高中数学选择性必修二 4 3 1 1等比数列的概念和通项公式(知识梳理+例题+变式+练习)(含答案)
- 格式:docx
- 大小:615.12 KB
- 文档页数:15
第四章数列4.3等比数列4.3.1等比数列的概念第2课时等比数列的性质及应用课后篇巩固提升基础达标练1.在等比数列{a n}中,a2=27,q=-1,则a5=()3A.-3B.3C.-1D.1,{a n}中,a2=27,q=-13则a5=a2·q3=-1,故选C.2.已知等比数列{a n}中,a3=4,a7=9,则a5=()A.6B.-6C.6.5D.±6:奇数项的符号相同,∴a5=√a3a7=√4×9=6.3.已知公比不为1的等比数列{a n}满足a15a5+a14a6=20,若a m2=10,则m=()A.9B.10C.11D.12,数列{a n}是等比数列,且a15a5+a14a6=2a102=20,所以a102=10,所以m=10.故选B.4.已知等比数列{a n}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=()A.12B.10C.1+log35D.2+log35{a n}是等比数列,所以a5a6=a4a7=9,于是log3a1+log3a2+…+log3a10=log3(a1a2…a10)=log3(a5a6)5=log395=10.5.在等比数列{a n}中,若a7=-2,则该数列的前13项的乘积等于()A.-213B.213C.26D.-26{a n}是等比数列,所以a1a13=a2a12=a3a11=a4a10=a5a9=a6a8=a72,于是该数列的前13项的乘积为a1a2…a13=a713=(-2)13=-213.6.(多选)已知数列{a n}是等比数列,且a3+a5=18,a9+a11=144,则a6+a8的值可能为()A.-36B.36C.-36√2D.36√2{a n}的公比为q,则a9+a11=q6(a3+a5),于是q6=a9+a11a3+a5=14418=8,因此q3=±2√2,所以a6+a8=q3(a3+a5)=±36√2.故选CD.7.在正项等比数列{a n}中,a1a3=9,a5=24,则公比q=.{a n}中,a1a3=9,a5=24,可得a22=9,a2=3,得q3=a5a2=8,解得q=2.8.在《九章算术》中,“衰分”是按比例递减分配的意思.今共有粮98石,甲、乙、丙按序衰分,乙分得28石,则衰分比例为.q ,则甲、乙、丙各分得28q 石,28石,28q 石,∴28q +28+28q=98,∴q=2或12.又0<q<1,∴q=12.9.等比数列{a n }同时满足下列三个条件:①a 1+a 6=11,②a 3·a 4=329,③三个数23a 2,a 32,a 4+49依次成等差数列.试求数列{a n }的通项公式.a 1a 6=a 3a 4=329,所以{a 1+a 6=11,a 1·a 6=329,解得{a 1=13,a 6=323或{a 1=323,a 6=13.当{a 1=13,a 6=323时,q=2,所以a n =13·2n-1,这时23a 2+a 4+49=329,2a 32=329,所以23a 2,a 32,a 4+49成等差数列,故a n =13·2n-1.当{a 1=323,a 6=13时,q=12,a n =13·26-n ,23a 2+a 4+49≠2a 32,不符合题意.故通项公式a n =13·2n-1. 10.设{a n }是各项均为正数的等比数列,b n =log 2a n ,b 1+b 2+b 3=3,b 1b 2b 3=-3,求a n .{a n }的首项为a 1,公比为q ,∵b 1+b 2+b 3=3,∴log 2a 1+log 2a 2+log 2a 3=3, ∴log 2(a 1a 2a 3)=3,∴a 1a 2a 3=8,∴a 2=2. ∵b 1b 2b 3=-3,∴log 2a 1·log 2a 2·log 2a 3=-3, ∴log 2a 1·log 2a 3=-3,∴log 2a2q ·log 2a 2q=-3,即(log 2a 2-log 2q )·(log 2a 2+log 2q )=-3, 即(1-log 2q )·(1+log 2q )=-3, 解得log 2q=±2.当log 2q=2时,q=4,a 1=a 2q=12,所以a n =12×4n-1=22n-3;当log 2q=-2时,q=14,a 1=a 2q=8,所以a n =8×(14)n -1=25-2n .能力提升练1.已知数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *),且a 2+a 4+a 6=9,则lo g 13(a 5+a 7+a 9)的值为( )A .-5B .-15C .5D .15log 3a n +1=log 3a n+1,∴a n+1a n=3, ∴数列{a n }是等比数列,公比q=3,∴lo g 13(a 5+a 7+a 9)=lo g 13(a 2q 3+a 4q 3+a 6q 3)=lo g 13[(a 2+a 4+a 6)q 3]=lo g 13(9×33)=-5.2.某工厂去年产值为a ,计划10年内每年比上一年产值增长10%,那么从今年起第几年这个工厂的产值将超过2a ( )A.6B.7C.8D.9n 年这个工厂的产值为a n ,则a 1=1.1a ,a 2=1.12a ,…,a n =1.1n a.