瓦锡兰对气体燃料的研究
- 格式:pdf
- 大小:3.77 MB
- 文档页数:26
高端航运服务业——航运环保方面电力推进船助力西部绿色航运近日,交通运输部副部长高宏峰在昆明滇池乘坐了由“内河小型船舶电力推进系统研制”技术建造的,具有自主知识产权、环保科技领先的新型电力推进游览船“滇游1号”,实地考察了滇池旅游航运情况,并在海埂码头看望了云南海事部门干部职工。
让“高原明珠”重放异彩在云南等西部地区,高原湖泊星罗棋布,特大型及大中型水库众多,水上交通资源丰富,被人们赞誉为“高原上的明珠”。
随着社会经济的发展,西部水路交通运输日益繁荣,各类航运船舶逐年增多,发展航运已成为当地经济增长的重要途径之一。
但是,经济发展也使得西部高原湖库区污染加剧、水质下降,水域环境保护问题显得十分突出。
大量以柴油机为动力装置的航运船舶对水域环境造成污染,因此,开发满足我国西部高原湖库区水域环保要求的新型绿色船舶,是发展西部航运经济、减少机动船舶对水域环境污染的环保需求。
于是,云南省航务管理局和上海海事大学共同承担了“内河小型船舶电力推进系统研制”工作。
该项目被交通运输部列为西部交通重大科技项目,其目标是:建造国内第一艘高原湖库区电力推进客渡船,实现环保型电力推进船舶在云南昆明滇池的示范应用。
在交通运输部的领导下,在云南省交通运输厅的支持下,参加项目研制的近20家单位经过艰苦努力,解决了内河船舶电力推进系统的结构优化、操纵控制、电站管理、动态稳定等一系列技术难点,建成了国内第一艘具有自主知识产权的“滇游1号”200客位电力推进游览船。
宁波北仑斥资千万打造低碳航运近日,宁波北仑13家航运企业和2家港口物流企业收到了该区财政局提供的2919万元专项技术改造扶持资金,这为该区水运业打造低碳航运注入了一剂“强心剂”。
面对市场竞争日益激烈以及油料价格、运输成本的不断上涨,节能减排增效已成为北仑水运企业的共识。
近几年来,该区水运企业着力打造低碳航运和绿色航运,通过大船替换小船,新船更换旧船,掀起了新一轮运力结构大调整。
The challenge of serving the energy market with competitive baseload power, while also supporting the dynamic power market with quick start peaking power, has now been solved. With Wärtsilä Flexicycleplants you can choose both high efficiency and agility, enabling competitive operation on both energy and capacity markets.Flexicycle plants range from 60 MW up to 600 MW, and are thus perfect for both municipal power generation and the larger utility market.Traditionally, the baseload generation capacity has consisted of large, centralised coal and/or nuclear power plants alongside combined cycle gas turbine (CCGT) plants, with long ramp-up and ramp-down times. The intermediate load is often handled by combined cycle gas turbines, while the reserve and peaking capacity is often based on smaller, less efficient generating units, which are expensive to operate. Theintroduction of the Flexicycle power plant solution makes the concept of using different dedicated power plant technologies for different load ranges and operation profiles obsolete.The Flexicycle power plants are based on gas or multi-fuel internal combustion engines (ICEs) and a steam turbine combined cycle. Each engine is equipped with a waste heatFLEXICYCLE ™ POWER PLANTSCOMBINING UNIQUE OPERATIONAL FLEXIBILITY WITH OPTIMUM COMBINED CYCLE EFFICIENCYCover:Quisqueya I & II, Dominican Republic, Flexicycle 50DF multi-fuel power plants, combined output 430 MWSeaboard, Dominican Republic, 110 MW Flexicycle power plant.QUISQUEYA I & II, DOMINICAN REPUBLICCustomer: ................................................................IPP Type: ....................Flexicycle 50DF multi-fuel power plant Operating mode: ..................................Flexible baseload Gensets: ...............................2 x 12 x Wärtsilä 18V50DF Total output: .....................................................430 MW Fuel: ..........................................Natural gas, HFO & LFO Scope: ....EPC (Engineering, Procurement & Construction)Delivered: .................................................2012 & 2013recovery steam generator. The power plant has a common steam turbine with condenser. The power plant cooling is typically arranged so that the ICEs are cooled with closed loop radiators, and the steam cycle with cooling towers, other cooling options are also available.MULTIMODE OPERATIONSThe Flexicycle solution combines theadvantages of a flexible simple cycle plant with the superb efficiency of a combined cycle plant in a unique way. The combined cycle mode, with an optimum efficiency in excess of 54%, is ideal for baseload operation. In the Flexicycle concept, the dynamic features of simple cycle combustion engines are maintained as the combined cycle can be shut on and off individually for each generating set.With quick synchronisation and start-up to full load as little as five minutes, without restrictions or impact on maintenance schedules, theFlexicycle plants can be dispatched immediately when imbalance between supply and demand begins to occur.The multi-unit design of ICE power plants offers optimized flexibility for dynamic load following with independent units, high efficiency at any plant load (by switching units on and off), as well as optimized plant sizing throughout the lifecycle.TWO-IN-ONEThe Flexicycle power plant solution’s two-in-one characteristic makes it a very competitive solution for taking care of a grid system’sintermediate load. Thanks to its high combined cycle efficiency, the Flexicycle power plant can also be the best choice for baseload generation, depending on the power system’s capacity mix. Features like fast synchronisation and ramp times, as well as the flexibility of multiple independent units, make the power plantsoutstandingly well suited to support grid systems requiring flexibility due to daily load fluctuations, or having a significant installed base of wind or other non-dispatchable power.Two operation modes: dynamic simple cycle and highly efficient combined cycle. Combined cycle operation extends plant electrical efficiency past 54%, whereas in simple cycle 50% can still be exceeded, providing even further operational flexibility.联合循环有两种运行模式: 1) 单循环效率可超过50% 2) 联合循环效率可超过54%。
LNG燃料动力船舶技术发展与应用前言二十一世纪是人类追求美好生活、实现美丽梦想的伟大时代,也是面临诸多问题、迎接挑战的变革时代。
虽然世界经济仍然在快速发展,科学技术也在飞速进步,但是人类面对的问题似乎也越来越多,如全球气候的不断恶化等环境问题、煤炭和石油等化石燃料的消耗殆尽等能源问题,这两个重大问题也是二十一世纪人类必须要解决的。
因此,世界各国、各行各业都在研究和找寻有效的解决方法。
对于世界船舶工业来说更是如此。
我们知道,物流业是仅次于制造业的石油消费第二大行业,而船舶长期以来一直是物流行业的消耗和排放的“大户”。
由于成品油价格不断上涨,国际污染公约日趋严格,使得整个船舶工业不得不寻求新的解决之道。
船用LNG技术似乎给我们带来了希望,它不仅清洁,而且储量充沛,甚至比石油的储量还要丰富,如果应用LNG作为动力,似乎同时缓解了上述的两个问题。
然而,对于现有的技术与政策而言,要实现全面的LNG化,我们还有相当长的路要走。
下面我们对LNG燃料动力船舶技术的现状、发展和应用进行初步的探讨。
一、发展LNG燃料动力船舶的优势LNG就是液化天然气(LiquefiedNaturalGa)的简称。
将气田生产的天然气净化处理,再经超低温(-162℃)加压液化就形成液化天然气。
”LNG主要成分是甲烷,它无色、无味、无毒且无腐蚀性,其体积约为同量气态天然气体积的1/600,重量仅为同体积水的45%左右,热值约为汽油的1.2倍。
