物理实验要求及数据表格实验10 牛顿环
- 格式:doc
- 大小:111.00 KB
- 文档页数:2
大学物理牛顿环实验报告大学物理牛顿环实验报告引言在大学物理实验中,我们学习了许多经典的实验,其中之一就是牛顿环实验。
这个实验是由英国科学家艾萨克·牛顿于17世纪末提出的,通过光的干涉现象,帮助我们理解光的波动性质。
在这篇报告中,我将详细介绍牛顿环实验的原理、实验装置和实验结果。
实验原理牛顿环实验是基于光的干涉现象。
当平行光垂直照射到一个透明介质上时,光线会发生反射和折射。
在牛顿环实验中,我们使用一个凸透镜和一块平板玻璃来观察干涉现象。
当光线从凸透镜的平面表面射入玻璃平板时,一部分光线会被反射,一部分光线会被折射。
在玻璃平板和凸透镜之间形成了一层薄空气膜。
这层薄空气膜会引起光的干涉现象,形成一系列明暗相间的环状条纹,即牛顿环。
实验装置牛顿环实验的装置相对简单。
我们需要准备一个凸透镜、一块平板玻璃、一束平行光源以及一个显微镜。
首先,将凸透镜放置在光源上方,使得光线垂直照射到凸透镜的平面表面上。
然后,在凸透镜上方放置一块平板玻璃,使其与凸透镜保持平行。
最后,将显微镜放置在玻璃平板上方,以便观察牛顿环的形成。
实验过程在实验过程中,我们首先调整光源的位置,使得光线垂直入射到凸透镜的平面表面上。
然后,通过调整显微镜的焦距,使其能够清晰地观察到牛顿环。
当我们通过显微镜观察牛顿环时,会看到一系列明暗相间的环状条纹。
这些条纹的亮暗程度取决于光线在薄空气膜中的相位差。
相位差的大小与光线在薄空气膜中的路径差有关。
实验结果通过实验观察,我们可以得出以下结论:1. 牛顿环的中心是暗的,而环状条纹向外逐渐变亮。
这是因为在中心位置,光线的路径差为零,相位差也为零,因此不会发生干涉现象。
而随着距离中心越远,路径差增大,相位差也逐渐增大,导致干涉现象的发生。
2. 牛顿环的亮暗程度与光的波长有关。
当使用不同波长的光源进行实验时,我们会观察到不同的牛顿环。
这是因为不同波长的光在薄空气膜中的路径差不同,导致相位差的变化。
3. 牛顿环的半径与凸透镜的曲率半径有关。
大学物理牛顿环实验一、实验目的1、观察牛顿环的干涉现象2、研究干涉现象与光波的波动性质3、学习使用分光仪、读数显微镜的方法二、实验原理牛顿环是一种典型的干涉现象,它是由一束光分成两束相干光,在空间叠加而成。
当一束光照射在玻璃表面时,会产生反射和透射两种现象。
反射光会在玻璃表面形成亮斑,而透射光则会继续传播。
当透射光再次照射到玻璃表面时,会再次产生反射和透射,形成一系列的反射和透射光。
这些反射和透射光会相互干涉,形成明暗相间的条纹,这就是牛顿环。
三、实验步骤1、调整分光仪,使一束光通过玻璃棱镜,分成两束相干光,并在空间叠加。
2、调整分光仪的望远镜,观察到清晰的牛顿环。
3、使用读数显微镜测量牛顿环的直径,并记录下来。
4、改变分光仪的棱镜角度,观察干涉条纹的变化,并记录下来。
5、分析实验数据,得出结论。
四、实验结果与分析1、实验结果在实验中,我们观察到了清晰的牛顿环干涉现象,并且使用读数显微镜测量了牛顿环的直径。
随着分光仪棱镜角度的变化,干涉条纹也会发生变化。
2、结果分析通过实验数据,我们可以得出以下(1)牛顿环是由两束相干光在空间叠加而形成的干涉现象。
(2)干涉条纹的明暗交替是由于两束光的相位差引起的。
(3)通过测量牛顿环的直径,我们可以计算出光波的波长。
(4)随着分光仪棱镜角度的变化,干涉条纹会发生变化,这是因为光的波长和入射角发生了变化。
五、结论通过本次实验,我们深入了解了干涉现象与光波的波动性质,学习了使用分光仪、读数显微镜的方法。
这对于我们今后在光学领域的研究具有重要意义。
大学物理牛顿环实验一、实验目的1、观察牛顿环的干涉现象2、研究干涉现象与光波的波动性质3、学习使用分光仪、读数显微镜的方法二、实验原理牛顿环是一种典型的干涉现象,它是由一束光分成两束相干光,在空间叠加而成。
当一束光照射在玻璃表面时,会产生反射和透射两种现象。