依题意,得1.1n a>2a ,即1.1n >2,解得n ≥8.3.在正项等比数列{a n }中,a 3=2,16a 52=a 2a 6,则数列{a n }的前n 项积T n 中最大的值是( )A.T 3B.T 4C.T 5D.T 6,数列{a n }是等比数列,所以16a 52=a 2a 6=a 42,所以q 2=116.又因为数列{a n }为正项等比数列,所以q=14,所以a n =a 3·q n-3=2·43-n =27-2n ,令a n >1,即27-2n >1,得n<72,因为n ∈N *,所以n ≤3,数列{a n }的前n 项积T n 中T 3最大,故选A .4.等比数列{a n }中,若a 12=4,a 18=8,则a 36的值为 .,a 12,a 18,a 24,a 30,a 36成等比数列,且a 18a 12=2,故a 36=4×24=64.5.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n-1a n a n+1=324,则n= .{a n }的公比为q ,由a 1a 2a 3=a 23=4与a 4a 5a 6=a 53=12可得a 53a 23=(q 3)3,q 9=3.又a n-1a n a n+1=a n 3=(a 2q n-2)3=324,因此q 3n-6=81=34=q 36,所以n=14.6.在公差不为零的等差数列{a n }中,2a 3-a 72+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则a 7= ,b 6b 8= .2a 3-a 72+2a 11=2(a 3+a 11)-a 72=4a 7-a 72=0,又b 7=a 7≠0,∴b 7=a 7=4.∴b 6b 8=b 72=16.167.等差数列{a n }的公差和等比数列{b n }的公比都是d (d ≠1),且a 1=b 1,a 4=b 4,a 10=b 10. (1)求实数a 1和d 的值.(2)b 16是不是{a n }中的项?如果是,是第几项?如果不是,请说明理由.设数列{a n },{b n }的通项公式分别为a n =a 1+(n-1)d ,b n =b 1q n-1=a 1d n-1.由{a 4=b 4,a 10=b 10,得{a 1+3d =a 1d 3,a 1+9d =a 1d 9. 即3d=a 1(d 3-1),9d=a 1(d 9-1). 以上两式相除,整理得d 6+d 3-2=0. 解得d 3=1或d 3=-2.∵d ≠1,∴d 3=-2. ∴d=-√23.代入原方程中,解得a 1=√23.故a 1=√23,d=-√23.(2)由(1)得,数列{a n },{b n }的通项公式分别为a n =(2-n )·√23,b n =-(-√23)n . 故b 16=-(-√23)16=-32√23. 由(2-n )√23=-32√23,解得n=34. 故b 16为a n 的第34项.素养培优练某地区发生流行性病毒感染,居住在该地区的居民必须服用一种药片预防,规定每人每天上午8时和晚上20时各服一片.现知该药片每片含药量为220毫克,若人的肾脏每12小时从体内滤出这种药的60%,该药物在人体内的残留量超过380毫克,就将产生副作用.(1)某人上午8时第一次服药,问到第二天上午8时服完药后,这种药在他体内还残留多少? (2)若人长期服用这种药,这种药会不会对人体产生副作用?说明理由.设人第n 次服药后,药在体内的残留量为a n 毫克,则a 1=220,a 2=220+a 1×(1-60%)=220×1.4=308, a 3=220+a 2×(1-60%)=343.2,即到第二天上午8时服完药后,这种药在他体内还残留343.2毫克.(2)由题意,得a n+1=220+25a n,∴a n+1-11003=25(a n-11003),∴{a n-11003}是以a1-11003=-4403为首项,25为公比的等比数列,∴a n-11003=-4403(25)n-1,∵-4403(25)n-1<0,∴a n<11003=36623,∴a n<380.故若人长期服用这种药,这种药不会对人体产生副作用.。
等比数列的概念及通项公式教学设计
将一张很大的薄纸对折,对折30次后有多厚?
不妨假设这张纸的厚度为0.01毫米。
1 看一看纸的厚度的变化
提示:
折1次折2次折3次折4次 (30)
厚度2 (21)4 (22)8 (23)16 (24) (230)
反之,任给指数函数
f(x)=ka x (k,a为常数,k≠0,
a>0且 a≠1)
则f(1)=ka ,f(2)=ka2,⋯,f(n)=ka n,⋯
构成一个等比数列{ka n},其首项为ka,公比为a.
等比数列的单调性
由等比数列的通项公式与指数型函数的关系可得等比数列的单调性如下:
(1)当a1>0,q>1或 a1<0,0<q<1时,等比数列{a n}为递增数列;
(2)当a1>0,0<q<1或 a1<0,q>1时,等比数列{a n}为递减数列;
(3)当q=1时,数列{a n}为常数列;
(4)当q<0时,数列{a n}为摆动数列.
下面,我们利用通项公式解决等比数列的一些问题.
