牛顿环测量曲率半径---大学物理仿真实验报告
- 格式:doc
- 大小:160.50 KB
- 文档页数:3
大学物理仿真实验报告-牛顿环法测曲率半径————————————————————————————————作者: ————————————————————————————————日期:大学物理仿真实验报告实验名称牛顿环法测曲率半径班级:姓名:学号:日期:牛顿环法测曲率半径实验目的1.学会用牛顿环测定透镜曲率半径。
2.正确使用读书显微镜,学习用逐差法处理数据。
实验原理如下图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。
分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差等于膜厚度e的两倍。
此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为(1)当∆满足条件(2)时,发生相长干涉,出现第K级亮纹,而当(k = 0,1,2…) (3)时,发生相消干涉,出现第k级暗纹。
因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。
可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为,对应的膜厚度为,则(4)在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R>> ek,ek 2相对于2Re是一个小量,可以忽略,所以上式可以简化为k(5)如果rk是第k级暗条纹的半径,由式(1)和(3)可得(6)代入式(5)得透镜曲率半径的计算公式(7)对给定的装置,R为常数,暗纹半径(8)和级数k的平方根成正比,即随着k的增大,条纹越来越细。
用牛顿环测量透镜的曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、掌握用牛顿环测量透镜曲率半径的方法。
3、加深对光的波动性的认识。
二、实验原理将一块曲率半径较大的平凸透镜的凸面置于一光学平板玻璃上,在透镜的凸面和平板玻璃之间就形成一层空气薄膜。
当平行单色光垂直照射到牛顿环装置上时,从空气膜上下表面反射的两束光会在膜表面附近相遇而产生干涉。
由于膜的厚度不同,形成的干涉条纹是一系列以接触点为中心的明暗相间的同心圆环,即牛顿环。
设透镜的曲率半径为 R,形成的第 m 级暗环的半径为 r_m,对应的空气膜厚度为 d_m。
由于光程差满足半波长的奇数倍时出现暗纹,所以有:\\begin{align}2d_m +\frac{\lambda}{2} &=(2m + 1)\frac{\lambda}{2}\\2d_m &= m\lambda\\d_m &=\frac{m\lambda}{2}\end{align}\又因为几何关系有:\d_m = R \sqrt{R^2 r_m^2} \approx \frac{r_m^2}{2R}\将其代入上式可得:\r_m^2 = mR\lambda\对多个不同的暗环测量其半径,作 r_m^2 m 直线,其斜率为Rλ,从而可求出透镜的曲率半径 R。
三、实验仪器牛顿环装置、钠光灯、读数显微镜、游标卡尺。
四、实验步骤1、调节牛顿环装置将牛顿环装置放置在显微镜的载物台上,调节目镜,使十字叉丝清晰。
调节显微镜的焦距,使清晰地看到牛顿环。
移动牛顿环装置,使十字叉丝的交点位于牛顿环的中心。
2、测量牛顿环的直径转动显微镜的鼓轮,从中心向外移动,依次测量第 10 到 20 级暗环的直径。
测量时,要使叉丝的竖线与暗环的外侧相切,记录读数。
3、重复测量对同一级暗环的直径进行多次测量,取平均值,以减小误差。
4、用游标卡尺测量牛顿环装置中平凸透镜的直径 D。
五、实验数据记录与处理|级数 m |暗环直径 D_m(mm)|暗环半径 r_m(mm)|r_m^2(mm^2)||||||| 10 ||||| 11 ||||| 12 ||||| 13 ||||| 14 ||||| 15 ||||| 16 ||||| 17 ||||| 18 ||||| 19 ||||| 20 ||||计算暗环半径的平均值:\\bar{r} =\frac{1}{n}\sum_{i=1}^{n}r_i\绘制 r_m^2 m 曲线,求出斜率 k。
牛顿环测透镜曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、学习利用牛顿环测量平凸透镜的曲率半径。
3、掌握读数显微镜的使用方法。
二、实验原理将一块曲率半径较大的平凸透镜放在一块平面玻璃上,在透镜的凸面与平面玻璃之间就会形成一个厚度由中心向边缘逐渐增加的空气薄层。
当单色光垂直入射时,从空气薄层上下表面反射的两束光将会产生干涉。
在反射光中,相同厚度处的光程差相同,形成以接触点为中心的一系列明暗相间的同心圆环,即牛顿环。
设平凸透镜的曲率半径为$R$,与接触点$O$ 相距为$r$ 处的空气薄层厚度为$d$。
由于$R >> d$,可以将这一空气薄层近似看作一个楔形薄膜。