反射光会在玻璃表面形成亮斑,而透射光则会继续传播。
当透射光再次照射到玻璃表面时,会再次产生反射和透射,形成一系列的反射和透射光。
牛顿环和劈尖干涉实验【实验目的】1、观察光的等厚干涉现象,熟悉光的等厚干涉的特点;2、用牛顿环干涉测定平凸透镜的曲率半径;3、用劈尖干涉法测定细丝直径或微小薄片厚度。
【实验仪器及装置】牛顿环仪、读数显微镜、钠光灯、劈尖、数显游标卡尺。
【实验原理】 一、牛顿环干涉牛顿环装置是由一块曲率半径较大的平凸玻璃透镜,以其凸面放在一块光学玻璃平板(平晶)上构成的,如图1所示。
平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单色光垂直照射到牛顿环上,则经空气层上、下表面反射的二光束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉。
从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环(如图2所示),称为牛顿环。
由于同一干涉环上各处的空气层厚度是相同的,因此它属于等厚干涉。
图1 实验装置简化图 图2 干涉光路及牛顿环图(a)(b )由图2 (a)可见,如设透镜的曲率半径为R ,与接触点O相距为r 处空气层的厚度为d ,其几何关系式为:()2222222r d Rd R r d R R ++-=+-=由于R>>d ,可以略去d 2得22r d R= (1)光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃板上反射会有半波损失,从而带来/2λ的附加程差,所以光程差δ为:22λδ+=d (2)产生暗环的条件是:(21)2k λδ=+ (3)其中k =0,1,2,3,...为干涉暗条纹的级数。
综合(1)、(2)和(3)式可得第k级暗环的半径为:2r kR λ= (4)由(4)式可知,如果单色光源的波长λ已知,测出第m 级的暗环半径m r ,即可得出平凸透镜的曲率半径R ;反之,如果R 已知,测出m r 后,就可计算出入射单色光波的波长λ。
但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。
牛顿环实验报告一. 实验目的1.观察等厚干涉现象,并利用等厚干涉测量凸透镜表面的曲率半径2.了解读书显微镜的使用方法二. 实验原理当曲率半径为R的平凸透镜放置在一平板玻璃上时,在透镜和平板玻璃之间形成一个厚度变化的空气间隙。
当光线垂直照射到其上,从空气间隙的上下表面反射的两束光线1.2将在空气间隙的上边面附近实现干涉叠加,两束光之间的光程差随空气间隙的厚度变化而变化,空气间隙厚度相同处的两束光具有相同的光程差A,所以干涉条纹是以接触点为圆心的一组明暗相间的同心圆环,称为牛顿环。
R为待测透镜凹面的曲率半径,r是第k级干涉环的半径,d是kk第k级干涉环所对应的空气间隙的厚度。
如果入射光的波长为,则第k 级干涉环所对应的光程差为A=2dk+/2(1)——k—其中,/2为光由光疏介质入射到光密介质时,反射光的半波损失。
因此,在接触点出(d0=0)的光程差为A=X/2(2)在k级干涉暗环处的光程差为A=2d+X/2=(k+1/2)k(3)——kk所对应的空气间隙的厚度为d=k X/2(4)―k=第k级干涉暗环的半径为r二価R⑸k'在实验中用给定波长的光进行照明时,只要测得第k级次干涉暗环的半径r,就可以测得曲率半径R。
k但在实际测量中,由于无法准确确定干涉环圆心所在位置,这样就不可能准确的测量干涉环的半径。
因此,直接利用式(5)作为测量公式将对测量结果带来很大的误差。
事实上,在测量过程中可以准确地获得各个级次干涉环的弦长。
假设这个弦到圆心的距离是s,可得以下几何关系L2=4(r2-s2)(6)—k kL2=4k X R-4s2(7)—k利用式(7)作为测量公式时,所遇到的问题是如何确定s或排除它对测量结果的影响。