例1 若等比数列{a n}的第4项和第6项分别为。
4.3.1 第一课时 等比数列的概念及通项公式[A 级 基础巩固]1.已知等比数列{a n }的公比为正数,且a 3a 9=2a 25,a 2=1,则a 1=( )A.12 B .2 C. 2 D .22 解析:选D 设数列{a n }的公比为q ,则q >0.由已知,得a 1q 2·a 1q 8=2(a 1q 4)2,即q 2=2.又q >0,所以q =2,所以a 1=a 2q =12=22,故选D. 2.已知等比数列{a n }的各项均为正数,公比q ≠1,k a 1a 2…a k =a 11,则k =( )A .12B .15C .18D .21 解析:选Dk a 1a 2…a k =a 1q 1231k k ++++(-)=a 1q 12k -=a 1q 10,∵a 1>0,q ≠1,∴k -12=10,∴k =21,故选D. 3.已知数列{a n }满足a 1=2,a n +1=3a n +2,则a 2 019=( )A .32 019+1B .32 019-1C .32 019-2D .32 019+2解析:选B ∵a n +1=3a n +2,∴a n +1+1=3(a n +1).∵a 1+1=3,∴数列{a n +1}是首项,公比均为3的等比数列,∴a n +1=3n ,即a n =3n -1,∴a 2 019=32 019-1.故选B.4.各项都是正数的等比数列{a n }中,a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( ) A.5+12 D .5-12C.1-52 D .5+12或1-52解析:选B 设{a n }的公比为q (q >0,q ≠1),根据题意可知a 3=a 2+a 1,∴q 2-q -1=0,解得q =5+12或q =1-52(舍去),则a 3+a 4a 4+a 5=1q =5-12.故选B. 5.等比数列{a n }的公比为q ,且|q |≠1,a 1=-1,若a m =a 1·a 2·a 3·a 4·a 5,则m 等于( )A .9B .10C .11D .12解析:选C ∵a 1·a 2·a 3·a 4·a 5=a 1·a 1q ·a 1q 2·a 1q 3·a 1q 4=a 51·q 10=-q 10,a m =a 1qm -1=-q m -1, ∴-q 10=-q m -1,∴10=m -1,∴m =11.6.若数列{a n }的前n 项和为S n ,且a n =2S n -3,则{a n }的通项公式是________.解析:由a n =2S n -3得a n -1=2S n -1-3(n ≥2),两式相减得a n -a n -1=2a n (n ≥2),∴a n =-a n -1(n ≥2),a n a n -1=-1(n ≥2). 故{a n }是公比为-1的等比数列,令n =1得a 1=2a 1-3,∴a 1=3,故a n =3·(-1)n -1.答案:a n =3·(-1)n -17.已知等比数列{a n }中,a 3=3,a 10=384,则a 4=________.解析:设公比为q ,则a 1q 2=3,a 1q 9=384,所以q 7=128,q =2,故a 4=a 3q =3×2=6.答案:68.设等差数列{a n }的公差d 不为0,a 1=9d ,若a k 是a 1与a 2k 的等比中项,则k =________.解析:∵a n =(n +8)d ,又∵a 2k =a 1·a 2k ,∴[(k +8)d ]2=9d ·(2k +8)d ,解得k =-2(舍去)或k =4. 答案:49.已知递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2和a 4的等差中项,求a n .解:设等比数列{a n }的公比为q .依题意,知2(a 3+2)=a 2+a 4,∴a 2+a 3+a 4=3a 3+4=28,∴a 3=8,a 2+a 4=20,∴8q +8q =20,解得q =2或q =12(舍去). 又a 1=a 3q 2=2,∴a n =2n . 10.已知数列{a n }的前n 项和S n =2-a n ,求证:数列{a n }是等比数列.证明:∵S n =2-a n ,∴S n +1=2-a n +1.∴a n +1=S n +1-S n =(2-a n +1)-(2-a n )=a n -a n +1.∴a n +1=12a n . 又∵S 1=2-a 1,∴a 1=1≠0.又由a n +1=12a n 知a n ≠0, ∴a n +1a n=12. ∴数列{a n }是等比数列.[B 级 综合运用]11.(多选)已知公差为d 的等差数列a 1,a 2,a 3,…,则对重新组成的数列a 1+a 4,a 2+a 5,a 3+a 6,…描述正确的是( )A .一定是等差数列B .公差为2d 的等差数列C .可能是等比数列D .可能既非等差数列又非等比数列解析:选ABC 由题意得a 1+a 4=2a 1+3d ,a 2+a 5=2a 1+5d ,a 3+a 6=2a 1+7d ,…,令b n =a n +a n +3,则b n +1-b n =[2a 1+(2n +3)d ]-[2a 1+(2n +1)d ]=2d ,因此数列a 1+a 4,a 2+a 5,a 3+a 6,…一定是公差为2d 的等差数列,即A 、B 正确,D 错误;当a 1≠0,d =0时b n =2a 1,此时数列a 1+a 4,a 2+a 5,a 3+a 6,…可以是等比数列,即C 正确;故选A 、B 、C.12.如图给出了一个“三角形数阵”.已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,1412,1434,38,316…记第i 行第j 列的数为a ij (i ,j ∈N *),则a 53的值为( )A.116D .18 C.516 D .54解析:选C 第一列构成首项为14,公差为14的等差数列,所以a 51=14+(5-1)×14=54.