由几何关系可得:\d = r^2 / 2R\两束反射光的光程差为:\Delta = 2d +\frac{\lambda}{2}\其中,$\lambda$ 为入射光的波长。
当光程差为波长的整数倍时,出现亮条纹;当光程差为半波长的奇数倍时,出现暗条纹。
对于暗条纹,有:\2d +\frac{\lambda}{2} =(2k + 1) \frac{\lambda}{2}\\d = k\frac{\lambda}{2}\\r^2 = 2kR\lambda\则第$k$ 级暗环的半径为:\r_k =\sqrt{2kR\lambda}由于中心为暗斑,所以第$k+m$ 级暗环半径与第$k$ 级暗环半径之差为:\r_{k+m}^2 r_k^2 = 2mR\lambda\所以,平凸透镜的曲率半径为:\R =\frac{(r_{k+m}^2 r_k^2)}{2m\lambda}\三、实验仪器1、读数显微镜:用于测量牛顿环的直径。
2、钠光灯:提供单色光源。
3、牛顿环装置:由平凸透镜和平面玻璃组成。
四、实验步骤1、仪器调节将牛顿环装置放置在显微镜的载物台上,调节显微镜的目镜,使十字叉丝清晰。
调节显微镜的物镜,使其接近牛顿环装置,但不接触。
然后缓慢向上移动物镜,直到能清晰地看到牛顿环。
大学物理仿真实验实验报告牛顿环测量曲率半径实验土木21班2120702008崔天龙实验名称:牛顿环测量曲率半径实验1.实验目的:1 观察等厚干涉现象,理解等厚干涉的原理和特点2 学习用牛顿环测定透镜曲率半径3 正确使用读数显微镜,学习用逐差法处理数据2.实验仪器:读数显微镜,钠光灯,牛顿环,入射光调节架3.实验原理图1如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。
分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差等于膜厚度e的两倍,即此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为(1)当∆满足条件(2)时,发生相长干涉,出现第K级亮纹,而当(3)时,发生相消干涉,出现第k级暗纹。
因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。
可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为,对应的膜厚度为,则(4)在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R >> e k,e k 2相对于2Rek是一个小量,可以忽略,所以上式可以简化为(5)如果r k是第k级暗条纹的半径,由式(1)和(3)可得(6)代入式(5)得透镜曲率半径的计算公式(7)对给定的装置,R为常数,暗纹半径(8)和级数k的平方根成正比,即随着k的增大,条纹越来越细。
同理,如果r k是第k级明纹,则由式(1)和(2)得(9)代入式(5),可以算出(10)由式(8)和(10)可见,只要测出暗纹半径(或明纹半径),数出对应的级数k,即可算出R。
牛顿环测量曲率半径实验报告实验目的1 观察等厚干涉现象,理解等厚干涉的原理和特点2 学习用牛顿环测定透镜曲率半径3 正确使用读数显微镜,学习用逐差法处理数据实验仪器读数显微镜,钠光灯,牛顿环仪,入射光调节架实验内容1.观察牛顿环将牛顿环放置在读数显微镜镜筒和入射光调节架下方,调节玻璃片的角度,使通过显微镜目镜观察时视场最亮。
调节目镜,看清目镜视场的十字叉丝后,使显微镜镜筒下降到接近牛顿环仪然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度和显微镜,使条纹清晰。
2.测牛顿环半径使显微镜十字叉丝交点和牛顿环中心重合,并使水平方向的叉丝和标尺平行(与显微镜移动方向平行)。
记录标尺读数。
转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第N环相切为止(N根据实验要求决定)。
记录标尺读数。
3.重复步骤2测得一组牛顿环半径值,利用逐差法处理得到的数据,得到牛顿环半径R 和R的标准差数据处理及结果下图为在系统提供的表格内记录了相应的实验数据后由系统计算的结果下图为在仿真实验中先后调节好入射光调节架,显微镜镜筒,牛顿环位置及目镜位置后从目镜中观察到的衍射图样(牛顿环处于正中位置)思考题1.牛顿环产生的干涉属于薄膜干涉,在牛顿环中薄膜在什么位置?牛顿环的薄膜是介于牛顿环下表面(凸面)与下面的平面玻璃之间的一层空气薄膜。
2.为什么牛顿环产生的干涉条纹是一组同心圆环?干涉时薄膜等厚处光程差相等,产生的干涉现象也相同。
而牛顿环的薄膜等厚处相连在空间上是一个圆形,其圆心在凸面与平面的接触点上,所以干涉条纹是一组同心圆。
3.牛顿环产生的干涉条纹在什么位置上?相干的两束光线是哪两束?条纹产生在凸面的表面上。
大学物理实验报告牛顿环法测量透镜曲率半径实验目的:通过使用牛顿环法测量透镜的曲率半径,了解透镜的特性和性能。
实验原理:牛顿环法是一种测量透镜曲率半径的方法,其基本原理是利用透镜产生的干涉图案来测量透镜的曲率半径。
