§4.01-角的概念的推广
- 格式:ppt
- 大小:406.50 KB
- 文档页数:4
角概念的推广一、知识点归纳1.角概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。
射线的起始位置称为始边,终止位置称为终边。
2.象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角不属于任何象限,它叫轴线角。
3.终边相同的角的表示:终边与终边相同(的终边在终边所在射线上),注意:相等的角的终边一定相同,终边相同的角不一定相等。
4. 几种终边在特殊位置时对应角的集合为:角的终边所在位置 角的集合X 轴正半轴{}Z k k ∈︒⨯=,360|ααY 轴正半轴{}Z k k ∈︒+︒⨯=,90360|αα X 轴负半轴{}Z k k ∈︒+︒⨯=,180360|αα Y 轴负半轴{}Z k k ∈︒+︒⨯=,270360|ααX 轴{}Z k k ∈︒⨯=,180|ααY 轴{}Z k k ∈︒+︒⨯=,90180|αα坐标轴{}Z k k ∈︒⨯=,90|αα5、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k kαα⋅+<<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z二、例题解析例1、自上午8点整上学到中午11点40分放学,时钟的时针和分针各转了多少度?上午8点整和中午11点40分两针所成的最小正角各是多少度?例2、给出下列命题:①小于90的角是锐角;②第二象限的角是钝角;③相等的角必是终边相同的角;④若角α和β有相同的终边,则βα-的终边必在x 轴的正半轴上.其中正确的命题序号是______________ 例3、已知 1845-=θ,在与终边相同的角中,求满足下列条件的角:(1)最小的正角 (2)最大的负角 (3)在720~360-内的角例4、若α为第三象限角,则α-,α2的终边落在何处?练习4.1、已知α为第一象限角,求α21-180是第几象限角.例5、已知α为第三象限角,求32αα,所在的象限 例6、已知集合{}Zk k k A ∈+⋅<<+⋅=,9018030180 αα,集合{}Zk k k A ∈+⋅<<-⋅=,4536045360 αα。
角的概念的推广角是几何学中的重要概念,它在日常生活中的应用广泛且重要。
角的概念使我们能够更好地理解和描述物体之间的关系,从而更好地解决实际问题。
本文将探讨角的概念以及它在不同领域的推广应用。
一、角的定义和性质角是由两条射线共同起源的部分平面,常用三个字母表示。
根据角的大小,可以将角分为锐角、直角和钝角。
锐角指小于90度的角,直角指等于90度的角,钝角指大于90度但小于180度的角。
角的大小可以通过角度来测量,角度是角所对应的弧长在单位圆上的长度比值。
除了大小外,角还具有其他一些重要性质。
首先,两个角互为补角当且仅当它们的和为90度。
其次,两个角互为余角当且仅当它们的和为180度。
此外,角的顶点、起始射线和终止射线确定一个平面。
这些性质为我们研究角的性质和应用提供了基础。
二、角的推广应用1. 几何学中的角在几何学中,角是研究平面和空间图形间相对位置关系的重要工具。
角的推广应用在多边形的研究中尤为重要。
例如,我们可以通过计算多边形的内角和来判断它们的类型,进而帮助解决诸如平行四边形的判定、多边形的内切圆问题等。
2. 物理学中的角角的概念在物理学中也有着广泛的应用。
例如,角度被广泛用于描述力的作用方向和大小。
在机械学中,角度还用于描述转动运动和力矩的计算。
此外,角速度和角加速度也是物理学中经常使用的概念,通过这些概念可以描述物体的旋转状态以及旋转的快慢程度。
3. 工程学中的角在工程学中,角的概念被广泛应用于测量和布局。
例如,利用角度可以确定建筑物的方向,帮助制定建筑物的布局方案。
此外,在电气工程中,角度也用于描述交流电的相位差,从而确定电路中电压和电流的相对位置。
4. 地理学中的角在地理学中,角被广泛应用于测量和描述地球表面上的地理位置和方向。
例如,利用经纬度可以确定地理位置的坐标,并且通过计算角度可以确定两个地点之间的方位角和航向角。