有如下两种解决方法:(1)在式(7)中弦长的平方与干涉环的级次间是一个线性关系,在测量中,可以测量一组不同级次干涉环在某一直线上的弦长,利用最小二乘法或作图法求得该直线的斜率,再利用已知的波长得到凸透镜的曲率半径。
大学物理实验牛顿环实验报告含数据一、实验目的1、观察等厚干涉现象——牛顿环。
2、学习用干涉法测量透镜的曲率半径。
3、掌握读数显微镜的使用方法。
二、实验原理牛顿环是一种等厚干涉现象。
将一块曲率半径较大的平凸透镜放在一块平面玻璃上,在透镜的凸面与平面玻璃之间就会形成一个上表面是球面,下表面是平面的空气薄层,其厚度从中心接触点到边缘逐渐增加。
当一束单色平行光垂直照射到牛顿环装置上时,在空气薄层的上、下表面反射的两束光将产生干涉。
在反射光中观察会看到以接触点为中心的一系列明暗相间的同心圆环,即牛顿环。
设透镜的曲率半径为 R,形成的第 m 级暗环的半径为 rm,对应的空气薄层厚度为 em。
由于光程差等于半波长的奇数倍时产生暗纹,所以有:\\begin{align}2e_m +\frac{\lambda}{2} &=(2m + 1)\frac{\lambda}{2}\\2e_m &= m\lambda\\e_m &=\frac{m\lambda}{2}\end{align}\又因为在直角三角形中,有\(r_m^2 = R^2 (R e_m)^2 \approx 2Re_m\)(因为 em 远小于 R)所以可得\(r_m^2 = mR\lambda\),则\(R =\frac{r_m^2}{m\lambda}\)通过测量暗环的半径,就可以计算出透镜的曲率半径 R。
三、实验仪器读数显微镜、钠光灯、牛顿环装置。
四、实验步骤1、调节读数显微镜调节目镜,使十字叉丝清晰。
转动调焦手轮,使镜筒自下而上缓慢移动,直至从目镜中看到清晰的牛顿环图像。
移动牛顿环装置,使十字叉丝交点与牛顿环中心大致重合。
2、测量牛顿环直径转动测微鼓轮,使十字叉丝从牛顿环中心向左移动,依次对准第30 到第 15 暗环,记录读数。
继续转动鼓轮,使叉丝越过中心向右移动,依次对准第 15 到第 30 暗环,记录读数。
3、重复测量重复上述步骤,共测量 5 组数据。
大学物理实验牛顿环实验报告(含数据)牛顿环实验报告引言:牛顿环实验是物理实验中经典的干涉实验之一,通过测量光的干涉色条纹来研究光的波动性质。
本实验旨在探究牛顿环的特点及其与透明介质的厚度之间的关系。
通过对实验数据的收集和分析,我们得到了关于牛顿环的一些有趣的结论。
实验装置与方法:1. 实验装置:我们使用了一台平行板构成的牛顿环实验装置。
装置包括一个透明玻璃平板、一束白光源、一台显微镜及光屏等。
2. 实验方法:(1) 首先,我们在实验室中搭建牛顿环实验装置。
(2) 将光源打开,使其照射在透明玻璃平板上。
(3) 调节显微镜位置,使其焦距与透明玻璃平板接近,并将显微镜对准光源的光斑。
(4) 通过调节透明玻璃平板的厚度,观察和记录不同厚度下的牛顿环干涉色条纹。
(5) 使用光屏记录实验数据,包括透明玻璃平板的厚度和对应的干涉色条纹。
实验数据与结果分析:实验中,我们记录了不同透明玻璃平板厚度下的牛顿环干涉色条纹的数据。
根据我们的观察和记录,我们进行了以下主要分析:1. 牛顿环的特点:我们观察到牛顿环是由一系列同心圆环组成的,且颜色从中心向外渐变。
颜色的变化是由于光的干涉效应引起的。
2. 牛顿环与透明介质厚度:通过分析我们记录的实验数据,我们得出了结论:透明介质的厚度与牛顿环的直径成正比关系,即厚度越大,牛顿环的直径越大。
3. 干涉色的原因:牛顿环的干涉色是由于光的干涉效应引起的。
当光线通过透明玻璃平板和空气之间的边界时,光线会发生折射和反射。
不同波长的光在折射和反射过程中会产生不同的相位差,从而导致干涉色的形成。
结论:通过本实验,我们验证了牛顿环实验的重要性,并获得了有关牛顿环的实验数据,并分析了数据的结果。
我们得出的结论是:牛顿环的直径与透明介质的厚度成正比关系。
这一实验结果对于进一步理解光的干涉效应和光的波动性质具有重要意义。