又因为从第三行起每一行数成等比数列,而且每一行的公比都相等,所以第5行构成首项为54,公比为12的等比数列,所以a 53=54×⎝⎛⎭⎫122=516. 13.已知等差数列{a n }的首项为a ,公差为b ,等比数列{b n }的首项为b ,公比为a ,其中a ,b 都是大于1的正整数,且a 1<b 1,b 2<a 3,对于任意的n ∈N *,总存在m ∈N *,使得a m +3=b n 成立,则a =________,a n =________.解析:∵a 1<b 1,b 2<a 3,∴⎩⎪⎨⎪⎧a <b ,ab <a +2b ,∴b (a -2)<a <b ,∴a <3, 又∵a >1,且a ∈N *,∴a =2.∵对于任意的n ∈N *,总存在m ∈N *,使得a m +3=b n 成立, ∴令n =1,得2+(m -1)b +3=b ,∴b (2-m )=5,又∵2-m <2,且2-m ∈N *,∴⎩⎪⎨⎪⎧ 2-m =1,b =5,∴a n =a +(n -1)b =5n -3.答案:2 5n -314.已知数列{a n }满足a 1=73,a n +1=3a n -4n +2(n ∈N *). (1)求a 2,a 3的值;(2)证明数列{a n -2n }是等比数列,并求出数列{a n }的通项公式.解:(1)由已知得a 2=3a 1-4+2=3×73-4+2=5, a 3=3a 2-4×2+2=3×5-8+2=9.(2)∵a n +1=3a n -4n +2,∴a n +1-2n -2=3a n -6n ,即a n +1-2(n +1)=3(a n -2n ).由(1)知a 1-2=73-2=13, ∴a n -2n ≠0,n ∈N *.∴a n +1-2(n +1)a n -2n=3, ∴数列{a n -2n }是首项为13,公比为3的等比数列.∴a n -2n =13×3n -1,∴a n =3n -2+2n . [C 级 拓展探究]15.已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n .(1)求b 1,b 2,b 3;(2)判断数列{b n }是不是为等比数列,并说明理由;(3)求{a n }的通项公式. 解:(1)由条件可得a n +1=2(n +1)n a n .将n =1代入得,a 2=4a 1, 而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2, 所以a 3=12.从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.由条件可得a n +1n +1=2a n n,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得a n n =2n -1,所以a n =n ·2n -1.。
4.3.1.2等比数列的性质及应用要点一 等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(m ,n ∈N *)(2)若p +q =s +t (p 、q 、s 、t ∈N *),则a p ·a q =s t a a 【重点总结】(1)在已知等比数列{a n }中任一项a m 及公比q 的前提下,可以利用a n =a m q n-m求等比数列中任意项a n ;(2)已知等比数列{a n }中的a m 和a n 两项,就可以使用a n a m =q n -m 求公比,其中m 可大于n ,也可小于n.要点二 等比数列的单调性已知等比数列{a n }的首项为a 1,公比为q ,则(1)当⎩⎪⎨⎪⎧ a 1>0q >1或⎩⎪⎨⎪⎧a 1<00<q <1时,等比数列{a n }为递增数列; (2)当⎩⎪⎨⎪⎧ a 1>00<q <1或⎩⎪⎨⎪⎧a 1<0q >1时,等比数列{a n }为递减数列; (3)当q=1时,等比数列{a n }为常数列(这个常数列中各项均不等于0); (4)当1<1时,等比数列{a n }为摆动数列. 【重点总结】由等比数列的通项公式可知,公比影响数列各项的符号:一般地,q>0时,等比数列各项的符号相同;q<0时,等比数列各项的符号正负交替.要点三 等比数列的其它性质 若{a n }是公比为q 的等比数列,则(1)若m ,p ,n (m ,n ,p ∈N *)成等差数列,则a m ,a p ,a n 成等比数列;(2)数列{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n }都是等比数列,且公比分别是q ,1q ,q 2. (3)若{b n }是公比为p 的等比数列,则{a n b n }与⎩⎨⎧⎭⎬⎫a n b n 也都是等比数列,公比分别为pq 和qp .(4)在数列{a n }中,每隔k (k ∈N *)项取出一项,按原来的顺序排列,所得数列仍为等比数列,且公比为q k +1. (5)在数列{a n }中,连续相邻k 项的和(或积)构成公比为q k (或qk 2)的等比数列. 【重点总结】若数列{a n }是各项都为正数的等比数列,则数列{lg a n }是公差为lg q 的等差数列; 若数列{b n }是等差数列,公差为d ,则数列{cb n }是以c d (c>0且c ≠1)为公比的等比数列. 【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积.( ) (2)当q >1时,{a n }为递增数列.( )(3)当q =1时,{a n }为常数列.( )(4)若{a n },{b n }都是等比数列,则{a n +b n }是等比数列.( ) 【答案】(1)√(2)×(3)√(4)×2.