这些信息对于导航和地图制作非常关键。
5. 计算机图形学中的角在计算机图形学中,角的概念被广泛用于描述和渲染三维图形。
下学期 4.1 角的概念的推广引言角的概念是几何学中的重要内容之一,在数学教学中扮演着至关重要的角色。
本文旨在推广下学期 4.1 角的概念,通过对角的基本概念、角的分类以及角的性质等方面深入探讨,帮助读者更好地理解和应用角的相关知识。
一、角的基本概念角是由两条射线共享一个公共点而形成的图形。
其中,公共点称为角的顶点,两条共享的射线称为角的边。
角可以用大写字母表示,常用符号包括∠ABC、∠PQR 等。
角的顶点位于角所在的平面上。
二、角的分类根据角的大小,角可以分为三类:锐角、直角和钝角。
1.锐角:角的大小小于 90 度(即 90°)的角被称为锐角;2.直角:角的大小为 90 度(即 90°)的角被称为直角;3.钝角:角的大小大于 90 度(即 90°),但小于 180 度(即 180°)的角被称为钝角。
三、角的性质角的性质涉及到角的度数、角的相等以及角的补角和余角等方面。
1.角的度数:角的大小通常用度数来表示,一个完整的圆周共有 360 度(即360°)。
因此,一个直角是 90 度(即 90°),一个钝角是大于 90 度(即 90°)但小于 180 度(即 180°)。
2.角的相等:如果两个角的度数相等,则这两个角是相等的。
表示相等的符号为“=”。
例如,∠ABC = ∠DEF 表示角 ABC 和角 DEF 是相等的。
3.角的补角和余角:两个角的度数之和等于 90 度(即 90°)的角被称为互补角,互补角之间的度数比例为1:1。
两个角的度数之和等于 180 度(即 180°)的角被称为余角,余角之间的度数比例为1:1。
四、角的应用角的概念在几何学和物理学中有广泛的应用。
以下是角的一些应用:1.幾何形狀的描述:角可以用来描述和区分不同的几何形状,例如直角三角形、等边三角形等;2.方向指示:角可以用来表示方位和方向,例如在地图上表示风向;3.视角计算:在物理学中,角可以用来计算物体的可见度和视角;4.旋转和转动:在运动学中,角可以用来描述物体的旋转和转动状态。
4.1 角的概念的推广教学目标1.理解并掌握正角、负角、零角的定义;理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;2.能在0°和360°范围内,找出与此范围外每一个已知角终边相同的角,并判断其为第几象限角;能写出与任一已知角终边相同的角的集合;3.能树立运动变化的观点,深刻理解推广后的角的概念;4.从“射线绕着其端点旋转而形成角”的过程,培养学生用运动变化的观点审视事物,用对立统一规律提示生活中的空间形式和数量关系.教学建议1.关于角的概念的推广的知识结构本小节内容从角不大于周角的非负角开始扩充到任意角,使角有正角、负角、零角之分。
在平面直角坐标系内建立适当的直角坐标系后,根据角的终边在哪一象限,把角划分为四个象限和特殊角等若干类,于是引入了第几象限角和终边相同的角的集合这样两个概念。
再由特殊到一般进行归纳总结.2.关于角的概念的推广的重点、难点分析本节的重点是任意角的概念和象限角的概念;难点是把终边相同的角用集合和符号语言正确地表示出来.可以通过实例帮助建立任意角的概念,如用扳手拧螺母;车轮转动辐条形成的角,特别是钟表的指针转动,因为正角、负角是依据逆时针和顺时针来定义的.建立直角平面坐标系的前提是:角的顶点和坐标原点重合,角的始边与轴的正半轴重合.在这个前提下角的终边落在第几象限就称为第几象限的角,若终边落在坐标轴上,称为坐标轴上的角.为了加深对任意角概念的理解,应正确区分锐角、的角、小于的角.凡与角终边相同的角均可以写作.这一条件不可少,它表明了与终边相同的角都相差的整数倍,或者在形成角的过程中,每当射线绕原点转一圈时,就会出现一个与终边相同的角,经常使在之间,求终边相同的角,可用此角去除以,使余数在之间.3.关于角的概念的推广的教法建议(1)建议通过实例帮助建立任意角的概念,如用扳手拧螺母;车轮转动辐条形成的角,特别是钟表的指针转动,因为正角、负角是依据逆时针和顺时针来定义的.也就是用运动的观点来讲述角的概念的推广实际意义.(2)正角与负角的规定是出于习惯,就和正数、负数规定一样。