致谢:在此,我们要特别感谢实验中的指导老师及实验室助理们的帮助和支持。
没有他们的指导和帮助,我们无法顺利完成这一实验报告。
竭诚为您提供优质文档/双击可除大学物理实验报告牛顿环篇一:大学物理仿真实验报告牛顿环大学物理仿真实验报告实验名称:牛顿环法测曲率半径实验日期:专业班级:姓名:学号:教师签字:________________一、实验目的1.学会用牛顿环测定透镜曲率半径。
2.正确使用读书显微镜,学习用逐差法处理数据。
二、实验仪器牛顿环仪,读数显微镜,钠光灯,入射光调节架。
三、实验原理如图所示,在平板玻璃面DcF上放一个曲率半径很大的平凸透镜Acb,c点为接触点,这样在Acb和DcF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。
分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差等于膜厚度e的两倍,即此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差?,与之对应的光程差为?/2,所以相干的两条光线还具有?/2的附加光程差,总的光程差为当?满足条件(1)(2)时,发生相长干涉,出现第K级亮纹,而当(k=0,1,2…)(3)时,发生相消干涉,出现第k级暗纹。
因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。
可以想见,干涉条纹是一组以c点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为,对应的膜厚度为,则(4)在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R>>ek,ek相对于22Rek是一个小量,可以忽略,所以上式可以简化为(5)如果rk是第k级暗条纹的半径,由式(1)和(3)可得(6)代入式(5)得透镜曲率半径的计算公式(7)对给定的装置,R为常数,暗纹半径(8)和级数k的平方根成正比,即随着k的增大,条纹越来越细。
大学物理实验报告牛顿环大学物理实验报告:牛顿环引言:牛顿环是一种经典的物理实验,通过观察光在透明介质中的干涉现象,可以研究光的波动性质和介质的光学特性。
本实验旨在通过测量牛顿环的直径,探究光的干涉现象,并分析其原理和应用。
实验装置:本实验所需的装置包括:一台光源、一块平面玻璃板、一块凸透镜和一块平凸透镜。
将光源放置在透镜的一侧,平面玻璃板放置在光源与透镜之间,然后在平面玻璃板上放置一块平凸透镜,使其与平面玻璃板形成一定的夹角。
实验过程:1. 调整光源位置:将光源放置在透镜的一侧,确保光线能够通过透镜并照射到平面玻璃板上。
2. 观察牛顿环:通过调整平凸透镜的位置,观察在平面玻璃板上形成的牛顿环。
注意观察牛顿环的直径和颜色变化。
3. 测量牛顿环直径:使用显微镜或其他测量仪器,测量牛顿环的直径。
重复多次测量,取平均值。
实验结果:通过实验观察和测量,我们得到了一系列牛顿环的直径数据。
根据这些数据,我们可以绘制出牛顿环直径与透镜与平面玻璃板的夹角之间的关系曲线。
实验结果显示,牛顿环的直径随着夹角的增大而减小,呈现出一种特殊的变化规律。
实验分析:牛顿环的形成是由于光线在透明介质中的反射和折射现象引起的。
当平面玻璃板与凸透镜接触时,光线在两者之间发生反射和折射,形成了干涉现象。
由于光波的波长非常短,当光线从透镜表面反射或折射时,会产生相位差。
这种相位差导致了干涉现象的发生,形成了牛顿环。
牛顿环的直径与透镜与平面玻璃板的夹角之间存在一定的关系。
根据理论分析,当夹角增大时,牛顿环的直径会减小。
这是因为夹角的增大会导致反射和折射的相位差增加,从而引起干涉现象的变化。
通过实验测量,我们验证了这一理论,并得到了实验结果与理论相符的结论。
实验应用:牛顿环实验在光学领域有着广泛的应用。
首先,牛顿环可以用来测量透明介质的折射率。
通过测量牛顿环的直径和透镜与平面玻璃板的夹角,可以计算出介质的折射率。
