第六讲.贝利相位.ppt
- 格式:ppt
- 大小:613.00 KB
- 文档页数:16
凝聚态物理资料一方面,凝聚态物学是固体物理学的向外延拓,使研究对象除固体物质以外,还包括许多液态物质,诸如液氦、熔盐、液态金属,以及液晶、乳胶与聚合物等,甚至某些特殊的气态物质,如经玻色-爱因斯坦凝聚的玻色气体和量子简并的费米气体。
另一方面,它也引入了新的概念体系,既有利于处理传统固体物理遗留的许多疑难问题,也便于推广应用到一些比常规固体更加复杂的物质。
从历史来看,固体物理学创建于20世纪的30—40年代,而凝聚态物理学这一名称最早出现于70年代,到了80—90年代,它逐渐取代了固体物理学作为学科名称,或者将固体物理学理解为凝聚态物理学的同义词。
凝聚态物理学是当今物理学最大也是最重要的分支学科之一。
其研究层次,从宏观、介观到微观,进一步从微观层次统一认识各种凝聚态物理现象;物质维数从三维到低维和分数维;结构从周期到非周期和准周期,完整到不完整和近完整;外界环境从常规条件到极端条件和多种极端条件交叉作用,等等,形成了比固体物理学更深刻更普遍的理论体系。
经过半个世纪多的发展,凝聚态物理学已成为物理学中最重要、最丰富和最活跃的学科,在诸如半导体、磁学、超导体等许多学科领域中的重大成就已在当代高新科学技术领域中起关键性作用,为发展新材料、新器件和新工艺提供了科学基础。
前沿研究热点层出不穷,新兴交叉分支学科不断出现是凝聚态物理学的一个重要特点;与生产实践密切联系是它的另一重要特点,许多研究课题经常同时兼有基础研究和开发应用研究的性质,研究成果可望迅速转化为生产力。
凝聚态物理学的基本任务在于阐明微观结构与物性的关系,因而判断构成凝聚态物质的某些类型微观粒子的集体是否呈现量子特征(波粒二象性)是至关紧要的。
电子质量小,常温下明显地呈现量子特征;离子或原子则由于质量较重,只有低温下(约4K)的液氦或极低温下(μK至nK)的碱金属稀薄气体,原子的量子特征才突出地表现出来。
这也说明为何低温条件对凝聚态物理学的研究十分重要。
(课件)球王贝利课件1培训讲学xx年xx月xx日•球王贝利的早年生活•球王贝利的职业生涯•球王贝利的影响与贡献•球王贝利的退役生活与评价目•球王贝利给我们带来的启示录01球王贝利的早年生活球王贝利的家庭背景相对简单,他的父亲是一名职业足球运动员,母亲是一名家庭主妇。
他的父母都非常支持他成为一名职业足球运动员。
家庭背景简单虽然家庭背景并不显赫,但贝利从小就受到父亲的影响,对足球产生了浓厚的兴趣。
他的父亲不仅教给他足球技巧,还鼓励他参加各种足球比赛,锻炼他的竞技水平。
家庭影响深远贝利的家庭背景童年时期的运动热情贝利从小就展现出了超凡的运动天赋和对足球的热爱。
他经常与朋友们在街头踢球,也积极参加学校和社区组织的足球比赛。
初露锋芒在童年时期,贝利就表现出了与众不同的足球天赋。
他凭借出色的技术、速度和力量,逐渐在比赛中崭露头角。
尽管当时他还很年轻,但已经展现出了成为职业足球运动员的潜力。
贝利的童年时光足球成为事业随着年龄的增长,贝利越来越热爱足球,并开始把足球作为自己的事业目标。
他开始接受系统的足球训练,并加入了一些青少年足球队,不断磨练自己的技能。
走向世界舞台凭借出色的表现和不断积累的荣誉,贝利逐渐走向了世界舞台。
他在巴西国家队中表现出色,带领球队赢得了多次国际比赛的冠军。
这使得他成为了当时最受欢迎和最具传奇色彩的足球运动员之一。
贝利与足球的渊源02球王贝利的职业生涯1贝利在巴西的足球生涯23巴西是球王贝利职业生涯的起点,他在童年时期便开始接触足球,在家乡的贫民窟中度过了艰苦的训练岁月。
早年经历1958年,年仅17岁的贝利首次代表巴西国家队参加世界杯足球赛,并帮助球队夺得首个世界杯冠军。
巴西国家队生涯在巴西的俱乐部生涯中,贝利率领巴西斯和桑托斯等球队夺得了多个国内外冠军,展现出卓越的球技和战术理解能力。
俱乐部生涯03与欧洲球队的交锋贝利在与欧洲球队的比赛中也展现出强大的实力,帮助巴西多次战胜强敌。
贝利在国际足坛的表现01世界杯表现贝利在三届世界杯中表现出色,共打入12个进球,成为世界杯历史上进球最多的球员之一。
第8章 量子力学若干进展8.1 复习笔记二十世纪初物理学初创量子力学和相对论,它们是当代物理学研究的两大基石,尤其是量子力学,影响着物理学研究的方方面面,也已成为物理学研究工作者的日常工作用语,虽然量子力学自身一直发展着,但还存在着很多未解之谜。
相比于经典物理,量子力学有着令物理学家着迷的事情,却又能与物理实验结果完美符合。
对于量子力学的不可思议之处,物理学家费曼曾经说过:“我可以肯定,在这个世界上没有人真正懂得量子力学。
”的确如此,量子力学是一门美妙的学问,一定不要仅仅把它当做一个考试的科目。
在量子力学的世界,有着很多有趣的问题去思考、去发掘。
本章节选了量子力学中典型的三方面内容(朗道能级、AB 效应和Berry 相位)。
虽然这些都不是考试的重点内容,但值得对量子力学感兴趣的读者认真阅读,进一步体会量子力学不同于经典物理的神奇之处。
