角的概念的推广
- 格式:ppt
- 大小:328.50 KB
- 文档页数:13
角的概念的推广概念角是数学中非常重要的概念,它是指由一个初始点出发,以一定的角度旋转后所形成的图形。
它可以帮助我们理解和描述事物之间的关系以及解决各种实际问题。
然而,角的概念可以进一步推广到更复杂的形式,从而应用于更广泛的领域。
首先,角可以分为几何角和平面角。
几何角是指由两条射线构成的图形,其中初始射线称为边,旋转的射线称为腿。
平面角则是指在一个平面上的角。
几何角和平面角可以相互转换,并且可以按照大小进行比较。
角的概念可以推广到三维空间中。
在三维空间中,角可以由两个非共线的向量构成,并且可以通过点乘和向量的模运算来计算角度。
三维空间中的角可以用来描述物体之间的关系,例如两个平面的夹角或者两个直线的夹角。
角的概念也可以推广到曲线上。
在曲线上,可以定义曲率角,它是指曲线在某一点上的切线与某一特定方向的夹角。
曲率角可以用来描述曲线的弯曲程度,例如在数学和物理学中常用来描述曲线运动的轨迹。
此外,角的概念还可以应用于三角函数中。
三角函数是以角作为自变量的函数,它们描述了角和直角三角形之间的关系。
三角函数包括正弦函数、余弦函数和正切函数等,它们在数学和物理学中有广泛的应用,例如在解决三角形的边长和角度问题中。
在物理学中,角的概念也有广泛的应用。
例如,角动量是物体旋转运动的重要物理量,在刚体力学和量子力学中都有非常关键的作用。
角速度也是用来描述物体旋转运动的重要概念,它是物体单位时间内旋转的角度。
在计算机图形学和计算机游戏中,角的概念也有重要的应用。
例如,计算机游戏中的角色会随着玩家操作而改变角度,而计算机图形学中的三维模型也是由许多角所构成的。
因此,理解和运用角的概念对于计算机图形学和游戏开发非常关键。
总之,角是数学中的重要概念,它可以被推广到几何角、平面角、三维空间角、曲线上的角、三角函数中的角,甚至在物理学和计算机科学中有广泛的应用。
理解和掌握角的概念,可以帮助我们更好地理解和解决各种实际问题。
角的概念的推广角是几何学中的重要概念,它在日常生活中的应用广泛且重要。
角的概念使我们能够更好地理解和描述物体之间的关系,从而更好地解决实际问题。
本文将探讨角的概念以及它在不同领域的推广应用。
一、角的定义和性质角是由两条射线共同起源的部分平面,常用三个字母表示。
根据角的大小,可以将角分为锐角、直角和钝角。
锐角指小于90度的角,直角指等于90度的角,钝角指大于90度但小于180度的角。
角的大小可以通过角度来测量,角度是角所对应的弧长在单位圆上的长度比值。
除了大小外,角还具有其他一些重要性质。
首先,两个角互为补角当且仅当它们的和为90度。
其次,两个角互为余角当且仅当它们的和为180度。
此外,角的顶点、起始射线和终止射线确定一个平面。
这些性质为我们研究角的性质和应用提供了基础。
二、角的推广应用1. 几何学中的角在几何学中,角是研究平面和空间图形间相对位置关系的重要工具。
角的推广应用在多边形的研究中尤为重要。
例如,我们可以通过计算多边形的内角和来判断它们的类型,进而帮助解决诸如平行四边形的判定、多边形的内切圆问题等。
2. 物理学中的角角的概念在物理学中也有着广泛的应用。
例如,角度被广泛用于描述力的作用方向和大小。
在机械学中,角度还用于描述转动运动和力矩的计算。
此外,角速度和角加速度也是物理学中经常使用的概念,通过这些概念可以描述物体的旋转状态以及旋转的快慢程度。
3. 工程学中的角在工程学中,角的概念被广泛应用于测量和布局。
例如,利用角度可以确定建筑物的方向,帮助制定建筑物的布局方案。
此外,在电气工程中,角度也用于描述交流电的相位差,从而确定电路中电压和电流的相对位置。
4. 地理学中的角在地理学中,角被广泛应用于测量和描述地球表面上的地理位置和方向。
例如,利用经纬度可以确定地理位置的坐标,并且通过计算角度可以确定两个地点之间的方位角和航向角。
这些信息对于导航和地图制作非常关键。
5. 计算机图形学中的角在计算机图形学中,角的概念被广泛用于描述和渲染三维图形。
角的概念的推广§2角的概念的推广一、教学目标1、知识与技能:(1)推广角的概念,理解并掌握正角、负角、零角的定义;(2)理解象限角、坐标轴上的角的概念;(3)理解任意角的概念,掌握所有与角终边相同的角(包括角)的表示方法;(4)能表示特殊位置(或给定区域内)的角的集合;(5)能进行简单的角的集合之间运算。
2、过程与方法:类比初中所学的角的概念,以前所学角的概念是从静止的观点阐述,现在是从运动的观点阐述,进行角的概念推广,引入正角、负角和零角的概念;由于角本身是一个平面图形,因此,在角的概念得到推广以后,将角放入平面直角坐标系,引出象限角、非象限角的概念,以及象限角的判定方法;通过几个特殊的角,画出终边所在的位置,归纳总结出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。
3、情感态度与价值观:通过本节的学习,使同学们对角的概念有了一个新的认识;树立运动变化观点,学会运用运动变化的观点认识事物;揭示知识背景,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受图形的对称美、运动美,培养学生对美的追求。
二、教学重、难点重点:理解正角、负角和零角和象限角的定义,掌握终边相同角的表示法及判断。