其次,牛顿环还可以用来研究光的干涉现象和波动性质。
实验报告用CCD成像系统观测牛顿环【实验目的】1.在进一步熟悉光路调整的基础上,用透射镜观察等厚干涉现象----牛顿环;2.学习利用干涉现象测量平凸透镜的曲率半径。
【实验原理】.::实验预习::.图1 透射式牛顿环原理图来源上海交通大学物理实验中心牛顿环仪是由一块曲率半径较大的平凸透镜放在光学平玻璃上构成,平玻璃表面与凸透镜球面之间形成一楔形的空气间隙.当用平行光照射牛顿环仪时,在球面与平玻璃接触点周围就形成了同心圆干涉环———牛顿环.我们可以用透射光来观察这些干涉环,由于空气隙的边界表面是弯曲的,干涉环之间的间距是不等的.在图2 中,一束光L 从左面照在距离为d 的空气楔处.部分光T1 在气楔的左面边界反射回去.部分光T2通过气楔.在气楔的右面边界有部分光T3 反射回来,由于此处是从折射率大的平玻璃面反射,所以包含一个相位变化.部分光T4 先从气楔右边界反射回来,然后又从气楔的左面边界反射回来,每一次反射均有一个相位变化(即半波损失).图2 表示两束光T2 和T4 形成透射干涉的原理.T2 和T4 的光程差Δ为(1)形成亮纹的条件:(n = 1,2,3,……表示干涉条纹的级数),即(2)当二块玻璃相接触时d = 0,中心形成亮纹.对于由平凸透镜和平玻璃所形成的气楔,气楔的厚度取决于离平凸透镜与平玻璃接触点的距离.换言之,取决于凸透镜的弯曲半径.图3 说明了这样的关系.(3)对于小的厚度d,干涉环即牛顿环的半径可以用下式来计算n = 1,2,3 (4)当平凸透镜与平玻璃的接触点受到轻压时,我们必须相应修正公式(3),近似公式为(5)对于亮环r n 的关系如下r n2=(n−1)∙R∙λ+2Rd0 n = 2,3,4 (6)图2 光通过空气楔干涉的图介绍来源上海交通大学物理实验中心【实验数据记录、实验结果计算】1.定标狭缝板的测量L= 3.918 mmL/x = (8.884± 0.020)×10−3mm= 8.884 ×(1± 0.22%)×10−3mm2.牛顿环的半径测量nLinear Regression for Data1_B:Y = A + B * XParameter Value Error------------------------------------------------------------A 0.53389 0.01234B 0.50532 0.00138------------------------------------------------------------ R SD N P------------------------------------------------------------ 0.99997 0.01249 10 <0.0001------------------------------------------------------------ 由Origin 测得:斜率B=0.50532 mm2截距A=0.53389 mm2相关系数R=0.99997分析:整体可以看出实验得到的直线拟合度很高;代入公式:Rλ=B (λ=589.3nm)2Rd0=A可得到透镜的曲率半径R=857.5mmd0=3.113×10−4mm【对实验结果中的现象或问题进行分析、讨论】1.首先做一点声明,实验实验本来安排的步骤是先测量牛顿环的半径在测量定标狭缝,但是如果观察以下表格的数据情况就可以知道:半径表格需要用到定标的结果,所以在此将定标表格放在牛顿环半径表格之前进行分析。
一、实验目的1. 通过实验观察和分析牛顿环的等厚干涉现象;2. 利用牛顿环现象测量平凸透镜的曲率半径;3. 学会使用读数显微镜进行精确测量。
二、实验原理牛顿环是由一块平面玻璃与一个曲率半径较大的平凸透镜接触,在其间形成一层空气膜,当单色光垂直照射时,空气膜上、下表面反射的光束发生干涉,形成明暗相间的环状干涉条纹。
根据干涉条纹的分布,可以推导出透镜的曲率半径。