4.1角的概念的推广教学目标:(一)知识目标:1.推广角的概念、引入大于360°角和负角;2.正角、负角、零角的定义;象限角的概念;3.终边相同的角的表示法。
(二)能力目标:1.理解并掌握正角、负角、零角的定义;2.理解任意角的概念,掌握所有与α角终边相同的角(包括α角)的表示方法;3.树立运动变化观点,深刻理解推广后的角的概念。
(三)情感目标:1.揭示知识背景,引发学生学习兴趣;2.创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识。
教学重点:理解正角、负角、零角的定义,掌握终边相同角的表示法。
教学难点:终边相同的角的表示。
教学课时:2课时第一课时(一)三角函数背景介绍同学们在初中时,曾初步接触过三角函数,那时的运用仅限于计算一些特殊的三角函数值、研究一些三角形中简单的边角关系等。
三角函数也是高中数学的一个重要内容,在今后的学习中大家会发现三角学有着极其丰富的内容,它能够简单地解决许多数学问题,在中学数学中有着非常广泛的应用。
如本章章头图提到的问题,用三角学知识来解的话,会很简单,以后大家将会体会到。
三角学起源于对三角形边角关系的定量考察,这始于古希腊一批天文学家对天文的测量。
比如希腊人阿利斯塔克(公元前310~前230)提出“日心说”:太阳处于宇宙的中心,而地球绕太阳旋转,同时自转。
这一观点早于哥白尼1700多年,因而被恩格斯称为“古代的哥白尼”。
他的现存著作只有一篇短文《论日月的大小及距离》,其中记载了他侧得月亮上弦时日月之间的角距离为870。
如图所示,设日地距离为a,月地距离为b,因月亮上弦时∠EMS=900,故∠S=30。
阿利斯塔克用一种比较复杂的几何方法算得,由此他断言日地距离介于月地距离的18倍与20倍之间。
虽M(月)S baE(地)然这一结果与现代测量的数值(约389倍)相差甚远,但测不准的原因是由于目测误差引起的,他的方法正确简明,为后人继续使用。
(上弦时日、月间的角距离为89051,,而不是870)因此在相当长一个时期里,三角学隶属于天文学,而在它的形成过程中里同了当时已经积累得相当丰富得算术、几何和天文知识。
课题:角的概念的推广(1)目标:1.掌握用“旋转”定义角的概念,理解并掌握“正角”“负角”“象限角”“终边相同的角”的含义。
2.掌握所有与α角终边相同的角(包括α角)、象限角、终边在坐标轴上的角的表示方法;3.体会运动变化观点,深刻理解推广后的角的概念;重点:终边相同的角的表示;难点:终边在y 轴上的角的集合表示;过程:一、引入1.复习:初中是任何定义角的?从一个点出发引出的两条射线构成的几何图形。
这种概念的优点是形象、直观、容易理解,但它是从图形形状来定义角,因此角的范围是[]0,360︒︒,这种定义称为静态定义,其弊端在于“狭隘”2.生活中很多实例会不在改范围[]0,360︒︒体操运动员转体720º,跳水运动员向内、向外转体1080º经过1小时时针、分针、秒针转了多少度?这些例子不仅不在范围[]0,360︒︒,而且方向不同,有必要将角的概念推广到任意角,想想用什么办法才能推广到任意角?(运动)二、新课1.角的概念的推广⑴“旋转”形成角(课本第4页)一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到另一位置OB ,就形成角α.旋转开始时的射线OA 叫做角α的始边,旋转终止的射线OB 叫做角α的终边,射线的端点O 叫做角α的顶点.突出“旋转” 注意:“顶点”“始边”“终边”⑵.“正角”与“负角”“0角”我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,如图:以OA为始边的角α=210°,β=-150°,γ=-660°,特别地,当一条射线没有作任何旋转时,我们也认为这时形成了一个角,并把这个角叫做零角.记法:角α或α∠可以简记成α⑶意义用“旋转”定义角之后,角的范围大大地扩大了。