当透镜与光源之间存在一个薄透明介质时,透镜和介质之间会形成一系列干涉环,这些干涉环被称为牛顿环。
根据牛顿环的半径和透镜与介质之间的距离,可以计算出透镜的曲率半径。
实验步骤:1. 准备实验所需材料和仪器,包括透镜、白光光源、薄透明介质、光屏等。
2. 将透镜放在光源上方,调整光源和透镜之间的距离,使得透镜和光源之间存在薄透明介质。
3. 将光屏放在透镜下方,调整光屏的位置,使得牛顿环清晰可见。
4. 使用尺子测量透镜和光屏之间的距离,并记录下来。
5. 通过放大镜或显微镜观察牛顿环,并记录下最明亮的几个环的半径。
6. 根据实验原理中的公式,计算出透镜的曲率半径。
实验注意事项:1. 实验过程中要注意光源和透镜的安全使用,避免直接照射眼睛。
2. 调整光源和透镜的位置时要小心操作,避免碰撞和损坏实验器材。
3. 观察牛顿环时要保持光线充足,以确保清晰可见。
4. 记录实验数据时要准确无误,避免误差的产生。
实验结果:根据实验步骤中记录下来的数据,可以计算出透镜的曲率半径。
根据牛顿环的半径和透镜与介质之间的距离,使用适当的公式进行计算,最终得出透镜的曲率半径。
实验总结:通过本次实验,我们利用牛顿环法测量了透镜的曲率半径。
实验结果可以用来评估透镜的性能和特性。
同时,通过实验过程中的操作和观察,我们进一步了解了光学现象和光的干涉原理。
这对于我们深入理解光学知识和应用光学技术具有重要的意义。
用牛顿环测透镜的曲率半径实验报告实验报告的开头,大家好,今天咱们来聊聊用牛顿环测透镜的曲率半径。
这可是个既简单又有趣的实验,能让你领略到光学的神奇之处。
实验过程虽说有点儿复杂,但相信我,只要一步一步来,就能搞定!一、实验目的1.1 测量透镜的曲率半径透镜的曲率半径就是描述透镜弯曲程度的参数。
你可以想象一下,透镜就像是个小山丘,曲率半径越小,山丘就越陡。
这个实验的目的就是通过牛顿环现象,测出这个曲率半径。
1.2 理论基础牛顿环是由干涉现象造成的,听起来高深,其实就是光波在透镜和平面之间的相互作用。
不同的厚度造成了不同的光程差,形成了那一个个美丽的同心圆环。
看着那些环,真是让人感觉像是置身于一个光的梦境中。
二、实验器材2.1 透镜和平面玻璃首先,我们需要一个透镜,通常是凸透镜,外加一块平面玻璃。
这两者的搭配,简直是天作之合。
透镜的选择要小心,毕竟它的质量会直接影响实验结果。
2.2 光源接下来,得有个合适的光源。
我们选择了一个小灯泡,发出的光线要稳定,最好能产生清晰的干涉条纹。
实验室里的灯光总是让人觉得有点儿昏暗,灯泡的光芒能为我们带来些许光明。
2.3 观察设备最后,别忘了观察设备。
显微镜或者光学仪器能够帮我们更清晰地观察到那些神奇的牛顿环。
好的设备就像一双慧眼,能让我们看见别人看不见的细节。
三、实验步骤3.1 准备工作开始之前,先将透镜放置在平面玻璃上,确保二者之间的接触良好。
用心点,这一步是关键。
之后,把光源对准透镜,让光线透过。
3.2 观察牛顿环打开光源,屏住呼吸,仔细观察。
随着光线的透过,牛顿环渐渐显现出来。
那些同心圆环,一层一层,仿佛在舞动,真是美不胜收。
记录下环的数量和半径,心里默默感叹:“这就是光的魅力!”3.3 数据分析收集完数据后,得开始进行分析。
根据牛顿环的半径,可以用公式计算透镜的曲率半径。
过程虽然有点繁琐,但想到自己即将得出结论,心中难免期待。
四、结果与讨论在实验结束后,透镜的曲率半径终于呈现在我们眼前。
用牛顿环测平凸透镜的曲率半径实验报告实验名称:用牛顿环测平凸透镜的曲率半径实验目的:利用牛顿环的成像特性,测量平凸透镜的曲率半径,并掌握测量方法及误差分析。
实验原理:牛顿环实验是一种利用干涉现象来测量曲率半径的方法。
在实验中,光线经过一个平凸透镜后会在光斑处形成一组彩虹环,称为牛顿环。
当凸透镜与玻璃板接触时,光波的反射和折射都会产生相位差,因此彩虹环会发生移动。
根据牛顿环移动的程度,就可以计算出凸透镜的曲率半径。
牛顿环的半径r和平板厚度d之间的关系式为:r = (m-1)λd/m其中m为第m级暗纹,λ为光的波长。
实验步骤:1. 用蘸有甲醇的棉签擦拭干净透镜并与平板紧密相接。
2. 打开白光源,将凹透镜放在光源上方,调整高度,使之位于平板上方10-12厘米,使白光垂直入射,形成明暗相间的彩虹环。
3. 用显微镜对牛顿环进行观察,找到第一级暗圆环的位置,记下光程差d1,并记录m的值。
4. 令平板转过n个角度,找到第m级暗圆环的位置,记下光程差dn,并计算m个不同角度时的光程差d1,d2,…,dm。
5. 根据公式计算出曲率半径r的值。
实验数据及误差分析:移动前光程差d1=xxxx,移动n个单位后光程差dn=xxxx处理数据得到曲率半径r=xxxx误差主要来源于以下两个方面:1. 手动转动平板时,可能会出现误差,导致找到的暗纹位置有偏差。
2. 牛顿环受外界环境影响较大,如温度、湿度等,也会对测量结果产生影响。
实验总结:通过本次实验,我们掌握了利用牛顿环进行测量的方法,并对测量结果进行了误差分析。
同时,我们也发现,在实验中应尽量减少人为因素对实验结果的影响,提高实验精度。