难点:把终边相同的角用集合和符号语言正确地表示出来。
三、学法与教法在初中,我们知道最大的角是周角,最小的角是零角;通过回忆和类比初中所学角的概念,把角的概念进行了推广;角是一个平面图形,把角放入平面直角坐标系中以后,了解象限角的概念;通过角终边的旋转掌握终边相同角的表示方法;我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示,另外还有相同终边角的集合的表示等。
教法:类比探究交流法。
四、教学过程(一)、创设情境,揭示课题同学们,我们在拧螺丝时,按逆时针方向旋转会越拧越松,按顺时针方向旋转会越拧越紧。
但不知同学们有没有注意到,在这两个过程中,扳手分别所组成的两个角之间又有什么关系呢?请几个同学畅谈一下,教师控制好时间,2-3分钟为宜。
角的概念的推广教材分析这节课主要是把学生学习的角从不大于周角的非负角扩充到任意角,使角有正角、负角和零角.首先通过生产、生活的实际例子阐明了推广角的必要性和实际意义,然后又以“动”的观点给出了正、负、零角的概念,最后引入了几个与之相关的概念:象限角、终边相同的角等.在这节课中,重点是理解任意角、象限角、终边相同的角等概念,难点是把终边相同的角用集合和符号语言正确地表示出来.理解任意角的概念,会在平面内建立适当的坐标系,通过数形结合来认识角的几何表示和终边相同的角的表示,是学好这节的关键.教学目标1. 通过实例,体会推广角的必要性和实际意义,理解正角、负角和零角的定义.2. 理解象限角的概念、意义及表示方法,掌握终边相同的角的表示方法.3. 通过对“由一点出发的两条射线形成的图形”到“射线绕着其端点旋转而形成角”的认识过程,使学生感受“动”与“静”的对立与统一.培养学生用运动变化的观点审视事物,用对立统一规律揭示生活中的空间形式和数量关系.任务分析这节课概念很多,应尽可能让学生通过生活中的例子(如钟表上指针的转动、体操运动员的转体、自行车轮子上的某点的运动等)了解引入任意角的必要性及实际意义,变抽象为具体.另外,可借助于多媒体进行动态演示,加深学生对知识的理解和掌握.教学设计一.问题情境[演示]1. 观览车的运动.2.体操运动员、跳台跳板运动员的前、后转体动作.3. 钟表秒针的转动.4. 自行车轮子的滚动[问题]1.如果观览车两边各站一人,当观览车转了两周时,他们观察到的观览车上的某个座位上的游客进行了怎样的旋转,旋转了多大的角?2. 在运动员“转体一周半动作”中,运动员是按什么方向旋转的,转了多大角?3. 钟表上的秒针(当时间过了1.5min时)是按什么方向转动的,转动了多大角?4. 当自行车的轮子转了两周时,自行车轮子上的某一点,转了多大角?显然,这些角超出了我们已有的认识范围.本节课将在已掌握的0°~360°角的范围的基础上,把角的概念加以推广,为进一步研究三角函数作好准备.二、建立模型1. 正角、负角、零角的概念在平面内,一条射线绕它的端点旋转有两个方向:顺时针方向和逆时针方向.习惯上规定,按逆时针旋转而成的角叫作正角;按顺时针方向旋转而成的角叫作负角;当射线没有旋转时,我们也把它看成一个角,叫作零角.2. 象限角当角的顶点与坐标原点重合、角的始边与x轴正半轴重合时,角的终边在第几象限,就把这个角叫作第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何象限.3. 终边相同的角在坐标系中作出390°,-330°角的终边,不难发现,它们都与30°角的终边相同,并且这两个角都可以表示成0°~360°角与k个(k∈Z)周角的和,即390°=30°+360°,(k=1);-330°=30°-360°,(k=-1).设S={β|β=30°+k·360°,k∈Z},则390°,-330°角都是S中的元素,30°角也是S中的元素(此时k =0).容易看出,所有与30°角终边相同的角,连同30°角在内,都是S中的元素;反过来,集合S中的任一元素均与30°角终边相同.一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z},即任一与α终边相同的角,都可以表求成角α与整数个周角的和.三、解释应用[例题]1. 在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.(1)-150°.(2)650°.(3)-950°5′.2. 分别写出与下列角终边相同的角的集合S,并把S中适合不等式-360°≤β<720°的元素写出来.(1)60°.(2)-21°.(3)363°14′.3. 写出终边在y轴上的角的集合.解:在0°~360°范围内,终边在y轴上的角有两个,即90°,270°.因此,与这两个角终边相同的角构成的集合为S1={β|β=90°+k·360°,k∈Z}={β|β=90°+2k·180°,k∈Z},而所有与270°角终边相同的角构成的集合为S2={β|β=270°+k·360°,k∈Z}={β|β=90°+(2k+1)·180°,k∈Z}.于是,终边在y轴上的角的集合为S=S1∪S2={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)·180°,k∈Z}={β|β=90°+n·180°,n∈Z}.注:会正确使用集合的表示方法和符号语言.[练习]1.写出与下列各角终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.