等比数列{a n }的公比q =-14,a 1=2,则数列{a n }是( )A .递增数列B .递减数列C .常数列D .摆动数列 【答案】D【解析】∵q <0,a 1>0,∴所有奇数项为正、偶数项为负,故成摆动数列,选D. 3.(多选题)若数列{a n }为等比数列,则下列式子一定成立的是( ) A .a 2+a 5=a 1+a 6 B .a 1a 9=a 25 C .a 1a 9=a 3a 7 D .a 1a 2a 7=a 4a 6 【答案】BC【解析】根据等比数列的性质知BC 正确.4.在等比数列{a n }中,已知a 7a 12=5,则a 8a 9a 10a 11的值为________. 【答案】25【解析】∵a 7a 12=a 8a 11=a 9a 10=5,∴a 8a 9a 10a 11=25.题型一 等比数列性质的应用 【例1】已知{a n }为等比数列.(1)等比数列{a n }满足a 2a 4=12,求a 1a 23a 5; (2)若a n >0,a 2a 4+2a 3a 5+a 4a 6=25,求a 3+a 5;(3)若a n >0,a 5a 6=9,求log 3a 1+log 3a 2+…+log 3a 10的值.【解析】(1)等比数列{a n }中,因为a 2a 4=12,所以a 23=a 1a 5=a 2a 4=12,所以a 1a 23a 5=14. (2)由等比中项,化简条件得a 23+2a 3a 5+a 25=25,即(a 3+a 5)2=25,∵a n >0,∴a 3+a 5=5.(3)由等比数列的性质知a 5a 6=a 1a 10=a 2a 9=a 3a 8=a 4a 7=9, ∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10) =log 3[(a 1a 10)(a 2a 9)(a 3a 8)(a 4a 7)(a 5a 6)] =log 395=10. 【方法归纳】有关等比数列的计算问题,基本方法是运用方程思想列出基本量a 1和q 的方程组,先解出a 1和q ,然后利用通项公式求解.但有时运算稍繁,而利用等比数列的性质解题,却简便快捷,为了发现性质,要充分发挥项“下标”的指导作用.【跟踪训练1】(1)已知数列{a n }为等比数列,a 3=3,a 11=27,求a 7. (2)已知{a n }为等比数列,a 2·a 8=36,a 3+a 7=15,求公比q .【解析】(1)法一:⎩⎪⎨⎪⎧a 1q 2=3,a 1q 10=27相除得q 8=9.所以q 4=3,所以a 7=a 3·q 4=9.法二:因为a 27=a 3a 11=81,所以a 7=±9, 又a 7=a 3q 4=3q 4>0,所以a 7=9.(2)因为a 2·a 8=36=a 3·a 7,而a 3+a 7=15, 所以a 3=3,a 7=12或a 3=12,a 7=3. 所以q 4=a 7a 3=4或14,所以q =±2或q =±22.题型二 灵活设项求解等比数列【例2】已知4个数成等比数列,其乘积为1,第2项与第3项之和为-32,则此4个数为________________.【解析】设此4个数为a ,aq ,aq 2,aq 3.则a 4q 6=1,aq (1+q )=-32,① 所以a 2q 3=±1,当a 2q 3=1时,q >0,代入①式化简可得q 2-14q +1=0,此方程无解;当a 2q 3=-1时,q <0,代入①式化简可得q 2+174q +1=0,解得q =-4或q =-14.当q =-4时,a =-18;当q =-14时,a =8.所以这4个数为8,-2,12,-18或-18,12,-2,8.【变式探究】本例中的条件换为“前三个数依次成等比数列,它们的积是-8,后三个数依次成等差数列,它们的积是-80”,则这4个数为__________________.【答案】1,-2,4,10或-45,-2,-5,-8【解析】由题意设此四个数为bq ,b ,bq ,a ,则有⎩⎪⎨⎪⎧b 3=-8,2bq =a +b ,ab 2q =-80,解得⎩⎪⎨⎪⎧a =10,b =-2,q =-2,或⎩⎪⎨⎪⎧a =-8,b =-2,q =52.所以这四个数为1,-2,4,10或-45,-2,-5,-8.【方法归纳】巧设等差数列、等比数列的方法(1)若三数成等差数列,常设成a -d ,a ,a +d .若三数成等比数列,常设成aq ,a ,aq 或a ,aq ,aq 2.(2)若四个数成等比数列,可设为a q ,a ,aq ,aq 2.若四个正数成等比数列,可设为a q 3,aq ,aq ,aq 3.题型三 等比数列与等差数列的综合应用【例3】在公差为d (d ≠0)的等差数列{a n }和公比为q 的等比数列{b n }中,已知a 1=b 1=1,a 2=b 2,a 8=b 3. (1)求d ,q 的值;(2)是否存在常数a ,b ,使得对任意n ∈N *,都有a n =log a b n +b 成立?若存在,求出a ,b 的值;若不存在,请说明理由.【解析】(1)由a 2=b 2,a 8=b 3,得⎩⎪⎨⎪⎧ a 1+d =b 1q ,a 1+7d =b 1q 2,即⎩⎪⎨⎪⎧1+d =q ,1+7d =q 2, 解得⎩⎪⎨⎪⎧ d =5,q =6,或⎩⎪⎨⎪⎧d =0,q =1,(舍去).(2)由(1)知a n =1+(n -1)·5=5n -4, b n =b 1q n -1=6n -1.假设存在常数a ,b ,使得对任意n ∈N *,都有a n =log a b n +b 成立,则5n -4=log a 6n -1+b , 即5n -4=n log a 6+b -log a 6.比较系数,得⎩⎪⎨⎪⎧log a 6=5,b -log a 6=-4,所以⎩⎪⎨⎪⎧a =615,b =1.故存在a =615,b =1,使得对任意n ∈N *,都有a n =log a b n +b 成立.【解题关键】 (1)联立方程组可求.(2)假设存在,由(1)得出方程,注意比较系数可求a ,b. 【方法归纳】求解等差、等比数列综合问题的技巧(1)理清各数列的基本特征量,明确两个数列间各量的关系.(2)发挥两个数列的基本量a 1,d 或b 1,q 的作用,并用好方程这一工具. (3)结合题设条件对求出的量进行必要的检验.【跟踪训练2】已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n, 若a 1,a k ,S k +2成等比数列,求正整数k 的值。