与传统的燃油相比,LNG具有以下优势:1.储量丰富。
2022年已探明储量达188万亿立方米,可至少满足全世界需求150年以上。
近几年科学家从深海中发现了“可燃冰”这种能源,它是一种“固态”型天然气,1体积“可燃冰”可分解成164体积的天然气和0.8体积水。
据统计,地球上“可燃冰”所含能量相当于石油、天然气、煤总和的3倍。
我国2022年底探明天然气储量达到63357亿立方米,具有广泛运用天然气的资源基础。
瓦锡兰电喷机fcm-20工作原理瓦锡兰电喷机FCM-20工作原理电喷机是指使用电场加速离子的喷嘴,将离子加速并射出的一种设备。
瓦锡兰电喷机FCM-20是一种高端电喷机,工作原理详细说明如下。
1. 喷嘴结构瓦锡兰电喷机FCM-20的喷嘴是一个复杂的结构,由多层组成。
首先是出口,它是一个细长的椭圆形板状物体,通过出口喷射离子。
在出口的上游位置是推力环,它是一个环状结构,负责产生推力和离子荷电。
在推力环的上游是阳极,它是一个高电压的电极,负责接通电源和控制电场分布。
在阳极的上游是阴极,它是一个产生电子的结构,为离子注入电荷。
2. 构成电场FCM-20的电场是由阳极、推力环和喷嘴出口组成。
阳极和推力环具有不同电势,形成了一个高电压区域。
离子在这个区域中感受到了电场力,并逐渐加速。
在喷嘴的出口处,电场达到了最大值,将离子加速到了几百m/s的速度,然后喷射出去。
离子进入大气层后,与分子相互碰撞,从而实现了推进目标的作用。
3. 离子产生离子产生有两种方式:化学反应和电离。
在FCM-20中,电离方式是首选。
阴极通过加热或光电效应,产生高速电子。
这些电子与气体分子相互碰撞,使得分子产生电离。
离子在中性气体中将继续扩散,并在极电场的作用下被加速。
加速之后,离子进入冷却通道,并注入到出口区域的离子束中。
4. 离子束流控制离子束流是由喷嘴出口发射的离子流,它对电喷机的性能和推力十分关键。
在FCM-20中,离子束流的控制主要依靠电场控制。
通过调节阳极和推力环的电势差,可以控制离子束流的速度和形状。
还可以通过调节离子注入的速度和时间来控制离子束流的强度和分布。
总结瓦锡兰电喷机FCM-20是一种高精度的电喷机,它采用电离的方式产生离子,并通过复杂的结构和电场控制,在推进轨道上实现高效的推力。
了解FCM-20的工作原理,可以帮助我们更好地理解电喷机的技术和应用。
瓦锡兰电喷机FCM-20是一种适用于微小驱动航天器的推进系统。
它使用离子作为推进介质,提供了比传统燃料更高的比冲和比推力。
Sailing on LNGWhy LNG Powered Vessel? / LNGECA LNGLNGEnvironment Protection /CO2 & HC EEDIPMWhen running on LNG (CH4)Clean combustion process /Much less particles in the exhaust gas /Higher H content of CH4, lower CO2 produced. / CO 2 Higher air / fuel ratio, less NOx formation / NO xComparison between Gas mode and Diesel mode /NO x about 60% lower, meet the IMO tier-III requirement / NO x 60% IMO CO about 75% lower / CO 75% CO 2about 20% lower / CO 2 20% Practically no SO x emission / SO xLess solid particles in exhaust gas /Engine Emission Comparison /CHHH HSOx Emission limits / SOx4,54,53,53,53,51,51,01,00,50,167%78%71%86%97%0,1%4,5%3,5%1,5%1,0%0,5%200820092010201120122013201420152016201720182019202020212022SOx97%78%Spark Ignited Pure gas engineGas injected during intake stroke Gas & Air Compressed in compress stroke Electric spark ignition of gasmixtureHigh Pressure Dual Fuel engineAir in during intakestrokeOnly air compressed during compress strokePilot oil and Gas injectionSelect the right technology /*********** GAS INJECTION DUAL-FUEL (DF)IMO NOx Tier III**************** GAS INJECTION(SG)IMO NOx Tier III**GAS INJECTIONGAS-DIESEL (GD)IMO NOx Tier IIIOtto/Diesel cycles: effects on NO X / NO XNOxOtto ,Diesel ,W ärtsil äGas Engine History /GD = Gas Diesel engine /SG = Spark ignited Gas engine / DF = Dual Fuel engine /1987198919911993199519971999200120032005200720092011Wärtsilä Vasa 32WärtsiläVasa32 WärtsiläVasa 32DFW32 Wärtsilä 34DFW50SGWärtsiläVasa WärtsiläVasa 32GDWärtsilä46 Wärtsilä46GDWärtsilä25SGWärtsiläVasa 32 WärtsiläVasa 34SGWärtsilä28SGWärtsilä46 Wärtsilä50DFWärtsilä32 Wärtsilä34SGW20DF 2012Dual-Fuel application/References /Latest data: More than 720 engines, total operation hours exceeding 5 Million 2012-06 720 DFComm. ShipsLNGC108 (61) LNG 429 (251) DF 1,900,000 2xW462xW46-->2xW50DF 1 2 1x 15000m3 LNG 1x 8L50DF + CPP 3x6L20DFPower PlantDF 51 1862,600,000 1997 20112011--06Fortescue Metals Group Ltd., 6x20V34DFOffshorePSVs/ FPSOs 20 93 1994New orders!