大学物理实验课件牛顿环
- 格式:ppt
- 大小:1.22 MB
- 文档页数:18
引言“牛顿环”是牛顿在1675年制作天文望远镜时,偶然把一个望远镜的物镜放在平板玻璃上发现的。
因为是牛顿发现的,所以称为牛顿环。
牛顿环实际上是一种利用分振方法实现等厚干涉现象,实验原理并不复杂,但却有其研究价值和实用意义。
牛顿实验原理——光的干涉广泛应用于科学研究,工业生产和检验技术中。
如:利用光的干涉法进行薄膜等厚、微小角度、曲面的曲率半径等几何量的精密测量,也普遍应用于检测加工工件表面的光洁度和平整度及机械零件的内力分布等。
因此不管对于科学研究还是实验教学,研究牛顿环是很有意义的。
牛顿环干涉实验是大学物理实验中的一个经典实验项目,几乎所有的理科大学都开设有这样一个实验。
牛顿环实验既能够培养学生的基本实验技能,又能提高学生解决问题的能力。
学生们在做此实验的过程中往往都需要眼睛紧紧地盯着显微镜目镜仔细观察,同时还需要移动牛顿环装置和调焦手轮,寻找最清晰的干涉条纹并要移动到最佳观察位置。
学生长时间用肉眼观测数据容易出现视觉疲劳,造成干涉条纹数错和条纹位置测不准,最终导致实验结果的不准确。
还有在传统的牛顿环实验中,教师要逐一检查学生调节后的现象工程量很大,不仅影响了教师的视力,而且该过程也不能够及时反馈学生实验的情况,严重影响了教学质量。
在传统牛顿环实验装置中加入摄像头和显示器以达可到更好的教学效果,同时也可以保护教师和学生的眼睛。
1. 牛顿环实验的相关知识1.1牛顿环实验的重要性牛顿环实验是大学物理实验中的一个经典实验项目,是光学基础性实验。
它的重要性首先在于,从原理上讲,它主要是研究光的等厚干涉,这在大学物理理论课上是作为一个重点章节讲述的,通过做相应的大学物理实验,可以加深学生对物理学理论的深刻理解,从实际动手操作中帮助学生学习物理学理论。
其次,它不仅是典型的等厚干涉条纹,同时也为光的波动提供了重要的实验证据。
再者,从牛顿环实验应用的角度来说,利用牛顿环可以测平凸透镜的曲率半径,入射光的波长以及根据牛顿环的干涉花样好薄膜干涉原理可以判定光学平面的质量。
实验 用牛顿环干涉测透镜曲率半径(一)目的:1、掌握用牛顿环测定透镜曲率半径的方法。
2、通过实验加深对等厚干涉原理的理解。
(二)仪器和用具:移测显微镜(JCD 3型)、钠灯牛顿环仪是由待测平凸透镜(凸面曲率半径约为200~300c m〕L和磨光的平玻璃板P叠合装在金属框架F中构成。
框架边上有三个螺旋H,用以调节L和P之间的接触,以改变干涉环纹的形状和位置。
调节H时,螺旋不可旋得过紧,以免接触压力过大引起透镜弹性形变,甚至损坏透镜。
(三)原理:当一曲率半径很大的平凸透镜的凸面与一磨光平玻璃板相接触时,在透镜的凸面与平玻璃板之间将形成一空气薄膜,离接触点等距离的地方,厚度相同。
如图9-2所示,若以波长为的单色平行光投射到这种装置上,则由空气膜上下表面反射的光波将互相干涉,形成的干涉条纹为膜的等厚各点的轨迹,这种干涉是一种等厚干涉。
在反射方向观察时,将看到一组以接触点为中心的亮暗相间的圆环形干涉条纹,而且中心是一暗斑(图a );如果在透射方向观察,则看到的干涉环纹与反射光的干涉环纹的光强分布恰成互补,中心是亮斑,原来的亮环处变为暗环,暗环处变为亮环(图b),这种干涉现象最早为牛顿所发现,故称为牛顿环。
设透镜L的曲率半径为R ,形成的m 级干涉暗条纹的半径为r m,m 级干涉亮条纹的半径为r m’,不难证明r m =λmRr m’=2)12(λ⋅−R m 以上两式表明,当已知时,只要测出D 第m 级暗环(或亮环)的半径,即可算出透镜的曲率半径R ;相反,当R 已知时,即可算出λ。
但由于两接触镜面之间难免附着尘埃,并且在接触时难免发生弹性形变,因而接触处不可能是一个几何点,而是一个圆面,所以近圆心处环纹比较模糊和粗阔,以致难以确切判定环纹的干涉级数m ,即干涉环纹的级数和序数不一定一致。
这样,如果只测量一个环纹的半径,计算结果必然有较大的误差。