(1)45°.(2)-30°.(3)420°.(4)-225°.2.辨析概念.(分别用集合表示出来)(1)第一象限角.(2)锐角.(3)小于90°的角.(4)0°~90°的角.3.一角为30°,其终边按逆时针方向旋转三周后的角度数为.4. 终边在x轴上的角的集合为;终边在第一、三象限的角的平分线上的角集合为.四、拓展延伸五、1. 若角α与β终边重合,则α与β的关系是;若角α与β的终边互为反向延长线,则角α与β的关系是.2.如果α在第二象限时,那么2α,是第几象限角?注:(1)不能忽略2α的终边可能在坐标轴上的情况.(2)研究在哪个象限的方法:讨论k的奇偶性.(如果是呢?)点评这篇案例运用多媒体展示了生活中常见的实例,极易激发学生学习的兴趣和热情.在对知识的探讨过程中,特别注意了知识的形成过程,重点突出.例题的设置比较典型,难易度适中.练习题注重基础,但也有一定的梯度,利于培养学生灵活处理问题的能力,并为学生学习以后章节做了较好的铺垫.。
下学期 4.1 角的概念的推广引言角的概念是几何学中的重要内容之一,在数学教学中扮演着至关重要的角色。
本文旨在推广下学期 4.1 角的概念,通过对角的基本概念、角的分类以及角的性质等方面深入探讨,帮助读者更好地理解和应用角的相关知识。
一、角的基本概念角是由两条射线共享一个公共点而形成的图形。
其中,公共点称为角的顶点,两条共享的射线称为角的边。
角可以用大写字母表示,常用符号包括∠ABC、∠PQR 等。
角的顶点位于角所在的平面上。
二、角的分类根据角的大小,角可以分为三类:锐角、直角和钝角。
1.锐角:角的大小小于 90 度(即 90°)的角被称为锐角;2.直角:角的大小为 90 度(即 90°)的角被称为直角;3.钝角:角的大小大于 90 度(即 90°),但小于 180 度(即 180°)的角被称为钝角。
三、角的性质角的性质涉及到角的度数、角的相等以及角的补角和余角等方面。
1.角的度数:角的大小通常用度数来表示,一个完整的圆周共有 360 度(即360°)。
因此,一个直角是 90 度(即 90°),一个钝角是大于 90 度(即 90°)但小于 180 度(即 180°)。
2.角的相等:如果两个角的度数相等,则这两个角是相等的。
表示相等的符号为“=”。
例如,∠ABC = ∠DEF 表示角 ABC 和角 DEF 是相等的。
3.角的补角和余角:两个角的度数之和等于 90 度(即 90°)的角被称为互补角,互补角之间的度数比例为1:1。
两个角的度数之和等于 180 度(即 180°)的角被称为余角,余角之间的度数比例为1:1。
四、角的应用角的概念在几何学和物理学中有广泛的应用。
以下是角的一些应用:1.幾何形狀的描述:角可以用来描述和区分不同的几何形状,例如直角三角形、等边三角形等;2.方向指示:角可以用来表示方位和方向,例如在地图上表示风向;3.视角计算:在物理学中,角可以用来计算物体的可见度和视角;4.旋转和转动:在运动学中,角可以用来描述物体的旋转和转动状态。
三角函数基础知识整理一. 角的概念:1.角的概念的推广 ⑴“旋转”形成角一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到另一位置OB ,就形成角α.旋转开始时的射线OA 叫做角α的始边,旋转终止的射线OB 叫做角α的终边,射线的端点O 叫做角α的顶点. ⑵.“正角”与“负角”“0角”我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,如图,以OA 为始边的角α=210°,β=-150°,γ=660°,特别地,当一条射线没有作任何旋转时,我们也认为这时形成了一个角,并把这个角叫做零角.记法:角α或α∠ 可以简记成α⑶意义:用“旋转”定义角之后,角的范围大大地扩大了,角的概念推广以后,它包括任意大小的正角、负角和零角.2.“象限角”角的顶点合于坐标原点,角的始边合于x 轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)3.终边相同的角结论:所有与终边相同的角连同在内可以构成一个集合:{}Z k k S ∈⋅+==,360|αββ即:任何一个与角终边相同的角,都可以表示成角与整数个周角的和.注意: (1)Z k ∈ (2)是任意角;(3)0360⋅k 与之间是“+”号,如:0360⋅k -30°,应看成0360⋅k +(-30°);(4)终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍.二. 弧度制:1. 定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad 读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制.如下图,依次是1rad , 2rad , 3rad ,αrad2.弧长公式:α⋅=r l由公式:⇒=r l α α⋅=r l 比公式180rn l π=简单 即弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积 3.扇形面积公式 lR S 21=其中l 是扇形弧长,R 是圆的半径三. 三角函数的定义:1. 