三、实验仪器1. 牛顿环装置:包括平凸透镜、平面玻璃板、金属框架;2. 读数显微镜:用于测量干涉条纹的半径;3. 准单色光源:如钠光灯;4. 移测显微镜:用于调整光路,使入射光垂直于透镜表面。
四、实验步骤1. 将平凸透镜和玻璃板放入金属框架中,确保透镜与玻璃板接触紧密;2. 将准单色光源照射到牛顿环装置上,通过移测显微镜调整光路,使入射光垂直于透镜表面;3. 使用读数显微镜观察干涉条纹,记录第k级暗环的半径rk;4. 重复步骤3,记录多组数据。
五、数据处理1. 根据实验数据,绘制rk与k的图像,分析图像规律;2. 利用以下公式计算透镜的曲率半径R:R = k λ (Dm - Dn) / (2 (rk^2 - (rk - 1)^2))其中,λ为入射光波长,Dm和Dn分别为第m级和第n级暗环的半径。
六、结果与分析1. 通过实验,我们得到了一系列rk与k的实验数据,绘制出图像,可以看出rk 与k之间存在线性关系;2. 根据图像,选取两点(k1, rk1)和(k2, rk2),代入上述公式计算透镜的曲率半径R;3. 对比多次实验结果,分析误差来源,如测量误差、光路调整误差等。
七、结论1. 牛顿环实验验证了等厚干涉现象,通过测量干涉条纹的半径,可以计算出平凸透镜的曲率半径;2. 实验结果表明,牛顿环实验具有较高的测量精度,可以用于实际测量工作中。
八、讨论1. 在实验过程中,应注意光路调整,确保入射光垂直于透镜表面,以减少误差;2. 实验过程中,应选取多个干涉条纹进行测量,以提高实验结果的可靠性;3. 在数据处理过程中,应注意误差分析,以提高实验结果的准确性。
大物实验牛顿环实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、掌握用牛顿环测量平凸透镜曲率半径的方法。
3、加深对光的波动性的认识。
二、实验原理将一块曲率半径较大的平凸透镜放在一块平面玻璃上,在透镜的凸面和玻璃的平面之间就会形成一个空气薄层。
当一束单色光垂直照射到这个装置上时,从空气薄层的上下表面反射的两束光将会产生干涉现象。
由于空气薄层的厚度在接触点处为零,而在离接触点较远的地方逐渐增加,所以在反射光中会形成一组以接触点为中心的明暗相间的同心圆环,即牛顿环。
设透镜的曲率半径为 R,入射光波长为λ,在牛顿环中第 m 个暗环处对应的空气薄层厚度为 dm,则有:\\begin{align}dm&=\frac{m\lambda}{2}\\\end{align}\又因为在平凸透镜与平面玻璃接触点处,空气薄层的厚度为零,而在离接触点较远的地方,空气薄层的厚度可以近似看作是一个球面的一部分。
设第 m 个暗环处对应的半径为 rm,则有:\\begin{align}r_m^2&=2R\times dm\\r_m^2&=mR\lambda\\\end{align}\因此,通过测量第 m 个暗环的半径 rm 和已知的入射光波长λ,就可以计算出透镜的曲率半径 R。
三、实验仪器1、牛顿环实验装置:包括钠光灯、平凸透镜、平面玻璃、读数显微镜等。
2、钠光灯:提供单色光源。
3、读数显微镜:用于测量牛顿环的直径。
四、实验步骤1、调节牛顿环实验装置将钠光灯放置在合适的位置,使光线能够垂直照射到牛顿环装置上。
调节平凸透镜和平面玻璃,使其接触良好,并且中心尽量重合。
2、观察牛顿环用眼睛直接观察牛顿环,调整装置的角度和位置,使牛顿环清晰可见。
3、测量牛顿环的直径将读数显微镜的目镜调焦,使十字叉丝清晰。
将显微镜对准牛顿环的中心,然后旋转鼓轮,从中心向外移动,依次测量第 10 到 20 个暗环的直径。
4、数据记录记录每个暗环的左右两侧的位置读数,分别计算出每个暗环的直径。
等厚干与实验—牛顿环和劈尖干与要观看到光的干与图象,如何取得相干光就成了重要的问题,利用一般光源取得相干光的方式是把由光源上同一点发的光设法分成两部份,然后再使这两部份叠如起来。
由于这两部份光的相应部份事实上都来自同一发光原子的同一次发光,因此它们将知足相干条件而成为相干光。
取得相干光方式有两种。