4.1.1数列的概念要点一数列的有关概念1.定义:按照确定的顺序排列的一列数.2.项:数列中的每一个数叫做这个数列的项;排在第一位的数称为这个数列的第1项(也叫首项).3.一般形式:a1,a2,a3,…,a n,…,简记为{}n a.【重点总结】(1)数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(2)数列1,2,3,4,5和数列5,3,2,4,1为两个不同的数列,因为二者的元素顺序不同,而集合{1,2,3,4,5}与这两个数列也不相同,一方面形式上不一致,另一方面,集合中的元素具有无序性.如果数列{a n}的第n项a n与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.要点四数列与函数的关系从函数的观点看,数列可以看作是特殊的函数,关系如下表:【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1){0,1,2,3,4}是有穷数列.()(2)数列1,2,3,4和数列1,2,4,3是同一数列.()(3)所有自然数能构成数列.()(4)数列1,3,5,7,…,2n +1,…的通项公式是a n =2n +1.( ) 2.若数列{a n }满足a n =2n ,则数列{a n }是( ) A .递增数列 B .递减数列 C .常数列 D .摆动数列【答案】A【解析】a n +1-a n =2n +1-2n =2n >0,∴a n +1>a n ,即{a n }是递增数列.故选A. 3.(多选题)数列-1,1,-1,1,…的通项公式可以为( ) A .a n =(-1)n -1 B .a n =(-1)n C .a n =cos n π D .a n =sin n π 【答案】BC4.数列1,2,7,10,13,…中的第26项为________. 【答案】219【解析】因为a 1=1=1,a 2=2=4,a 3=7,a 4=10,a 5=13,所以a n =3n -2, 所以a 26=3×26-2=76=219.题型一 数列的概念和分类1.数列-11,-20,-27,…,n 2-12n ,…是( ) A .递增数列 B .递减数列 C .常数列 D .摆动数列 【答案】D【解析】该数列从第2项起,第n 项与第n -1项的差为(n 2-12n )-[(n -1)2-12(n -1)]=2n -13,所以该数列的前6项单调递减,从第6项往后单调递增,故选D. 2.已知下列数列:①1,2,22,23,…,260;②1,0.5,0.52,0.53,…; ③-2,2,-2,2,…;④3,3,3,3,…;⑤0,12,23,34,…,n -1n ,…;⑥1,0,-1,…,sin n π2,….其中有穷数列是______;无穷数列是________; 递增数列是________;递减数列是________; 摆动数列是________;常数列是________.(填序号) 【答案】○1 ○2○3○4○5○6 ○1○5 ○2 ○3○6 ○4 【方法归纳】判断数列是哪一种类型的数列时要紧扣概念及数列的特点.对于递增、递减、摆动还是常数列要从项的变化趋势来分析;而有穷还是无穷数列则看项的个数有限还是无限. 题型二 由数列的前n 项求通项公式【例1】写出数列的一个通项公式,使它的前4项是下列各数: (1)-1,12,-13,14;(2)3,3,15,21; (3)0.9,0.99,0.999,0.999 9; (4)3,5,3,5.【解析】(1)任何一个整数都可以看成一个分数,所以此数列可以看做是自然数列的倒数,正负相间用(-1)的多少次幂进行调整,其一个通项公式为a n =(-1)n ·1n.(2)数列可化为3,9,15,21,即3×1,3×3,3×5,3×7,…,每个根号里面可分解成两数之积,前一个因数为常数3,后一个因数为2n -1,故原数列的一个通项公式为a n =3(2n -1)=6n -3. (3)原数列可变形为⎝⎛⎭⎫1-110,⎝⎛⎭⎫1-1102,⎝⎛⎭⎫1-1103,⎝⎛⎭⎫1-1104,…,故数列的一个通项公式为a n =1-110n . (4)数列给出前4项,其中奇数项为3,偶数项为5,所以通项公式的一种表示方法为a n =⎩⎪⎨⎪⎧3 (n 为奇数)5 (n 为偶数).此数列还可以这样考虑,3与5的算术平均数为3+52=4,4+1=5,4-1=3,因此数列的一个通项公式又可以写为a n =4+(-1)n . 【方法归纳】(1)据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征: ①分式中分子、分母的特征; ②相邻项的变化特征; ③拆项后的特征;④各项符号特征等,并对此进行归纳、联想.(2)观察、分析数列中各项的特点是最重要的,观察出项与序号之间的关系、规律,利用我们熟知的一些基本数列(如自然数列、奇偶数列等)转换而使问题得到解决,对于正负符号变化,可用(-1)n 或(-1)n +1来调整. 【跟踪训练】写出下列数列的一个通项公式:(1)0,3,8,15,24,…; (2)1,-3,5,-7,9,…; (3)112,223,334,445,…;(4)1,11,111,1 111,….