一、朗道能级 1.能级推导电子在均匀外磁场B (沿z 方向)中,取朗道规范后,得定态薛定谔方程ψψψE p p y c B e p m H z y x =⎥⎥⎦⎤⎢⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛-=22221鉴于力学量(H ⌒,p ⌒x ,p ⌒z )互相对易,得相应本征态为)(),,(/)(y e z y x z p x p i zxχψ +=其中,χ(y )满足谐振子能量本征值方程(平衡位置在y 0)2222202d ()()()()()()2d 22z p m eB y y y y E y m y mc mχχχ-+-=- 其中,0||xcp y e B=。
由此可得出朗道能级2,1()22z z p nc p E n m ω=++2.结果讨论(1)从经典观点出发:电子沿磁场方向做螺旋运动。
从量子观点出发:电子沿磁场方向做自由运动,在xy 平面内绕z 轴旋转。
(2)磁场对能量贡献1||()2z e n B B mcμ+=-,μz <0称为朗道抗磁性,与电荷正负无关,是自由带电粒子在磁场中的一种量子效应。
教学大纲(教学计划)掌握和理解量子力学的基本概念,新的数学方法(微积分、微分方程、线性代数、数理方程、复变等等)和能解决一些简单的量子力学问题。
第一章:定性了解经典困难的实例:微观粒子的波–粒二象性;第二章,第三章:要全面掌握:波函数与波动方程,一维定态问题,波函数的统计诠释,态叠加原理,薛定谔方程和定态;知0t =的波函数,给出t 时刻的波函数,概率通量矢,反射份额,透射份额,完全透射。
第四章:算符运算规则,厄密算符定义,厄密算符的本征方程,观测值的可能值,概率幅。
力学量完全集(包括H ˆ的,即为运动常数的完全集)。
共同本征态lm Y 的性质(lm m *lm Y )1(Y −=,宇称l)1(−)。
力学量平均值随时间变化,运动常数,维力定律。
第五章:变量可分离型的三维定态问题有心势下,dinger oSch &&equation 解在 0r → 的渐近行为。
氢原子波函数,能量本征值的推导和结论要全面掌握。
三维各向同性谐振子在直角坐标和球坐标中的解,能级的结果和性质。
Hellmann-Feynman Theorem 。
电磁场下的n Hamiltonia ,规范不变性,概率通量矢。
正常塞曼效应及引起的原因。
均匀磁场下的带电粒子的能量本征值磁通量量子化的现象。
第六章:量子力学的矩阵形式及表象理论算符本征方程,薛定谔方程和平均值的矩阵表示;求力学量在某表象中的矩阵表示;利用算符矩阵表示求本征值和本征函数。
表象变换。
dinger o Sch && Picture 和 Heisenberg Picture第七章:量子力学的算符代数方法-因子化方法哈密顿量的本征值和本征矢;因子化方法的一些例子;形状不变伴势和谱的对称性第八章:自旋自旋引入的实验证据。
电子自旋算符,本征值及表示。
泡利算符性质,泡利矩阵。
自旋存在下的波函数和算符的表示。
)j ,j ,l ˆ(r 2的共同本征态的矩阵形式。
石墨烯中的量子霍尔效应就是反常量子霍尔效应。
-概述说明以及解释1.引言1.1 概述石墨烯是一种由碳原子构成的二维材料,具有许多令人瞩目的特性。
其中最引人注目的特点之一就是其在低温下展现出的量子霍尔效应。
量子霍尔效应是一个与电磁场和电子自旋相关的现象,它在二维材料中的观测为我们提供了一种研究电子行为的新途径。
在石墨烯中观察到的量子霍尔效应与传统的量子霍尔效应略有不同,因此被称为反常量子霍尔效应。
这个称谓并不意味着石墨烯中的量子霍尔效应是异常或不合理的,而是指它与传统的量子霍尔效应在实验观测上的一些差异。
这些差异使得石墨烯中的量子霍尔效应成为了一个引人瞩目的研究课题。
石墨烯的量子霍尔效应是由其特殊的能带结构和哈密顿量导致的。
石墨烯中的载流子被称为狄拉克费米子,具有线性能量-动量关系。
这种特殊的关系使得石墨烯中的电子运动呈现出像相对论效应一样的行为。
同时,由于石墨烯是一个二维材料,而且具有完全填满的碳原子能级,使得其能带结构呈现出一种特殊的拓扑性质。
在石墨烯中的量子霍尔效应的观测中,电子的运动方式与传统的量子霍尔效应有所不同。
石墨烯中的狄拉克费米子的电荷和自旋运动被强烈地耦合在一起,导致了一个新的量子霍尔效应的出现。
这种新的效应表明石墨烯中的载流子在横向电场的作用下沿着边界产生了反常的导电行为。
石墨烯中的量子霍尔效应的反常行为给我们带来了对量子霍尔效应本质的新的认识。
通过深入研究石墨烯中的量子霍尔效应,我们可以进一步了解材料中电子的输运行为和拓扑性质,为未来的电子学器件的设计和应用提供新的思路和可能性。
本篇长文将系统地介绍石墨烯的特性和量子霍尔效应的基本原理,并进一步讨论石墨烯中的量子霍尔效应与反常量子霍尔效应之间的关系。
通过对相关理论和实验结果的分析,希望能够进一步揭示石墨烯中的量子霍尔效应的本质,为该领域的进一步研究和应用提供参考和启示。
1.2文章结构文章结构部分的内容可以如下编写:1.2 文章结构本文主要分为引言、正文和结论三个部分。