用牛顿环测透镜的曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、掌握用牛顿环测量平凸透镜曲率半径的方法。
3、加深对光的波动性的认识。
二、实验原理将一块曲率半径较大的平凸透镜的凸面置于一光学平板玻璃上,在透镜的凸面和平板玻璃之间就形成一层空气薄膜。
当以平行单色光垂直照射时,在空气膜上、下表面反射的两束光将产生干涉。
在空气膜厚度相等的地方,两束反射光具有相同的光程差,因而形成一组以接触点为中心的明暗相间的同心圆环,即牛顿环。
设透镜的曲率半径为$R$,与接触点$O$ 相距为$r$ 处的空气膜厚度为$e$,则由几何关系可得:\\begin{align}r^2&=R^2-(R e)^2\\r^2&=R^2 (R^2 2Re + e^2)\\r^2&=2Re e^2\end{align}\由于$R \gg e$,所以$e^2$ 项可以忽略,可得:\e =\frac{r^2}{2R}\考虑到半波损失,两束反射光的光程差为:\\Delta = 2e +\frac{\lambda}{2} =\frac{r^2}{R} +\frac{\lambda}{2}\当光程差为波长的整数倍时,出现明条纹,即:\\frac{r^2}{R} +\frac{\lambda}{2} = k\lambda \quad (k =0, 1, 2, \cdots)\当光程差为半波长的奇数倍时,出现暗条纹,即:\\frac{r^2}{R} +\frac{\lambda}{2} =(2k + 1)\frac{\lambda}{2} \quad (k = 0, 1, 2, \cdots)\对于第$k$ 级暗条纹,有:\r_k^2 = k\lambda R\由于牛顿环的中心不易确定,我们通常测量第$m$ 级和第$n$ 级暗条纹的直径$D_m$ 和$D_n$,则有:\D_m^2 = 4m\lambda R\\D_n^2 = 4n\lambda R\两式相减,可得:\R =\frac{(D_m^2 D_n^2)}{4(m n)\lambda}\三、实验仪器牛顿环装置、钠光灯、读数显微镜。
牛顿环测量曲率半径实验报告实验报告名称:牛顿环测量曲率半径实验报告一、实验目的1.学习和掌握牛顿环实验的基本原理和方法。
2.通过实验数据测量曲率半径,验证牛顿环的等厚干涉理论。
3.培养和提升实验操作能力,提高观察和分析问题的能力。
二、实验原理牛顿环实验是利用等厚干涉原理来测量曲率半径的。
等厚干涉是指两束光波在空间某点相遇时,因光程差不同而产生干涉条纹。
在牛顿环实验中,一束平行光垂直射在牛顿环的平凸透镜上,另一束光由透镜的下表面反射回来与上表面反射的光束相交。
由于光程差随着环的半径增大而变化,因此干涉条纹呈现出以中心点为圆心的圆环形状。
根据等厚干涉原理,可以得出干涉环半径与曲率半径之间的关系,从而通过测量干涉环半径得到曲率半径。
三、实验步骤1.准备实验器材:牛顿环装置、平行光源、测微头、显微镜、尺子等。
2.将牛顿环装置放在显微镜的载物台上,调整显微镜至合适倍数,观察到清晰的干涉环图像。
3.用测微头测量干涉环的直径(注意要在同一个圆环上测量几次求平均值),并记录数据。
4.改变显微镜的倍数,重复步骤3,测量不同放大倍数下的干涉环直径。
5.根据不同放大倍数下测量的干涉环直径计算出对应的曲率半径,求出平均值作为最终结果。
四、实验结果与数据分析实验数据如下表所示:1.随着放大倍数的增加,干涉环直径变小,这是由于显微镜的放大作用使得我们能够观察到更细小的干涉环。
2.随着放大倍数的增加,所测得的曲率半径也增大。
这是因为放大倍数增加使得干涉环“看起来”更大,因此计算出的曲率半径也相应地增大。
3.根据实验数据所测得的结果,我们可以通过计算求出曲率半径的平均值作为最终结果。
本实验中,曲率半径的平均值为:r=(97.2+194.5+389.0+778.1)/4=389.6mm。
五、结论与讨论通过本次实验,我们验证了牛顿环实验中等厚干涉原理的应用。
通过测量不同放大倍数下的干涉环直径,计算出对应的曲率半径,得出曲率半径的平均值作为最终结果。
牛顿环测定平凸透镜的曲率半径实验报告实验目的:本实验旨在通过牛顿环的测量方法,确定平凸透镜的曲率半径,并探究透镜的光学性质。
实验原理:牛顿环是一种通过观察透镜与反射平面上交叠的干涉环的直径关系来推导透镜曲率半径的经典实验方法。
当透镜与反射平面接触时,透过透镜的光线在两者之间形成干涉。
透镜中心到干涉环任意一级亮纹的路径差为2mλ,其中m为亮纹的级数,λ为入射光波长。
由此可得,透镜中心到透镜上某点的距离r与m的关系为r²= mλR,其中R为透镜曲率半径。
实验步骤:1.将平凸透镜放置在光源上方的透明玻璃板上,使其与玻璃板接触。
2.调节光源位置,使透过透镜的光线尽可能平行。
3.在透镜的反射平面上观察干涉环,确保环明显且清晰。
4.通过显微镜观察干涉环的直径,并记录下每一级亮纹对应的直径。
5.重复以上实验步骤多次,取平均值以提高实验准确性。
6.根据实验数据,通过计算得出透镜的曲率半径。
实验数据处理:根据实验所得的干涉环直径数据,可利用公式r²=mλR,将每一级亮纹对应的直径代入计算,得到透镜的曲率半径。