【解析】(1)观察数列中的数,可以看到0=1-1,3=4-1,8=9-1,15=16-1,24=25-1,…,所以它的一个通项公式是a n =n 2-1(n ∈N *).(2)数列各项的绝对值为1,3,5,7,9,…,是连续的正奇数,并且数列的奇数项为正,偶数项为负,所以它的一个通项公式为a n =(-1)n +1(2n -1)(n ∈N *).(3)此数列的整数部分1,2,3,4,…恰好是序号n ,分数部分与序号n 的关系为nn +1,故所求的数列的一个通项公式为a n =n +nn +1=n 2+2n n +1(n ∈N *).(4)原数列的各项可变为19×9,19×99,19×999,19×9 999,…,易知数列9,99,999,9 999,…的一个通项公式为a n =10n -1,所以原数列的一个通项公式为a n =19(10n -1)(n ∈N *).题型三 数列的单调性【例2】已知函数f (x )=1-2xx +1(x ≥1),构造数列a n =f (n )(n ∈N *).(1)求证:a n >-2;(2)数列{a n }是递增数列还是递减数列?为什么?【解析】(1)因为f (x )=1-2x x +1=3-2(x +1)x +1=-2+3x +1,所以a n =-2+3n +1.因为n ∈N *,所以a n >-2.(2)数列{a n }为递减数列.理由如下:因为a n =-2+3n +1,所以a n +1-a n =⎝⎛⎭⎫-2+3n +2-⎝⎛⎭⎫-2+3n +1=3n +2-3n +1=-3(n +2)(n +1)<0 即a n +1<a n ,所以数列{a n }为递减数列.先化简f (x )的解析式,再构造{a n },然后判断a n +1-a n 的符号. 【方法归纳】用作差法判断数列的单调性关键是判断符号,为此,一般要对差式进行通分,因式分解等变形;若用作商法则要特别注意分母的符号.【跟踪训练2】已知数列{a n }的第n 项可以表示为2n3n +1,n ∈N *,试判断数列的增减性.【解析】因为{a n }的第n 项为2n 3n +1,所以{a n }的第n +1项为2(n +1)3(n +1)+1.因为2(n +1)3(n +1)+1-2n3n +1=2n +23n +4-2n3n +1=(2n +2)(3n +1)-2n (3n +4)(3n +4)(3n +1)=6n 2+8n +2-6n 2-8n (3n +4)(3n +1)=2(3n +4)(3n +1)>0,所以2(n +1)3(n +1)+1>2n 3n +1,所以数列{a n }的第n +1项大于第n 项,故数列{a n }是递增数列.【易错辨析】忽视数列中n ∈N *致错例3 已知数列{a n }的通项公式为a n =n 2-5n +4,则a n 的最小值为________. 【答案】-2【解析】∵a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 可知对称轴方程为n =52,又n ∈N *,故n =2或3时, a n 有最小值,且a 2=a 3=-2. 【易错警示】1. 出错原因在求出a n =⎝⎛⎭⎫n -522-94时,忘记n ∈N *了,导致得出错误答案:-94. 2.纠错心得数列的定义域是正整数集合,是特殊的函数,所以解题时一定不要忘记n ∈N *这一条件.一、单选题1.某新冠疫苗接种点统计了一周(星期一至星期日)每天接种加强针的人数(单位:百人)如下:2,4,6,10,16,( ),42,因不慎丢失星期六的数据,根据数据的规律,则星期六的数据为( ) A .18 B .24 C .26 D .28【答案】C 【分析】通过观察数列的规律,可得到从第三个数据起,每个数据等于它前面两个数据之和,根据这一结论可推得结果. 【解析】从第三个数据起,每个数据等于它前面两个数据之和,所以星期六的数据为101626,+=故选:C.2.数列1,2, )A .8项B .7项C .6项D .5项【答案】A 【分析】【解析】,故通项公式为n a 8项.故选:A.3.若数列{}n a 满足12a =,11n n n a a a +=-,则2022a =( ) A .2 B .12C .-1D .-2【答案】C 【分析】由题意得数列{}n a 是周期为3的数列,即可得解. 【解析】由12a =,代入11n n n a a a +=-可得21=2a ,同理可得31=a -.由11n n n a a a +=-,得1=1n n na a a +-,从而有+12+1==1111=11n n n n n n n na a a a a a a a +------, 即2=11n na a +--,从而有3+1===11111n nn n na a a a a +-----, 所以数列{}n a 的周期为3, 所以2022a =36743=1a a ⨯=-. 故选:C.4.已知数列{}n a 满足1124n n n a a a ++=+且31a =,则2022a 的值为( ) A .1 B .2 C .4 D .-4【答案】A 【分析】根据数列的递推公式,可知数列{}n a 是周期为3的周期数列,由此即可求出结果. 【解析】因为数列{}n a 满足1124n n n a a a ++=+且31a =, 所以32324a a a =+,34424a a a =+, 所以2424a a =-=,, 又21224a a a =+,54524a a a =+ 所以1542a a ==-,, 又65624a a a =+,所以61a =所以1234564,2,1,4,2,1a a a a a a ==-===-=,……所以数列{}n a 是周期为3的周期数列,所以2022674331a a a ⨯===. 故选:A.5.已知数列{}n a 满足12a =,111n n n a a a +-=+,则2021a =( )A .2B .13C .12-D .3-【答案】A 【分析】写出数列的前5项,即可得出数列{}n a 是以4为周期的数列,202112a a ==. 