一种叫分波阵面法,另一种叫分振幅法。
1.实验目的(1)通过对等厚干与图象观看和测量,加深对光的波动性的熟悉。
(2)把握读数显微镜的大体调剂和测量操作。
(3)把握用牛顿环法测量透镜的曲率半径和用劈尖干与法测量玻璃丝微小直径的实验方式 (4)学习用图解法和逐差法处置数据。
2.实验仪器读数显微镜,牛顿环,钠光灯3.实验原理咱们所讨论的等厚干与就属于分振幅干与现象。
分振幅干与确实是利用透明薄膜上下表面对入射光的反射、折射,将入射能量(也可说振幅)分成假设干部份,然后相遇而产生干与。
分振幅干与分两类称等厚干与,一类称等倾干与。
用一束单色平行光照射透明薄膜,薄膜上表面反射光与下表面反射光来自于同一入射光,知足相干条件。
当入射光入射角不变,薄膜厚度不同发生转变,那么不同厚度处可知足不同的干与明暗条件,显现干与明暗条纹,相同厚度处必然知足一样的干与条件,因此同一Rer(a ) (b)图9-1 牛顿环装置和干涉图样干与条纹下对应一样的薄膜厚度。
这种干与称为等厚干与,相应干与条纹称为等厚干与条纹。
等厚干与现象在光学加工中有着普遍应用,牛顿环和劈尖干与就属于等厚干与。
下面别离讨论其原理及应用:(1)用牛顿环法测定透镜球面的曲率半径牛顿环装置是由一块曲率半径较大的平凸玻璃透镜和一块光学平玻璃片(又称“平晶”)相接触而组成的。
彼此接触的透镜凸面与平玻璃片平面之间的空气间隙,组成一个空气薄膜间隙,空气膜的厚度从中心接触点到边缘慢慢增加。
如图9-1(a )所示。
当单色光垂直地照射于牛顿环装置时(如图9-1),若是从反射光的方向观看,就能够够看到透镜与平板玻璃接触处有一个暗点,周围围绕着一簇同心的明暗相间的内疏外密圆环,这些圆环就叫做牛顿环,如图9-1(b )所示.在平凸面镜和平板玻璃之间有一层很薄的空气层,通过透镜的单色光一部份在透镜和空气层的交壤面上反射,一部份通过空气层在平板玻璃上表面上反射,这两部份反射光符合相干条件,它们在平面透镜的凸面上相遇时就会产生干与现象。
牛顿环实验报告数据处理牛顿环实验报告数据处理引言:牛顿环实验是一种经典的光学实验,通过观察干涉环的形态和大小,可以得到有关光的波长和透明介质的厚度等信息。
本文将对牛顿环实验的数据进行处理和分析,以探索实验结果的物理意义。
一、实验装置与原理牛顿环实验通常采用的装置是一块平凸透镜和一块平凹透镜,它们之间夹着一片透明的圆形玻璃片。
当透镜与玻璃片之间存在一薄膜时,光线经过反射和折射后在玻璃片上形成一系列干涉环。
这些干涉环的直径与薄膜的厚度有关,通过测量干涉环的直径可以得到薄膜的厚度。
二、实验数据的采集在实验中,我们使用了一台高分辨率的显微镜来观察牛顿环,并使用显微镜的刻度尺来测量干涉环的直径。
我们选取了不同位置的干涉环进行测量,并记录下了相应的直径数据。
三、数据处理和分析1. 干涉环直径与薄膜厚度的关系根据光学理论,牛顿环的半径与薄膜的厚度呈线性关系。
我们将实验测得的干涉环直径与相应的薄膜厚度进行绘图,并通过线性拟合得到拟合直线。
通过拟合直线的斜率,我们可以得到薄膜的平均厚度。
2. 干涉环直径的变化规律通过观察干涉环的直径随距离变化的规律,我们可以推断出薄膜的性质。
当干涉环的直径随距离的增加呈现周期性变化时,说明薄膜是均匀的。
而当干涉环的直径变化不规律时,说明薄膜存在不均匀性或者有多层结构。
3. 干涉环的颜色牛顿环的颜色与光的波长和薄膜的厚度有关。
通过观察干涉环的颜色变化,我们可以推断出光的波长或者薄膜的厚度是否发生了变化。
当干涉环的颜色由红到紫依次变化时,说明光的波长较大;而当干涉环的颜色由紫到红依次变化时,说明光的波长较小。
四、实验结果与讨论通过对实验数据的处理和分析,我们得到了牛顿环的直径与薄膜厚度的关系,并通过拟合直线得到了薄膜的平均厚度。
同时,观察干涉环的直径变化规律和颜色变化,我们可以推断出薄膜的性质和光的波长。
然而,需要注意的是,实验中可能存在一些误差。
首先,显微镜的刻度尺可能存在一定的读数误差。
实验10 牛顿环