•Harvey Gulf: the first 4 LNG-PSV to beoperated in the Gulf of Mexico!Ferry Cruise1+1 2800 4 / 2013LNGC GLOBAL OVERVIEW /DFDE ships22%Steam ships66%DRL ships 12%Mechanical0%LNGC GLOBAL FLEETDFDE 42%DRL 23%Mechanical1%Steam 34%Ship deliveries 2007 -2016DFDE 83%DRL 6%Mechanical2%Steam 9%Ship deliveries 2011 -2016Steam: DRL: +LNGDFDE: DF +FPP 26 000 kW Propulsion motor26 000 kWFPPF/C & transformerMotorOther ConsumersDF Gensets GGGGMMRed. Gear/ GasMDO MSBHFODF Mechanical Direct Propulsion / DF155,000 to 210,000 m 3LNGCDual-Fuel-mechanical direct propulsion / DF •4x W ärtsil ä8L50DF •2x W ärtsil ä9L34DFmechanical efficiency 48% /Power transfer losses only 3%. 3%Bik Viking Conversion /Bit Viking _ 25,0002007Tarbit Shipping ( )Statoil ( )GL2 x W6L46 / 5850 kWWärtsiläShip Design SK2 x W6L50DF / 5700 kWWärtsiläLNGPac2 x 500 m3 LNG tanks80% 12WÄRTSILÄ 8L201200 kWWärtsiläDF-DE Solution / LNG-20 October 2010 19© WärtsiläLNGLNG LNGLNGPac /1.LNG2. 3.LNG 4. 5.DF 6.DF5163245.Dual-Fuel Main engine 1.Storage tanks 2.Tank room6.Dual-Fuel Aux engines3.Bunker station4.Gas valve unit enclosureDual-Fuel Engine Portfolio /5 MW10 MW15 MW34DF20V34DF9,000 kW12V34DF 5,400 kW9L34DF 4,050 kW6L34DF 2,700 kW (450 kW / cylinder, 750rpm) 16V34DF 7,200 kW18V50DF 17,550 kW 16V50DF15,600 kW12V50DF 11,700 kW9L50DF 8,775 kW8L50DF 7,800 kW6L50DF 5,700 kW (975 kW /cylinder, 750rpm)50DF 20DF9L20DF1,584 kW8L20DF 1,408 kW 6L20DF 1,056 kW (176kW/cylinder, 1200rpm)DF Performance: Mode Change / –(Gas mode):MDO / Burn gas, ignited by MDO ( ~ 1 / Transfer to Diesel Mode instantly ( ~1 sec.) at any load on external trip command, or at alarm, without loss of power or speed.(Diesel mode):/ Burning MDO or HF, with pilot oil in operation. 80% / Transfer to gas mode atany load below 80%, without loss of power or speed.(Back-up mode):30Gas ModeDiesel Mode80%100%Engine Load 110% for gensetMode Transfer / (GAS -> Diesel, 100% MCR,18V50DF)/ Engine Speed/ Output/ Char. Air Pres./ Gas Pressure/ Pilot Oil Pres./ Fuel Admission(MDO -> GAS, 80% , 18V50DF)Mode Transfer / (Diesel -> GAS, 80% MCR,18V50DF)/ Engine Speed/ Gas Pressure/ Output/ Char. Air Pres./ Pilot Oil Pres./ Fuel AdmissionWärtsilä34DF Engine Dynamic performance /(Gas Mode)• / Static Speed variation: <1.5%• / Trans Speed Variation: <10%• / Recovery time: <10• / Time between15twosteploadings: >• / Load shading: 100–75–45–0%(Diesel Mode)• / Static Speed variation: <1.0%• / Trans Speed Variation: <10%• / Recovery time: <5• / Time between8loadings: >steptwo-0%shading: 100• /Load•DF/ DF engines are not suitablefor direct FPP propulsion system.Sailing on LNG!。