1︒角有正负之分如:α=210︒β=-150︒γ=-660︒2︒角可以任意大实例:体操动作:旋转2周(360︒×2=720︒)3周(360︒×3=1080︒)3︒还有零角一条射线,没有旋转角的概念推广以后,它包括任意大小的正角、负角和零角.要注意,正角和负角是表示具有相反意义的旋转量,它的正负规定纯系习惯,就好象与正数、负数的规定一样,零角无正负,就好象数零无正负一样.2.“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角角的顶点合于坐标原点,角的始边合于x轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)注意:角的方在坐标系中的条件例如:30︒、390︒、-330︒是第Ⅰ象限角,300︒、-60︒是第Ⅳ象限角,585︒、1180︒是第Ⅲ象限角,-2000︒是第Ⅱ象限角等练习:(课本第7页)1.锐角是第几象限的角?第一象限的角是否都是锐角?小于90°的角是锐角吗?0°~90°的角是锐角吗?(答:锐角是第一象限角;第一象限角不一定是锐角;小于90°的角可能是零角或负角,故它不一定是锐角;0°~90°的角可能是零角,故它也不一定是锐角.)总结有关角的集合表示.锐角:{θ|0°<θ<90°},0°~90°的角:{θ|0°≤θ≤90°};小于90°角:{θ|θ<90°}.2.已知角的顶点与坐标系原点重合,始边落在x 轴的正半轴上,作出下列各角,并指出它们是哪个象限的角?(1)420°,(2)-75°,(3)855°,(4)-510°.(答:(1)第一象限角,(2)第四象限角,(3)第二象限角,(4)第三象限角,作图表示略.)3.终边相同的角⑴观察:390︒,-330︒角,它们的终边都与30︒角的终边相同⑵探究:终边相同的角都可以表示成一个0︒到360︒的角与)(Z k k ∈个周角的和390︒=30︒+360︒ )1(=k-330︒=30︒-360︒ )1(-=k30︒=30︒+0×360︒ )0(=k1470︒=30︒+4×360︒ )4(=k-1770︒=30︒-5×360︒ )5(-=k⑶结论:所有与α终边相同的角连同α在内可以构成一个集合{}Z k k S ∈⋅+==,360| αββ即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和⑷注意以下4点:(1)k Z ∈(2) α是任意角;(3)360k ⋅︒与α之间是“+”号,如360k ⋅︒-30°,应看成360k ⋅︒+(-30°);(4)终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍.4.例题例1.(课本第5页)在0到360度范围内,找出与下列各角终边相同的角,并判断它是哪个象限的角 (1)120(2)640(3)95012'-︒︒-︒。
《角的概念的推广》说课稿尊敬的各位评委老师:大家好!今天我说课的题目是《角的概念的推广》。
接下来,我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“角的概念的推广”是高中数学必修 4 第一章“三角函数”中的重要内容。
在此之前,学生已经学习了角的基本概念,如锐角、直角和钝角等。
而本节课将角的概念进行推广,引入正角、负角和零角的概念,为后续学习三角函数的周期性、诱导公式等知识奠定了基础。
从教材的编排来看,本节课通过实际生活中的例子,如钟表指针的转动、车轮的旋转等,引导学生观察和思考角的变化,从而自然地引出角的概念的推广。
这样的编排既符合学生的认知规律,又能激发学生的学习兴趣。
二、学情分析授课对象是高一年级的学生,他们在初中阶段已经对角有了初步的认识,但对于角的概念的推广可能会感到抽象和难以理解。
然而,这个阶段的学生思维活跃,具有较强的好奇心和求知欲,已经具备了一定的观察、分析和抽象概括能力。
在教学过程中,要充分利用学生已有的知识和经验,通过实例引导、问题驱动等方式,帮助学生逐步理解和掌握角的概念的推广。
三、教学目标1、知识与技能目标(1)理解正角、负角和零角的概念,掌握角的终边相同的角的表示方法。
(2)能够正确地画出给定角的终边,会进行角的度量与换算。
2、过程与方法目标(1)通过观察实例、分析问题,培养学生的抽象思维能力和逻辑推理能力。
(2)经历角的概念推广的过程,体会从特殊到一般、从具体到抽象的数学思维方法。
3、情感态度与价值观目标(1)让学生感受数学与实际生活的紧密联系,激发学生学习数学的兴趣。