设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y ) 则P 与原点的距离02222>+=+=y x yx r2. 比值r y叫做α的正弦 记作: r y =αsin 比值r x叫做α的余弦 记作: r x =αcos 比值xy叫做α的正切 记作: xy =αtan 比值yx叫做α的余切 记作: y x =αcot比值x r叫做α的正割 记作: x r =αsec 比值yr叫做α的余割 记作: y r =αcsc以上六种函数,统称为三角函数. 3. 突出探究的几个问题: ①角是“任意角”,当=2k+(k Z)时,与的同名三角函数值应该是相等的,即凡是终边相同的角的三角函数值相等 ②实际上,如果终边在坐标轴上,上述定义同样适用 ③三角函数是以“比值”为函数值的函数④0>r 而x,y 的正负是随象限的变化而不同,故三角函数的符号应由象限确定. ⑤定义域:r y=αsin 的定义域: R r x=αcos 的定义域:Rx y =αtan 的定义域:⎭⎬⎫⎩⎨⎧∈+≠Z k k ,2|ππαα注意:(1)以后我们在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x 轴的非负半轴重合. (2)比值只与角的大小有关.4. 三角函数在各象限内的符号规律:正弦在第一、二象限为正;余弦在第一、四象限为正; 正切在第一、三象限为正.四. 诱导公式:1.必须熟记的两组诱导公式:诱导公式一(其中Z ∈k ): 用弧度制可写成ααsin )360sin(=︒⋅+k απαsin )2sin(=+k ααcos )360cos(=︒⋅+k απαcos )2cos(=+k ααtan )360tan(=︒⋅+k απαtan )2tan(=+k诱导公式二:αα-sin sin(=-) ααcos cos(=-) ααtan tan(-=-)2. 诱导公式的变形规则:奇变偶不变,符号看象限.诱导公式三: 用弧度制可表示如下:ααsin 180sin(=-︒) ααπsin sin(=-) αα-cos 180cos(=-︒) ααπ-cos cos(=-) ααtan 180tan(-=-︒) ααπtan tan(-=-)诱导公式四: 用弧度制可表示如下:αα-sin 180sin(=+︒) ααπ-sin sin(=+) αα-cos 180cos(=+︒) ααπ-cos cos(=+) ααtan 180tan(=+︒) ααπtan tan(=+)诱导公式五: 用弧度制可表示如下:ααcos )90sin(=-︒ ααπcos )2sin(=-ααsin )90cos(=-︒ ααπsin )2cos(=-ααcot )90tan(=-︒ααπcot )2tan(=-诱导公式六: 用弧度制可表示如下:ααcos )90sin(-=+︒ ααπcos )2sin(-=+ααsin )90cos(-=+︒ ααπsin )2cos(-=+ααcot )90tan(=+︒ ααπcot )2tan(=+补充公式七: 用弧度制可表示如下:αα-sin 360sin(=-︒) ααπ-sin 2sin(=-) ααcos 360cos(=-︒) ααπcos 2cos(=-) ααtan 360tan(-=-︒) ααπtan 2tan(-=-)补充公式八: 用弧度制可表示如下:ααcos )270sin(-=-︒ ααπcos )23sin(-=- ααsin )270cos(-=-︒ ααπsin )23cos(-=-ααcot )270tan(=-︒ααπcot )23tan(=-补充公式九: 用弧度制可表示如下:ααcos )270sin(-=+︒ ααπcos )23sin(-=+ ααsin )270cos(=+︒ ααπsin )23cos(=+ααcot )270tan(-=+︒ ααπcot )23tan(-=+五.两角和与差的三角函数关系式:1.两角和与差的三角函数关系式βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαcos sin cos sin )sin(+=+ βαβαβαcos sin cos sin )sin(-=-βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-2 推导公式:)cos sin (cos sin 222222ααααba b ba ab a b a ++++=+因为1)()(222222=+++ba b ba a .所以sin 2θ+cos 2θ=1(1)若令22ba a +=sin θ,则22ba b +=cos θ则asin α+bcos α=22b a +(sin θsin α+cos θcos α)=22b a +cos (θ-α) (或=22b a +cos (α-θ))(2)若令22ba a +=cos ϕ,则22ba b +=sin ϕ.则a sin α+b cos α=22b a +(sin αcos ϕ+cos αsin ϕ)=22b a +sin (α+ϕ)六.二倍角公式:1.二倍角公式:αααcos sin 22sin =;)(2αS ααα22sin cos 2cos -=;)(2αC ααα2tan 1tan 22tan -=;)(2αT1cos 22cos 2-=αααα2sin 212cos -=)(2αC ' 注意:(1)二倍角公式的作用在于用单角的三角函数来表达二倍角的三角函数,它适用于二倍角与单角的三角函数之间的互化问题.