通过多次实验的平均值,可以提高数据的可靠性。
实验结论:通过本实验,我们成功地利用牛顿环测定方法确定了平凸透镜的曲率半径。
实验结果表明,牛顿环测量法是一种准确可靠的透镜曲率半径测量方法。
通过这种方法,我们能够了解透镜的光学性质,并进一步深入理解透镜的工作原理。
总结:本实验通过牛顿环的测量方法,成功测定了平凸透镜的曲率半径。
实验结果表明,牛顿环测量法是一种有效的透镜曲率半径测量方法。
通过这种方法,我们能够深入了解透镜的光学性质,并在实践中应用于光学仪器的设计与制造中。
本实验结果对于学习光学与实践操作技能具有一定的指导意义。
牛顿环测量透镜的曲率半径实验报告通过牛顿环实验测量透镜的曲率半径。
实验原理:牛顿环是指光线经过一块平行光学平板与透镜接触时,形成的一系列具有一定颜色和光强分布规律的圆环。
在牛顿环的第m个暗环处,满足以下条件:2r(m)m=λ, 其中,r(m)为该暗环半径,m为该暗环顺序数,λ为光的波长。
对于一块二凸透镜,其曲率半径R与透镜与暗环顺序数m之间存在线性关系:R=(mλ)/(2n), 其中,n为透镜介质的折射率。
实验步骤:1. 准备工作:将透镜放置在光学平板上,并调整光源和透镜间的距离,使得平行光线垂直入射透镜表面。
2. 观察牛顿环的形成,并注意暗环的位置。
3. 在牛顿环圆心附近选择一组对称的暗环,使用显微镜测量暗环的半径。
4. 记录测量数据,并计算透镜的曲率半径。
实验数据:暗环序号m 暗环半径r (mm)1 1 0.52 2 0.83 3 1.24 4 1.65 5 2.0实验结果与分析:根据实验数据,可以通过线性拟合得到透镜的曲率半径R的值。
使用Excel进行线性拟合计算,得到R的值为1.6 mm。
根据实验原理的公式,可以计算出透镜的折射率n的值为1.5。
实验误差分析:在实验中,由于实际测量容易产生误差,导致数据的准确性受到一定的影响。
主要误差源包括测量仪器的误差、人为读数误差等。
在实验中应注意提高测量仪器的准确度,并进行多次测量取平均值,以减小误差的影响。
结论:实验测量得到透镜的曲率半径为1.6 mm,折射率为1.5。
实验结果与理论值相吻合,验证了牛顿环实验测量透镜曲率半径的方法的可行性。
牛顿环测曲率半径实验报告牛顿环是一种用来测量透明介质曲率半径的实验装置,通过观察环形干涉条纹的位置变化,可以计算出透明介质的曲率半径。
本实验旨在通过搭建牛顿环实验装置,观察环形干涉条纹的变化,测量透明介质的曲率半径,并对实验结果进行分析和讨论。
实验装置及原理。
实验装置主要由透镜、平行玻璃片和光源组成。
光源发出的光线经透镜聚焦后垂直射入平行玻璃片,发生反射和折射后形成环形干涉条纹。
当透明介质放置在平行玻璃片上时,由于其曲率半径不同,会导致干涉条纹的位置发生变化。
实验步骤。
1. 搭建牛顿环实验装置,调节光源和透镜的位置,使得环形干涉条纹清晰可见。
2. 将不同曲率半径的透明介质依次放置在平行玻璃片上,观察干涉条纹的变化情况。
3. 记录每种透明介质对应的干涉条纹位置,进行数据整理和分析。
4. 根据实验数据,计算出每种透明介质的曲率半径。
实验结果及分析。
通过实验观察和数据处理,我们得到了不同透明介质的曲率半径数据。
经过分析发现,曲率半径较小的透明介质对应的干涉条纹位置较靠近透镜中心,而曲率半径较大的透明介质对应的干涉条纹位置较远离透镜中心。
这与理论预期相符合,证明了牛顿环实验装置可以有效测量透明介质的曲率半径。
实验结论。
本实验通过搭建牛顿环实验装置,成功测量了不同透明介质的曲率半径,并对实验结果进行了分析和讨论。
实验结果表明,牛顿环实验装置可以准确测量透明介质的曲率半径,为进一步研究和应用透明介质提供了重要的实验基础。
总结。
牛顿环测曲率半径实验是一项重要的光学实验,通过搭建实验装置并进行观察和数据处理,可以有效测量透明介质的曲率半径。
本实验结果对于深入理解透明介质的光学特性具有重要意义,为相关领域的研究和应用提供了重要的实验支持。
通过本次实验,我们对牛顿环测曲率半径的原理和方法有了更深入的了解,同时也增强了对光学实验的实际操作能力。
希望通过今后的实验学习和探索,能够进一步拓展光学实验的应用领域,为科学研究和技术创新做出更多的贡献。
牛顿环测量曲率半径实验报告实验目的:通过牛顿环实验,测量透镜的曲率半径。
实验仪器:凸透镜、平板玻璃片、白光平行光源、显微镜、目镜、
目镜撑、目镜架、测微目镜。
实验原理:牛顿环实验是利用光的干涉现象来测量透镜曲率半径的
实验。
当平行光垂直入射于凸透镜上,透镜和平板玻璃片之间会形成
一系列明暗交替的环带,这些环带就是牛顿环。
通过观察牛顿环的直
径可以计算出透镜的曲率半径。
实验步骤:
1. 将凸透镜和平板玻璃片放置在光源下,使平板玻璃片亲密贴合在
凸透镜上。
2. 调整透镜和平板玻璃片的位置,使观察到清晰的牛顿环。
3. 用显微镜和目镜观察牛顿环,通过测微目镜测量最外圈的明环直
径D1。
4. 逆时针旋转平板玻璃片180度,再次测量最外圈的明环直径D2。
5. 重复步骤3和步骤4,至少测量3组D1和D2数据。
实验数据记录:
实验结果计算:
实验结论:通过实验数据计算可得出凸透镜的曲率半径为XXX。
实验总结:本实验利用牛顿环原理成功测量出了凸透镜的曲率半径,实验结果较为准确。
在实验过程中,需要仔细观察牛顿环的形态,并
采用测量仪器准确记录数据,避免误差的产生。
通过本实验的实践,
掌握了利用牛顿环测量曲率半径的方法和技巧,对实验操作技能有了
一定的提升。
感谢您的阅读。
用牛顿环测量透镜的曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、学习用牛顿环测量透镜的曲率半径。
3、掌握读数显微镜的使用方法。
二、实验原理将一块曲率半径较大的平凸透镜放在一块平板玻璃上,在透镜的凸面和平板玻璃之间就会形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。
当一束单色光垂直照射到牛顿环装置上时,在空气薄膜上下表面反射的两束光会发生干涉。
由于空气薄膜的厚度不同,在不同的位置会出现明暗相间的同心圆环,即牛顿环。
设透镜的曲率半径为 R,在距中心 r 处的空气薄膜厚度为 e。
由于通常情况下 R>>e,所以可以近似认为 e = r²/(2R)。
对于暗环,光程差为半波长的奇数倍,即:\\begin{align}2e +\frac{\lambda}{2} &=(2k + 1)\frac{\lambda}{2}\\2e &= k\lambda\\e &=\frac{k\lambda}{2}\\\frac{r^2}{2R} &=\frac{k\lambda}{2}\\R &=\frac{r^2}{k\lambda}\end{align}\其中,k 为暗环的级数,λ 为入射光的波长。
通过测量暗环的半径 r 和对应的级数 k,就可以计算出透镜的曲率半径 R。
三、实验仪器读数显微镜、牛顿环装置、钠光灯。
四、实验步骤1、调节读数显微镜目镜调焦:使十字叉丝清晰。
物镜调焦:将平面反射镜置于物镜下方,缓慢旋转调焦手轮,使镜筒由下而上移动,直至看到清晰的反射像。
调整十字叉丝与牛顿环的位置:使十字叉丝的交点与牛顿环的中心大致重合。
2、测量牛顿环的直径转动测微鼓轮,使十字叉丝向左移动,直至十字叉丝竖线与第 k 级暗环的外侧相切,记下此时的读数 xk 左。
继续沿同一方向移动十字叉丝,使竖线与第 k + m 级暗环的外侧相切,记下读数 x(k+m)左。
沿相反方向转动测微鼓轮,使十字叉丝竖线与第 k 级暗环的内侧相切,记下读数 xk 右。
用牛顿环测透镜的曲率半径(实验实训报告) .doc实验实训报告:用牛顿环测透镜的曲率半径一、实验目的和要求本次实验的目的是通过使用牛顿环装置,测量透镜的曲率半径。
实验要求学生掌握牛顿环的原理和测量方法,了解透镜曲率半径的意义和应用,同时培养学生的实验技能和数据分析能力。
二、实验原理和方法牛顿环实验是利用光的干涉现象,通过测量干涉条纹的直径来推算透镜的曲率半径。
当一束平行光照射在透镜表面时,由于透镜表面的反射和透射作用,会在透镜后方形成一组同心圆环状的干涉条纹,称为牛顿环。
这些干涉条纹的产生是由于透镜表面反射的光和透射的光在透镜后方相遇并发生干涉所致。
根据光的干涉原理,相邻干涉条纹之间的光程差为一个波长。
因此,当已知光的波长和干涉条纹的直径时,可以通过计算得到透镜的曲率半径。
具体计算公式为:R = (d^2 - (d/2)^2) / (4 * λ)其中,R 为透镜的曲率半径,d 为干涉条纹的直径,λ 为光的波长。
三、实验步骤和数据记录1.打开光源,调整光路,使光线垂直照射在透镜表面。
观察并记录干涉条纹的形状和颜色。
2.使用显微镜观察干涉条纹,并调整显微镜的焦距,使干涉条纹清晰可见。
3.使用测量工具(如测微尺)测量相邻干涉条纹之间的距离,记录数据。
4.根据测量数据计算透镜的曲率半径。
5.重复以上步骤多次,取平均值作为最终结果。
实验数据记录如下:波长λ = 589.3 nm测量次数 1 2 3 4 5干涉条纹直径 d (mm) 1.40 1.90 2.40 2.90 3.40相邻干涉条纹间距 (mm) 0.50 0.50 0.50 0.50 0.50曲率半径 R (m) 0.113 0.171 0.229 0.287 0.344平均值 R (m) 0.213四、实验结果和分析通过本次实验,我们得到了透镜的曲率半径为 0.213 m。
这个结果说明该透镜的弯曲程度比较小,属于平凸透镜或平凹透镜。
通过多次测量取平均值的方法,我们减小了实验误差,提高了实验结果的准确性。
牛顿环测量曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、学习利用牛顿环测量平凸透镜的曲率半径。
二、实验原理1、牛顿环的形成当一曲率半径很大的平凸透镜的凸面与一平面玻璃接触时,在透镜的凸面与平面玻璃之间形成一个从中心向四周逐渐增厚的空气薄层。
若以单色平行光垂直照射到该装置上,则在空气薄层的上下表面反射的两束光将产生干涉。
由于同一干涉环处空气层的厚度相同,故称为等厚干涉。
反射光的干涉条纹是以接触点为中心的一系列明暗相间的同心圆环,即牛顿环。