为了减少误差,提高测最精度,必须测量距中心较远的、比较清晰的两个环纹的半径,例如测量出第m 1个和第m 2个暗环(或亮环)的半径(这里m 1,m 2均为环序数,不一定是干涉级数),因而(9-1)式应修正为r m2 =(m+j )R λ式中m 为环序数,(m +j )为干涉级数(j 为干涉级修正值),于是λλR m m R j m j m r r m m )()]()[(12122212−=+−+=− 上式表明,任意两环的半径平方差和干涉级以及环序数无关,而只与两个环的序数之差(m 2-m 1)有关。
大学物理实验报告牛顿环法测量透镜曲率半径实验目的:通过使用牛顿环法测量透镜的曲率半径,了解透镜的特性和性能。
实验原理:牛顿环法是一种测量透镜曲率半径的方法,其基本原理是利用透镜产生的干涉图案来测量透镜的曲率半径。
当透镜与光源之间存在一个薄透明介质时,透镜和介质之间会形成一系列干涉环,这些干涉环被称为牛顿环。
根据牛顿环的半径和透镜与介质之间的距离,可以计算出透镜的曲率半径。
实验步骤:1. 准备实验所需材料和仪器,包括透镜、白光光源、薄透明介质、光屏等。
2. 将透镜放在光源上方,调整光源和透镜之间的距离,使得透镜和光源之间存在薄透明介质。
3. 将光屏放在透镜下方,调整光屏的位置,使得牛顿环清晰可见。
4. 使用尺子测量透镜和光屏之间的距离,并记录下来。
5. 通过放大镜或显微镜观察牛顿环,并记录下最明亮的几个环的半径。
6. 根据实验原理中的公式,计算出透镜的曲率半径。
实验注意事项:1. 实验过程中要注意光源和透镜的安全使用,避免直接照射眼睛。
2. 调整光源和透镜的位置时要小心操作,避免碰撞和损坏实验器材。
3. 观察牛顿环时要保持光线充足,以确保清晰可见。
4. 记录实验数据时要准确无误,避免误差的产生。
实验结果:根据实验步骤中记录下来的数据,可以计算出透镜的曲率半径。
根据牛顿环的半径和透镜与介质之间的距离,使用适当的公式进行计算,最终得出透镜的曲率半径。
实验总结:通过本次实验,我们利用牛顿环法测量了透镜的曲率半径。
实验结果可以用来评估透镜的性能和特性。
同时,通过实验过程中的操作和观察,我们进一步了解了光学现象和光的干涉原理。
这对于我们深入理解光学知识和应用光学技术具有重要的意义。
牛顿环和劈尖干涉实验【实验目的】1、观察光的等厚干涉现象,熟悉光的等厚干涉的特点;2、用牛顿环干涉测定平凸透镜的曲率半径;3、用劈尖干涉法测定细丝直径或微小薄片厚度。
【实验仪器及装置】牛顿环仪、读数显微镜、钠光灯、劈尖、数显游标卡尺。
【实验原理】 一、牛顿环干涉牛顿环装置是由一块曲率半径较大的平凸玻璃透镜,以其凸面放在一块光学玻璃平板(平晶)上构成的,如图1所示。
平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单色光垂直照射到牛顿环上,则经空气层上、下表面反射的二光束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉。
从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环(如图2所示),称为牛顿环。
由于同一干涉环上各处的空气层厚度是相同的,因此它属于等厚干涉。
图1 实验装置简化图 图2 干涉光路及牛顿环图(a)(b )由图2 (a)可见,如设透镜的曲率半径为R ,与接触点O相距为r 处空气层的厚度为d ,其几何关系式为:()2222222r d Rd R r d R R ++-=+-=由于R>>d ,可以略去d 2得22r d R= (1)光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃板上反射会有半波损失,从而带来/2λ的附加程差,所以光程差δ为:22λδ+=d (2)产生暗环的条件是:(21)2k λδ=+ (3)其中k =0,1,2,3,...为干涉暗条纹的级数。
综合(1)、(2)和(3)式可得第k级暗环的半径为:2r kR λ= (4)由(4)式可知,如果单色光源的波长λ已知,测出第m 级的暗环半径m r ,即可得出平凸透镜的曲率半径R ;反之,如果R 已知,测出m r 后,就可计算出入射单色光波的波长λ。
但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。