向作无滑动的翻滚,经一次翻滚后得△A1B1O,则翻滚3次后点B的对应点的坐标是________,翻滚2017次后AB中点M经过的路径长为________.(2)(2017·达州中考)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为( )(3)(2017·湖州中考)如图,已知∠AOB=30°,在射线OA上取点O1,以O1为圆心的圆与OB相切;在射线O1A上取点O2,以O2为圆心,O2O1为半径的圆与OB相切;在射线O2A上取点O3,以O3为圆心,O3O2为半径的圆与OB相切;…;在射线O9A上取点O10,以O10为圆心,O10O9为半径的圆与OB相切.若☉O1的半径为1,则☉O10的半径长是________.。
中考数学必考题型《规律探索》分类专项练习类型一 数式规律1. 我国战国时期提出了“一尺之棰,日取其半,万世不竭”这一命题,用所学知识来解释可理解为:设一尺长的木棍,第一天折断一半,其长为12尺,第二天再折断一半,其长为14尺,…,第n 天折断一半后得到的木棍长应为________尺. 12n2. 如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是________.第2题图41【解析】由图形可知,第n 行最后一个数为1+2+3+…+n =n (n +1)2,∴第8行最后一个数为8×92=36=6,则第9行从左至右第5个数是36+5=41.3. 观察下列关于自然数的式子:第一个式子:4×12-12 ① 第二个式子:4×22-32 ② 第三个式子:4×32-52 ③ …根据上述规律,则第2019个式子的值是______.8075 【解析】∵4×12-12=3①,4×22-32=7②,4×32-52=11③,…,4n 2-(2n -1)2=4n -1,∴第2019个式子的值是4×2019-1=8075. 4. 将数1个1,2个12,3个13,…,n 个1n (n 为正整数)顺次排成一列:1,12,12,13,13,13,…,1n ,1n ,…,记a 1=1,a 2=12,a 3=12,…,S 1=a 1,S 2=a 1+a 2,S 3=a 1+a 2+a 3,…,S n =a 1+a 2+…+a n ,则S 2019=________.63364 【解析】根据题意,将该数列分组,1个1的和为1,2个12的和为1,3个13的和为1,…;∵1+2+3+…+63=2016个数,则第2019个数为64个164的第3个数,则此数列中,S 2019=1×63+3×164=63364. 类型二 图形规律5. 如图,在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,…,已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).观察每次变换前后的三角形的变化,按照变换规律,则点A n 的坐标是________.第5题图(2n,3)【解析】∵A(1,3),A1(2,3),A2(4,3),A3(8,3),…,∴纵坐标不变,为3,横坐标都和2有关,为2n,即点An的坐标是(2n,3).6. 如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2019次后,点P的坐标为________.第6题图(6058,1)【解析】∵铁片OABC为正方形,A(3,0),P(1,2),∴正方形铁片OABC 的边长为3,如解图第一个循环周期内的点P1,P2,P3,P4的坐标分别为(5,2),(8,1),(10,1),(13,2),每增加一个循环,对应的点的横坐标就增加12.而2019÷4=504……3,即504个循环周期后点P2016的横坐标为504×12+1=6049,纵坐标为2,所以点P2019的横坐标为6049+9=6058,纵坐标为1.故P2019(6058,1).第6题解图7. 如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…,组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P 的坐标是________.第7题图(2019,-1) 【解析】∵圆的半径都为1,∴半圆的周长=π,以时间为点P 的下标.观察发现规律:P 0(0,0),P 1(1,1),P 2(2,0),P 3(3,-1),P 4(4,0),P 5(5,1),…,∴P 4n (4n ,0),P 4n +1(4n +1,1),P 4n +2(4n +2,0),P 4n +3(4n +3,-1).∵2019÷4=504……3,∴第2019秒时,点P 的坐标为(2019,-1).8. 如图,已知菱形OABC 的顶点O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D 的坐标为________.第8题图(-1,-1) 【解析】∵菱形OABC 的顶点O (0,0),B (2,2),∴BO 与x 轴的夹角为45°,∵菱形的对角线互相垂直平分,∴点D是线段OB的中点,∴点D的坐标是(1,1),∵菱形绕点O逆时针旋转,每秒旋转45°,360°÷45°=8,∴每旋转8秒,菱形的对角线交点就回到原来的位置(1,1),∵60÷8=7……4,∴第60秒时是把菱形绕点O 逆时针旋转了7周回到原来位置后,又旋转了4秒,即又旋转了4×45°=180°,∴点D 的对应点落在第三象限,且对应点与点D关于原点O成中心对称,∴第60秒时,菱形的对角线交点D的坐标为(-1,-1).9. 