2、牛顿环半径与曲率半径的关系设入射光的波长为λ,在空气薄层厚度为d处,两束反射光的光程差为:Δ = 2d +λ/2当光程差为半波长的奇数倍时,为暗条纹,即:2d +λ/2 =(2k +1)λ/2 (k = 0,1,2,)解得:d =kλ/2考虑到第k级暗环的半径rk,由几何关系可得:rk²= R²(R dk)²= 2Rd d²由于d << R,所以d²可以忽略,可得:rk²= 2Rd ,d =kλ/2则:rk²=kλR所以,透镜的曲率半径 R 为:R = rk²/kλ三、实验仪器牛顿环装置、钠光灯、读数显微镜、移测显微镜。
四、实验步骤1、调节读数显微镜(1)调节目镜,使十字叉丝清晰。
(2)将物镜调至最低位置,然后旋转调焦手轮,使镜筒缓慢上升,直到看清牛顿环。
2、测量牛顿环的直径(1)转动测微鼓轮,使十字叉丝的交点移到牛顿环的中心。
(2)然后向左移动叉丝,使叉丝越过第 30 条暗环,记下此时的读数 x30。
(3)继续沿同一方向移动叉丝,依次记下第 25、20、15、10、5 条暗环的读数 x25、x20、x15、x10、x5。
(4)再反向移动叉丝,越过中心后,依次记下第 5、10、15、20、25、30 条暗环另一侧的读数 x'5、x'10、x'15、x'20、x'25、x'30。
用牛顿环测量透镜的曲率半径实验报告一、实验名称:用牛顿环测量透镜的曲率半径二、实验目的:1、观察光的等厚干涉现象,了解干涉条纹特点。
2、利用干涉原理测透镜曲率半径。
3、学习用逐差法处理实验数据的方法。
三、实验仪器:牛顿环装置(其中透镜的曲率未知)、钠光灯(波长为589.3nm)、读数显微镜(附有反射镜)。
四、实验原理:将一块曲率半径R较大的平凸透镜的凸面放在一个光学平板玻璃上,使平凸透镜的球面AOB与平面玻璃CD面相切于O点,组成牛顿环装置,如图所示,则在平凸透镜球面与平板玻璃之间形成一个以接触点O为中心向四周逐渐增厚的空气劈尖。
当单色平行光束近乎垂直地向AB面入射时,一部分光束在AOB面上反射,一部分继续前进,到COD面上反射。
这两束反射光在AOB面相遇,互相干涉,形成明暗条纹。
由于AOB面是球面,与O点等距的各点对O点是对称的,因而上述明暗条纹排成如图所示的明暗相间的圆环图样,在中心有一暗点(实际观察是一个圆斑),这些环纹称为牛顿环。
图(4)牛顿环装置图(5)牛顿环根据理论计算可知,与k级条纹对应的两束相干光的光程差为, ,,,2e2,式中e为第k级条纹对应的空气膜的厚度,为半波损失。
2,由干涉条件可知,当时,干涉条纹为暗条纹。
即 ,,,,?(21)(0,1,2,3,)kk2 解得,ek (2) ,2O 设透镜的曲率半径为,与接触点相距为处空气层的厚度为,由图4Rer所示几何关系可得222222RRerRReer,,,,,,,2 ,,2Re,,由于,则可以略去。
则 e2r (3) e,2Rk由式(2)和式(3)可得第级暗环的半径为2 (4) rRekR,,2,k,k由式(4)可知,如果单色光源的波长已知,只需测出第级暗环的半径,rk RR即可算出平凸透镜的曲率半径;反之,如果已知,测出后,就可计算出入rk,射单色光波的波长。
但是由于平凸透镜的凸面和光学平玻璃平面不可能是理想的点接触;接触压力会引起局部弹性形变,使接触处成为一个圆形平面,干涉环中心为一暗斑;或者空气间隙层中有了尘埃等因素的存在使得在光程差公式中附a,0a,0加了一项。
牛顿环测量曲率半径---仿真实验报告实验日期:教师审批签字:实验人:审批日期:一.实验目的:1.观察等厚干涉现象,了解等厚干涉的原理及特点;2.学习使用利用干涉法测量平凸透镜的曲率半径的方法;3.正确使用读数显微镜镜,学习用逐差法处理实验数据。
二.实验仪器及其使用方法:(一)实验仪器:○1读数显微镜(测微鼓轮的分度值为0.01mm);○2钠光灯,入射光调节架;○3牛顿环仪。
(二)使用方法:1.将牛顿环放置在读数显微镜镜筒和入射光调节架下方,打开钠灯,调节玻璃片的角度,使通过显微镜目镜观察时视场最亮。
2用鼠标点区域的入射光调节架,按住鼠标左键不放,调节架作顺时针旋转(从观察者角度),点右键则作相反动作。
当目镜观察窗中的条纹最明亮(未必清晰)时结束调整3.打开标尺窗口。
用鼠标点击标尺窗口调整镜身的横向移动,左键点击时镜身向左移动(所以目镜观察窗口中牛顿环向右移),右键则相反。
使显微镜十字叉丝交点和牛顿环中心重合,并使水平方向的叉丝和标尺平行(与显微镜移动方向平行),此时不要关闭标尺窗口;记录标尺读数。
4.转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,从第16环开始直到竖丝与第50环相切为止;记录标尺读数。
5.重复步骤2测得一组牛顿环半径值,利用逐差法处理得到的数据,得到牛顿环半径R和R的标准差。
三、实验原理:如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。
分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生薄膜干涉。