(2)培养学生勇于探索、敢于创新的精神,提高学生的数学素养。
四、教学重难点1、教学重点(1)正角、负角和零角的概念。
(2)终边相同的角的表示方法。
2、教学难点理解角的概念的推广,掌握终边相同的角的集合的表示。
五、教法与学法1、教法(1)启发式教学法:通过设置问题,引导学生思考和探索,激发学生的学习积极性和主动性。
4.1角的概念的推广一、教材详析1.正角、负角和零角平面内的一条射线绕着端点,从一个位置旋转到另一个位置所形成的图形叫做角.逆时针方向旋转形成的角叫做正角;顺时针旋转形成的角叫做负角;一条射线没有做任何旋转所形成的角叫做零角.2.象限角与终边在坐标轴上的角象限角是以“角的顶点为坐标原点,角的始边在x 轴的非负半轴上”为前提,按角的终边位置来判断的,终边在第几象限,则该角为第几象限角.3.终边相同的角的集合角的终边相同(即同一条射线)叫做终边相同角,终边相同角不一定相等,它们之间可以相差360°的整数倍,而相同的角,终边一定相同,与α角终边相同的角的一般表达式:k ·360°+α(k ∈Z),而与α终边相同角的集合为{β|β=α+ k ·360°,k ∈Z }.4.终边在坐标轴上的角的表示法终边在坐标轴上的角,在后面的学习中会经常用到,要熟练地掌握这些公式。
终边在x 轴的非负半轴上的角是:k ·360°(k ∈Z),终边在x 轴的非正半轴上的角是:k ·360°+180°(k ∈Z),终边在y 轴的非负半轴上的角是:k ·360°+90°(k ∈Z),终边在y 轴的非正半轴上的角是:k ·360°+270°(k ∈Z),终边在x 轴的非负半轴上的角是:k ·180°(k ∈Z),终边在y 轴的非负半轴上的角是:k ·180°+90°(k ∈Z).二、双基达标1、与ο460-终边相同的角可以表示成A. ()Z k k ∈⋅+οο360460B. ()Z k k ∈⋅+οο360100C. ()Z k k ∈⋅+οο360260D. ()Z k k ∈⋅+-οο360260 2、给出下列四个命题,其中正确的有①ο75-是第四象限的角;②ο225是第三象限的角;③ο475是第二象限的角;④ο315-是第一象限的角。
《角的概念的推广》说课稿各位专家、同仁:您们好!今天我说课的课题是高一下册第四章第1节《角的概念的推广》,现我就教材、教法、学法、教学程序、板书五个方面进行说明。
恳请在座的各位专家、同仁批评指正。
一、说教材1.本节课的主要内容是角的概念的推广,主要是运用运动观点来定义角,即用角的始边和终边及旋转方向来定义任意角。
从而来完善初中角的定义。
2.地位和作用:本节内容是高中数学三角函数这一大章的第一节,是在学了集合和函数之后的又一重要章节,是对初中锐角三角函数的一个延伸和推广,主要是推广到任意角三角函数。
也是对集合与函数的知识的又一渗透。
所以本节课《角的概念的推广》就起到了一个铺垫和承上启下的作用。
为今后学习任意角的三角函数提供了有力的依据。
3.教学目标:(1)知识目标:要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义,会表示终边相同的角的集合,会判断是哪个象限角还是终边在坐标轴上的角(2)能力目标:培养学生观察、分析、归纳、抽象、概括等逻辑思维能力,培养学生善于寻找数学规律的能力。
(3)德育目标:培养学生认真参与、积极交流的主体意识,培养学生学习数学的兴趣和勇于创新的精神。
4.重点与难点:重点:角的概念的推广,会用始边和终边来描述正角、负角、,象限角、终边在坐标轴上的角,会表示终边相同的角的集合。
难点:角的有关概念的辨析,特别是象限角和终边在坐标轴上的角的集合表示。
二、说教法教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。
根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:(1)引导发现法。
通过已学过角的定义来发现角的概念是可以推广的。
(2)讲、读、议、练。
通过讲解、归纳、概括来介绍角的有关要概念,通过讨论老师提出的问题来辨析角的有关概念,通过练习来达到巩固知识、突出重点、解决难点。