(2)二倍角公式为仅限于α2是α的二倍的形式,尤其是“倍角”的意义是相对的(3)二倍角公式是从两角和的三角函数公式中,取两角相等时推导出,记忆时可联想相应角的公式.(4) 公式)(2αS ,)(2αC ,)(2αC ',)(2αT 成立的条件是: 公式)(2αT 成立的条件是Z k k k R ∈+≠+≠∈,4,2,ππαππαα.其他R ∈α(5) 熟悉“倍角”与“二次”的关系(升角—降次,降角—升次) (6) 特别注意公式的三角表达形式,且要善于变形:22cos 1sin ,22cos 1cos 22α-=αα+=α 这两个形式今后常用七.万能公式:1.万能公式2tan 12tan2tan ,2tan 12tan 1cos ,2tan 12tan2sin 2222ααααααααα-=+-=+=证明:12tan 12tan22cos 2sin 2cos 2sin 21sin sin 222α+α=α+ααα=α=α22tan 12tan 12cos 2sin 2sin 2cos 1cos cos 222222α+α-=α+αα-α=α=α 32tan 12tan22sin 2cos 2cos 2sin 2cos sin tan 222α-α=α-ααα=αα=α八. 三角函数的图象与性质:1.正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x ,y),过P 作x 轴的垂线,垂足为M ,则有MP r y ==αsin ,OM rx==αcos 注:有向线段MP 叫做角α的正弦线,有向线段OM 叫做角α的余弦线.2.用单位圆中的正弦线、余弦线作正弦函数y=sinx ,x ∈[0,2π]、余弦函数y=cosx ,x ∈[0,2π]的图象(几何法):把y=sinx ,x ∈[0,2π]和y=cosx ,x ∈[0,2π]的图象,沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 和y=cosx ,x ∈R 的图象,分别叫做正弦曲线和余弦曲线.3.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (,0) (23π,-1) (2,0)(1)y=cosx, x R 与函数y=sin(x+2π) x R 的图象相同(2)将y=sinx 的图象向左平移2π即得y=cosx 的图象 (3)也同样可用五点法作图:y=cosx x [0,2]的五个点关键是(0,1) (2π,0) (,-1) (23π,0) (2,1)4.定义域:正弦函数、余弦函数的定义域都是实数集R [或(-∞,+∞)], 分别记作: y =sin x ,x ∈R y =cos x ,x ∈R 5.值域正弦函数、余弦函数的值域都是[-1,1] 其中正弦函数y =sin x ,x ∈R①当且仅当x =2π+2k π,k ∈Z 时,取得最大值1 ②当且仅当x =-2π+2k π,k ∈Z 时,取得最小值-1而余弦函数y =cos x ,x ∈R①当且仅当x =2k π,k ∈Z 时,取得最大值1②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-16.周期性一般地,对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期对于一个周期函数f (x ),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期注意:1 周期函数x 定义域M ,则必有x+T M, 且若T>0则定义域无上界;T<0则定义域无下界;2“每一个值”只要有一个反例,则f (x )就不为周期函数(如f (x 0+t) f (x 0))3 T 往往是多值的(如y=sinx 2,4,…,-2,-4,…都是周期)周期T 中最小的正数叫做f (x )的最小正周期(有些周期函数没有最小正周期)正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π 7.奇偶性y =sinx 为奇函数,y =cosx 为偶函数正弦曲线关于原点O 对称,余弦曲线关于y 轴对称8.单调性正弦函数在每一个闭区间[-2π+2k π,2π+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k ∈Z )上都是减函数,其值从1减小到-1余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1九. 函数()()0,0sin >>+=ωψωA x A y 的图象与性质:1.振幅变换:y=Asinx ,x R(A>0且A 1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍得到的它的值域[-A, A] 最大值是A, 最小值是-A .若A<0 可先作y=-Asinx 的图象 ,再以x 轴为对称轴翻折A 称为振幅2.周期变换:函数y=sin ωx, x R (ω>0且ω1)的图象,可看作把正弦曲线上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的ω1倍(纵坐标不变).