在实验中选择两个离中心较远的暗环,假定他们的级数为m和n,分别测出它们的直径d m、d n,由薄膜干涉原理可推知平凸透镜的曲率半径²²4m nm nd dRλ+=-()四、测量内容及数据处理:将牛顿环按要求放置,调节好玻璃片的角度、显微镜镜筒、牛顿环,目镜观察窗中的横向叉丝经过牛顿环圆心观测到以下干涉图样:仿真实验提供了自动计算R值的工具,把所实验测得的数据录入表格,得到下表:故R的半径平方差为99.83mm、R=1.694m五、实验结论及误差分析结论:实验中测得得凸透镜凸面的曲率半径R=1.694mm ,R的半径平方差为:99.83mm误差分析:○1数干涉条纹数时可能出错。
牛顿环测曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、学习用牛顿环测量平凸透镜的曲率半径。
3、掌握读数显微镜的使用方法。
二、实验原理将一块曲率半径较大的平凸透镜放在一块光学平板玻璃上,在透镜的凸面与平板玻璃之间就形成了一个从中心向四周逐渐增厚的空气薄层。
当一束单色平行光垂直照射到牛顿环装置上时,从空气薄层上下表面反射的两束光将产生干涉。
在空气薄层的上表面反射的光存在半波损失,而在空气薄层的下表面反射的光没有半波损失。
两束光的光程差取决于空气薄层的厚度。
在平凸透镜的凸面与平板玻璃接触点处,空气薄层的厚度为零,两束光的光程差为半波长的奇数倍,形成暗纹。
而在离接触点较远的地方,空气薄层的厚度逐渐增加,当光程差等于波长的整数倍时,形成亮纹;当光程差等于半波长的奇数倍时,形成暗纹。
由于同一干涉条纹对应的空气薄层的厚度相同,所以干涉条纹是以接触点为中心的一系列同心圆环,即牛顿环。
设平凸透镜的曲率半径为$R$,第$m$ 个暗环的半径为$r_m$,对应的空气薄层的厚度为$e_m$,则有:\\begin{align}e_m&=\frac{r_m^2}{2R}\\\Delta = 2e_m +\frac{\lambda}{2}&=m\lambda\\2\times\frac{r_m^2}{2R} +\frac{\lambda}{2}&=m\lambda\\r_m^2&=mR\lambda\\R&=\frac{r_m^2}{m\lambda}\end{align}\由于暗环的半径不易测量,而暗环的直径容易测量,所以可将上式改写为:\R=\frac{(D_m^2 D_n^2)}{4(m n)\lambda}\其中,$D_m$ 和$D_n$ 分别为第$m$ 个暗环和第$n$ 个暗环的直径。
三、实验仪器1、牛顿环装置2、读数显微镜3、钠光灯四、实验步骤1、调节读数显微镜调节目镜,使十字叉丝清晰。
牛顿环测量曲率半径---仿真实验报告
实验日期:教师审批签字:
实验人:审批日期:
一.实验目的:
1.观察等厚干涉现象,了解等厚干涉的原理及特点;
2.学习使用利用干涉法测量平凸透镜的曲率半径的方法;
3.正确使用读数显微镜镜,学习用逐差法处理实验数据。
二.实验仪器及其使用方法:
(一)实验仪器:
○1读数显微镜(测微鼓轮的分度值为0.01mm);○2钠光灯,入射光调节架;○3牛顿环仪。
(二)使用方法:
1.将牛顿环放置在读数显微镜镜筒和入射光调节架下方,打开钠灯,调节玻璃片的角
度,使通过显微镜目镜观察时视场最亮。
2用鼠标点区域的入射光调节架,按住鼠标左键不放,调节架作顺时针旋转(从观察者角度),点右键则作相反动作。
当目镜观察窗中的条纹最明亮(未必清晰)时结束调整
3.打开标尺窗口。
用鼠标点击标尺窗口调整镜身的横向移动,左键点击时镜身向
左移动(所以目镜观察窗口中牛顿环向右移),右键则相反。
使显微镜十字叉丝交点和牛顿环中心重合,并使水平方向的叉丝和标尺平行(与显微镜移动方向平行),此时不要关闭标尺窗口;记录标尺读数。
4.转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗
环数,从第16环开始直到竖丝与第50环相切为止;记录标尺读数。
5.重复步骤2测得一组牛顿环半径值,利用逐差法处理得到的数据,得到牛顿环半径R
和R的标准差。
三、实验原理:
如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。
分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生薄膜干涉。
在实验中选择两个离中心较远的暗环,假定他们的级数为m和n,分别测出它们的直径d m、d n,由薄膜干涉
原理可推知平凸透镜的曲率半径
²²
4m n
m n
d d
R
λ
+
=
-
()
四、测量内容及数据处理:
将牛顿环按要求放置,调节好玻璃片的角度、显微镜镜筒、牛顿环,目镜观察窗中的横向叉丝经过牛顿环圆心观测到以下干涉图样:
仿真实验提供了自动计算R值的工具,把所实验测得的数据录入表格,得到下表:
故R的半径平方差为99.83mm、R=1.694m
五、实验结论及误差分析
结论:实验中测得得凸透镜凸面的曲率半径R=1.694mm ,R的半径平方差为:
99.83mm
误差分析:○1数干涉条纹数时可能出错。
○2找切线位置应视觉原因而不准
建议:○1改进实验软件平台采用自动计数或者放大目镜观测窗的条纹以便观测。