如图,∠MON=60°,作边长为1的正六边形A1B1C1D1E1F1,边A1B1、F1E1分别在射线OM、ON上,边C1D1所在的直线分别交OM、ON于点A2、F2,以A2F2为边作正六边形A2B2C2D2E2F2,边C2D2所在的直线分别交OM、ON于点A3、F3,再以A3F3为边作正六边形A3B3C3D3E3F3,…,依此规律,经第n次作图后,点B n到ON的距离是________.第9题图3n-13【解析】由题可知,∠MON=60°,设B n到ON的距离为h n,∵正六边形A1B1C1D1E1F1的边长为1,∴A1B1=1,易知△A1OF1为等边三角形,∴A1B1=OA1=1,∴OB1=2,则h1=2×32=3,又∵OA2=A2F2=A2B2=3,∴OB2=6,则h2=6×32=33,同理可得:OB3=18,则h3=18×32=93,…,依此可得OB n=2×3n-1,则h n=2×3n -1×32=3n -1 3.∴B n 到ON 的距离h n = 3n -1 3.10. 如图,正方形AOBO 2的顶点A 的坐标为A (0,2),O 1为正方形AOBO 2的中心;以正方形AOBO 2的对角线AB 为边,在AB 的右侧作正方形ABO 3A 1,O 2为正方形ABO 3A 1的中心;再以正方形ABO 3A 1的对角线A 1B 为边,在A 1B 的右侧作正方形A 1BB 1O 4,O 3为正方形A 1BB 1O 4的中心;再以正方形A 1BB 1O 4的对角线A 1B 1为边,在A 1B 1的右侧作正方形A 1B 1O 5A 2,O 4为正方形A 1B 1O 5A 2的中心;…;按照此规律继续下去,则点O 2018的坐标为________.第10题图(21010-2,21009) 【解析】由A (0,2)和A 1(2,4)可知直线AA 1的解析式为y =x +2,由图可知点A 1,A 2,…,A n 的纵坐标分别为22,23,…,2n +1,将y =2n +1代入y =x +2,得2n +1=x +2,∴x =2n +1-2,∴点A n 的坐标为(2n +1-2,2n +1),由图可知O 2n 横坐标与A n 的横坐标相同,O 2n 纵坐标是A n 的纵坐标的12,∴O 2n 的坐标为(2n +1-2,2n),∴当n =1009时,O 2018的坐标为(21010-2,21009). 真题反馈:1. 观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.2. 如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为( )A.671 B.672 C.673 D.6743. 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A.43 B.45 C.51 D.534. 请你计算:(1-x)(1+x),(1-x)(1+x+x2),…,猜想(1-x)(1+x+x2+…+x n)的结果是( ).A. 1-x n+1B. 1+x n+1C. 1-x nD. 1+x n5. 如图,已知正方形ABCD,顶点A(1,3),B(1,1),C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2019次变换后,正方形ABCD的对角线交点M的坐标变为().A. (-2012,2)B. (-2012,-2)C. (-2013,-2)D. (-2013,2)6. 观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是.7. 观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是.8. 正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是.9. 如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2015个图形是.10. 如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n 次碰到矩形的边时的点为P n,则点P3的坐标是;点P2 019的坐标是.11.观察下列关于自然数的等式:32-4×12=5 ①52-4×22=9 ②72-4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.12.(1)证明三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;[要求根据图(1)写出已知、求证、证明;在证明过程中,至少有两处写出推理依据(“已知”除外)(2)如图(2),在▱ABCD中,对角线焦点为O,A1,B1,C1,D1分别是OA,OB,OC,OD的中点,A2,B2,C2,D2分别是OA1,OB1,OC1,OD1的中点,…,以此类推.若▱ABCD的周长为1,直接用算式表示各四边形的周长之和l;(3)借助图形(3)反映的规律,猜猜l可能是多少?(1)(2) (3)。