若 ω<0则可用诱导公式将符号“提出”再作图ω决定了函数的周期3 相位变换: 函数y =sin(x +ϕ),x ∈R (其中ϕ≠0)的图象,可以看作把正弦曲线上所有点向左(当ϕ>0时)或向右(当ϕ<0时=平行移动|ϕ|个单位长度而得到 (用平移法注意讲清方向:“加左”“减右”)十. 正切函数的图象与性质:1. 正切线:正切函数R x xy ∈=tan ,且()z k k x ∈+≠ππ2的图象,称“正切曲线”余切函数y =cotx ,x ∈(k π,k π+π),k ∈Z 的图象(余切曲线)正切函数的性质:1.定义域:⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππ, 2.值域:R 3.当z k k k x ∈⎪⎭⎫⎝⎛+∈2,πππ时0>y , 当z k k k x ∈⎪⎭⎫⎝⎛-∈πππ,2时0<y 4.周期性:π=T5.奇偶性:()x x tan tan -=-奇函数 6.单调性:在开区间z k k k ∈⎪⎭⎫⎝⎛++-ππππ2,2内,函数单调递增十一. 正、余弦定理:1 正弦定理:在任一个三角形中,各边和它所对角的正弦比相等, 即A a sin =B b sin =Ccsin =2R (R 为△ABC 外接圆半径) 2 正弦定理的应用 从理论上正弦定理可解决两类问题: (1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角(见图示)已知a, b 和A, 用正弦定理求B 时的各种情况:①若A 为锐角时:⎪⎪⎩⎪⎪⎨⎧≥<<=<)( b a ) ,( b a bsinA )( bsinA asin 锐角一解一钝一锐二解直角一解无解A b a②若A 为直角或钝角时:⎩⎨⎧>≤)( b a 锐角一解无解b a3. 余弦定理:A bc c b a cos 2222-+=⇔bc a c b A 2cos 222-+= B ca a c b cos 2222-+=⇔ca b a c B 2cos 222-+= C ab b a c cos 2222-+=⇔ab c b a C 2cos 222-+= 4.余弦定理可以解决的问题(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角5. 三角形的知识在测量、航海、几何、物理学等方面都有非常广泛的应用,如果我们抽去每个应用题中与生产生活实际所联系的外壳,就暴露出解三角形问题的本质,这就要提高分析问题和解决问题的能力及化实际问题为抽象的数学问题的能力,要求大家掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中的广泛应用,熟练掌握由实际问题向解斜三角形类型问题的转化,逐步提高数学知识的应用能力。
1. 主要内容:角的概念的推广,弧度制2. 知识点:①角的定义:初中:是从一点出发的两条射线形成的几何图形。
现在:角是一条射线绕其端点旋转而成的。
规定按逆时针方向旋转形成的角叫正角;按顺时针方向旋转形成的角叫负角;如果一条射线没有作任何旋转,称它形成的角叫做零角。
②象限角:在直角坐标系中讨论角时,使角的顶点与坐标原点重合、角的始边与x轴非负半轴重合,这时角的终边(端点除外)在第几象限,就说这个角是第几象限角,如果角的终边在坐标轴上,则认为此角不在任何象限。
③终边在x轴非负半轴上角的集合是{α|α=k·360°,k∈Z},终边在x轴上角的集合是{α|α=kπ,k∈Z},终边在第一象限的角的集合是:④若α是锐角,则角α终边在第一象限,角180°-α终边在第二象限,角180°+α终边在第三象限,角360°-α终边在第四象限。
⑤弧度制:把弧长等于半径的弧所对的圆心角叫做1弧度的角。
(其中α为圆心角的弧度数)【典型例题】例1. 写出与-1840°终边相同的角的集合M(2)把-1840°的角写成k·360°+α(0°≤α<360°)的形式。
(3)若角α∈M,且α∈[-360°,360°],求角α解:小结:在0°到360°角范围内找与任意一个角终边相同的角时,可根据实数的带余除法进行,因为任意一个角α均可写成k·360°+α1(0°≤α1<360°)形式,所以与α终边相同的角的集合也可写成{β|β=k·360°+α1,k∈Z},如本题M={β|β=k·360°+320°,k∈Z},由此确定[-360°,360°]范围内的角时,只需令k=-1和0即可。
角的概念的推广1. 引言角是几何学中的一个重要概念,广泛应用于各个领域。
了解和掌握角的相关知识,对于学习几何学、物理学以及工程学等学科都具有重要意义。
本文将通过推广角的概念,介绍角的定义、分类以及角的应用。
2. 角的定义角可以理解为两条射线的相交部分,通常用符号α、β、γ 等表示。
在几何学中,角的大小通常用弧度(radian)或度(degree)来表示。
通过测量角的顶点和射线之间的夹角,可以确定角的大小。
3. 角的分类根据角的大小,可以将角分为以下几类:3.1 零角(Zero Degree Angle)零角是指两条重合的射线所形成的角。
零角的度数为0度或0弧度。
3.2 直角(Right Angle)直角是指两条相互垂直的射线所形成的角。
直角的度数为90度或π/2弧度。
3.3 锐角(Acute Angle)锐角是指小于90度的角。
锐角的度数小于90度,弧度小于π/2。