专业___________________ 学号___________________ 姓名___________________ 一、预习要点
1. 读数显微镜的结构和用法;
2. 等厚干涉实验的原理,平凸透镜曲率半径计算公式。
二、实验内容
1. 置牛顿环装置于显微镜工作台上,调测微鼓轮使镜筒位于标尺中部(约25mm 左右处),牛顿环
装置中心接触点(肉眼可见一暗斑)对准镜筒中央。
2. 钠光灯发出的光线射到镜筒下方与水平约45°角的半反镜上,经反射垂直入射到牛顿环装置上;
略微转动半反镜(可全方位转动即上、下、左、右)使光线入射牛顿环装置,这时从显微镜中观察到一片均匀明亮的钠黄光。
3. 调节目镜调焦,使视场中的十字叉丝清晰;调节目镜放大倍数。
4. 转动镜筒调焦手轮至见到最清晰的牛顿环干涉图像。
5. 移动牛顿环装置,使十字叉丝对准牛顿环中心暗斑的中心,旋转测微鼓轮,使镜筒向牛顿环某
方向(如向右)移动,用十字叉丝切准各暗环,并数出级数。
数到中心暗斑的右端第34暗环,将测微鼓轮反转回到第30暗环开始测量,记录右端第30环读数,再用十字叉丝对准右第28、26······暗环,每隔2环记下读数到右端第12暗环[注意记录表格内填写的位置],再使十字叉丝回到牛顿环中心暗斑,核对该中心是否0=k 。
经过中心后继续向左运行,记录牛顿环左端12、14······30暗环位置读数。
重复测一遍,但是从牛顿环的左30暗环测到右30暗环。
三、实验注意事项
1. 测量时测微鼓轮只能单方向转动,否则有空程差引入;不能数错环数,把k 级当作k+1级读数;
2. 钠光灯点燃后通常要过十几分钟才能正常发光,使用时一经点燃不要轻易灭,也不要在点燃时
移动、撞击,钠光灯关闭后,必须稍等片刻才能重新打开。
3. 当用镜筒对待测物聚焦时,为防止损坏显微镜物镜,正确的调节方法是使镜筒移离待测物(即
提升镜筒)。
注意将显微镜底座中的反光镜转到背光一侧。
4. 测量过程中,不要碰动牛顿环和震动实验台,以免影响测量的准确性。
5. 爱护实验台上的所有仪器,特别小心光学仪器。
四、原始数据记录表格
组号________ 同组人姓名____________________ 成绩__________ 教师签字_______________
表1 测牛顿环直径(从右测到左) 单位:mm
五、数据处理要求
=-+22k m k D D mm 2
① ()()2
2222230
20
1
k m k
k m k D D D D D D ++∆-=---= mm 2
② ()222k m k D D +∆-= mm 2
③ ()223
k m
k D D +∆-= mm 2
④ ()224k m k D D +∆-= mm 2 ⑤ ()225
k m
k D
D +∆-= mm 2
22k m k D D -+的不确定度(n 取5):
22
k m k
D
D t t σ+-=== 4mm
∴2
2
2
2
2
2
k m k
k m k k m k D D D D D D σ+++--=-± mm 2 =m 10.0级 =m σ=+m k σ0.1级
589.30.2nm λ=± =-=
+λ
m D D R k m k 42
2 mm
()
=⎪⎭
⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭
⎫
⎝⎛⨯=+--++22222
12
22
2
λσσσσσλm m k D D D D R m R k m k k
m k mm (R σ取一位有效数字)
R R R σ=±= mm
六、思考题
1. 实验中,若牛顿环中央是亮班而不是暗斑,是何原因?
2. 为什么说读数显微镜测量的是牛顿环的直径,而不是显微镜内放大象的直径?如果改变显微镜
筒的放大倍率,是否会影响测量的结果?
3. 在实验中测直径时,十字叉丝不通过圆环的中心,对实验结果没有影响,为什么?
4. 本实验用逐差法可避免了圆环中心无法确定的困难及逐差法充分利用数据体现多次测量的优
点,请具体说明。