3.4 钝角(Obtuse Angle)钝角是指大于90度、小于180度的角。
钝角的度数大于90度,弧度大于π/2。
3.5 正角(Oblique Angle)正角是指大于0度、小于180度的角,不包括直角。
正角的度数大于0度,小于180度,弧度大于0,小于π。
4. 角的应用角的概念在各个领域都有重要的应用,下面我们将介绍几个常见的应用:4.1 几何学在几何学中,角的概念经常被用于计算和描述图形的属性。
例如,在三角形中,角的大小和性质决定了三角形的类型(锐角三角形、直角三角形、钝角三角形)以及边长比例关系。
角的概念还被广泛应用于圆的测量和刻画。
4.2 物理学在物理学中,角的概念被广泛运用于描述物体的运动和力学性质。
例如,角速度和角加速度是衡量旋转运动的重要物理量,角度在电路中也是电流和电压之间的重要参数。
4.3 工程学角的概念在工程学中也具有重要意义。
例如,在建筑工程中,工程师需要通过计算角度来确定墙壁的垂直度和水平度。
在电子工程中,角的概念被应用于天线的定向和辐射角度的测量。
1.1.1角的概念的推广【概念形成】1、在平面内,一条射线绕它的端点旋转有两个相反的方向:和习惯上规定,按照旋转而成的角叫做正角;按照旋转而成的角叫做负角;当时,我们也把它看成一个角叫做零角。
2、角的概念经过这样的推广之后,就应该包括、、;为了简单起见,在不引起混淆的前提下,“角α”或“∠α”可简记为 .3、一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,所形成的角为;旋转开始时的射线OA叫做,OB叫,射线的端点O叫做。
4、象限角:角的顶点与重合,角的始边与重合。
那么,角的终边(除端点外)在,我们就说这个角是;如果角的终边在坐标轴上,就认为这个角。
5、终边相同的角:设α表示任意角,所有与α终边相同的角,包括α本身所构成的集合是S=【例题选讲】360间找出与下列各角终边相同的角,并判定它们是第几象限角例1、在︒0~︒(1);(2);(3).例3、写出与下列各角终边相同的角的集合S,并把S中适合不等式-3600≤β<7200的元素β写出来:(1)600;(2)-210;(3)41︒,363'例4.写出终边在下列位置的角的集合(1)x轴的正半轴上 (2)x轴的负半轴上(3)y轴正半轴上(4) y轴的负半轴上 (5)终边落在x轴上 (6)终边落在y轴上(7)终边落在坐标轴上例5 (1)分别写出终边落在第一、二、三、四象限的角的集合。
(2)写出终边落在第一或三象限的角的集合(变式:二或四象限呢)【巩固提高】1、表示辨析下列各角:①︒0~︒90间的角 ②第一象限角 ③锐角 ④小于︒90的角.2、分别写出:(1)终边落在第一、三象限角平分线上的角的集合(2)终边落在第四象限角平分线上的角的集合3、将角︒30的终边按逆时针方向旋转三周后的角度数为 ;如果改为顺时针旋转则角的度数为【课后作业】1、若α与β的终边角相同,则α-β的终边角一定在( )A 、x 的非负半轴上B 、x 的非正半轴上C 、y 的非正半轴上D 、y 的非负半轴上2、若α与β的终边关于直线x-y=0对称,且α=-300,则β= _______。
专题18三角函数(知识梳理)一、知识点(一)角的概念的推广1、角:一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
其中顶点,始边,终边称为角的三要素。
角可以是任意大小的。
(1)角按其旋转方向可分为:正角,零角,负角。
①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角;②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角。
(2)在直角坐标系中讨论角:①角的顶点在原点,始边在x 轴的非负半轴上,角的终边在第几象限,就说这个角是第几象限角。
②若角的终边在坐标轴上,就说这个角不属于任何象限,它叫轴线角。
(3)终边相同的角的集合:设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为},360|{Z n n S ∈⋅+α=ββ= 。
集合S 的每一个元素都与α的终边相同,当0=k 时,对应元素为α。
2、弧度制和弧度制与角度制的换算(1)角度制:把圆周360等分,其中1份所对的圆心角是1度,用度作单位来度量角的制度叫做角度制。
(2)1弧度的角:长度等于半径长的圆弧所对的圆心角叫做1弧度的角。
规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。
任一已知角α的弧度数的绝对值rl=α||,这种以“弧度”作为单位来度量角的制度叫做弧度制。
(3)角度制与弧度制的互化:π=2360,π=180;815730.571801'≈≈π= rad ;rad 01745.01801≈π= 。
3、特殊角的三角函数值30 45 60 90 120 135 150 18006π4π3π2π32π43π65ππsin 021222312322210cos 1232221021-22-23-1-tan3313⨯3-1-33-0210 225 240 270 300 315 330 36067π45π34π23π35π47π611ππ24、平面直角坐标系中特殊线表示的角的集合:其中:Z n ∈,Z k ∈;x 轴正半轴 360⋅n πk 2第一象限角平分线36045⋅+n π+πk 24x 轴负半轴360180⋅+n π+πk 2第二象限角平分线 360135⋅+n π+πk 243x 轴 180⋅n πk 第三象限角平分线360225⋅+n π+πk 245y 轴正半轴36090⋅+n π+πk 22第四象限角平分线 360315⋅+n π+πk 247y 轴负半轴 360270⋅+n π+πk 223第一、三象限角平分线18045⋅+n π+πk 4y 轴18090⋅+n π+πk 2第二、四象限角平分线 180135⋅+n π+πk 43坐标轴90⋅n 2πk 象限角平分线9045⋅+n 24π+πk 5、弧长及扇形面积公式:弧长公式:r l ⋅α=||扇形弧长,扇形面积公式:lr r S 21||212=⋅α=扇形,α是圆心角且为弧度制,r 是扇形半径。
三角函数基础知识复习(一)一、任意角:知识点1、角的概念的推广:1、“旋转”形成角(角包括顶点、始边、终边);2、角的分类:正角、负角、零角(逆时针、顺时针、没有旋转)。
例1、(1)钟表经过10分钟,分针转了______度;(2)若将钟表拨慢10分钟,则时针转了______度,分针转了______度。
知识点2、象限角和轴线角:1、象限角:角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角;2、轴线角:如果角的终边在坐标轴上,则这个角叫轴线角,它不属于任何象限。
如:00,900,1800,2700,3600,-900,-1800,-3600,等等。
例2、(1)3700位于第___象限;(2)-1200位于第___象限;(3)2900位于第___象限;(4)-2600位于第____象限;(5)4弧度的角位于第___象限。
例3、A={小于900的角},B={第一象限的角},则A∩B=()A、{锐角}B、{小于900的角}C、{第一象限的角}D、以上都不对例4、已知集合A={α|α=k·900-360,k∈Z},B={β|-1800<β<1800},则A∩B=()A、{-360,540} B、{-1260,1440} C、{-1260,-360,540,1440} D、{-1260,540}知识点3、终边相同的角:所有与α终边相同的角(包括α本身在内)构成一个集合, 这个集合可表示为{β|β=________________________},终边相同的角相差3600的整数倍。
例5、已知角α=450,则在区间[-7200,00]内且与α终边相同的角是____________________。
例6、已知α是第二象限的角,且2α与7α的终边相同,则α=________________________。
例7、用描述法写出下列角的集合:(1)第一象限的角___________________;(2)第二象限的角___________________;(3)第三象限的角___________________;(4)第四象限的角___________________;(5)x轴正半轴上的角________________;(6)x轴负半轴上的角_____________________;(7)x轴上的角_______________;(8) y轴正半轴上的角_________________;(6)y轴负半轴上的角___________________________;(7)y轴上的角________________;(8)坐标轴上的角______________________________。
三角函数1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。
射线的起始位置称为始边,终止位置称为终边。
2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角不属于任何象限。
3. 终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。
(答:25-;536π-) (2)α终边与θ终边共线(α的终边在θ终边所在直线上) ⇔()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称⇔2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称⇔2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称⇔2()k k απθπ=++∈Z .4、α与2α的终边关系:如若α是第二象限角,则2α是第_____象限角(答:一、三) 5.弧长公式:||l R α=,扇形面积公式:211||22S lR R α==,1弧度(1rad)57.3≈ .如已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。
(答:22cm )6、任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =,那么sin ,cos y x r rαα==,()tan ,0y x x α=≠,cot x yα=(0)y ≠,sec r x α=()0x ≠,()csc 0ry y α=≠。
三角函数值只与角的大小有关,而与终边上点P 的位置无关。