【解析】解:因为12a =,所以由已知可得2211213a -==+,311131213a -==-+,41123112a --==--+, 531231a --==-+.可以判断出数列{}n a 是以4为周期的数列, 所以202112a a ==. 故选:A6.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项都代表太极衍生过程,是中华传统文化中隐藏着的世界数学史上第一道数列题,其中一列数如下:0,2,4,8,12,18,24,32,40,50,……,按此规律得到的数列记为{}n a ,则15a =( ) A .98 B .112 C .128 D .132【答案】B 【分析】根据题意可得奇数项的通项公式,即可求出. 【解析】奇数项为0,4,12,24,40,…,即222221131517191,,,,,22222-----可得当n 为奇数时,212n n a -=,2151511122a -∴==. 故选:B.7.数列{}n a 满足11a =,21a =,且12n n n a a a --=-,()3n ≥,记数列{}n a 的前n 项和为n S ,则20S =( ) A .0 B .1C .2D .14【答案】C 【分析】利用递推公式求出数列{}n a 的前20项,直接求和. 【解析】因为11a =,21a =,且12n n n a a a --=-,()3n ≥,所以321110a a a -=-==;432011a a a ==--=-;543101a a a =-=--=-; 654110a a a =---==;()765011a a a =--=-=;876101a a a -=-==;同理递推可得:90a =;101a =-;111a =-;120a =;131a =;141a =;150a =;161a =-;171a =-;180a =;191a =;201a =.所以()()()()()()2011001111001111001111S =++++-+-+++++-+-+++++-+-++=2. 故选:C8.在数列{}n a 中,11a =,23a =,35a =,31n n a a +=,则515252021log log log a a a ++⋅⋅⋅+=( ) A .0 B .1 C .5log 3 D .5log 15【答案】B 【分析】计算得到数列周期为6,化简得到原式()2515log a a a =⋅⋅⋅⋅,计算得到答案. 【解析】31n n a a +=,故361n n a a ++=,故6n n a a +=,数列的周期为6.11a =,23a =,35a =,41a =,513a =,615a =,1234561a a a a a a =,()()515252021521212502155log log log lo l l g og o 5g 1a a a a a a a a a ⋅++⋅⋅⋅+=⋅⋅⋅=⋅⋅⋅⋅==.故选:B.二、多选题9.已知数列{a n }中,a 1=3,a n +1=-11n a +,能使a n =3的n 可以为( ) A .22 B .24 C .26 D .28【答案】AD 【分析】通过计算找到数列的周期,即得解. 【解析】解:由a 1=3,a n +1=-11n a +,得a 2=-14,a 3=-43,a 4=3. 所以数列{a n }是周期为3的数列,故a 22=a 28=3. 故选:AD10.下列四个选项中,正确的是( ) A .数列的图象是一群孤立的点B .数列1,1-,1,1-,…与数列1-,1,1-,1,…是同一数列C .数列23,34,45,56,…的一个通项公式是()*1n n a n N n =∈+ D .数列12,14,…,12n是递减数列 【答案】AD 【分析】利用数列通项公式、数列的图象、数列的定义以及数列的单调性依次判断四个选项即可. 【解析】解:对于A ,由数列的通项公式以及*n N ∈可知,数列的图象是一群孤立的点,故选项A 正确; 对于B ,由于两个数列中的数排列的次序不同,因此不是同一数列,故选项B 错误; 对于C ,当通项公式为1n n a n =+时,11223a =≠,不符合题意,故选项C 错误;对于D ,数列11,24,⋯,12n是递减数列,故选项D 正确.故选:AD.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题11.在数学课堂上、教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列,例如将数列1,2进行构造,第一次得到数列1,3,2;第二次得到数列1,4,3,5,2;第()*n n ∈N 次得到数列1,1x ,2x ,3x ,…,k x ,2(共2k +项),则k =______. 【答案】21n -【分析】根据第一次得到数列1,3,2,共1321=+项,第二次得到数列1,4,3,5,2,共2521=+项,第三次得到数列1,5,4,7,3,8,5,7,2,共3921=+项,得到规律求解. 【解析】第一次得到数列1,3,2,共1321=+项; 第二次得到数列1,4,3,5,2,共2521=+项;第三次得到数列1,5,4,7,3,8,5,7,2,共3921=+项;依此第n 次得到数列1,1x ,2x ,3x ,…,k x ,2,共221n k +=+项; 解得21n k =-, 故答案为:21n -12.数列{a n }的通项公式为a n =2,3,n n n n +⎧⎨-⎩是奇数是偶数,则a 3+a 6=________.【答案】8 【解析】a 3+a 6=(3+2)+(6-3)=5+3=8.13.已知数列{}n a 满足12211,2,()n na a a n N a ++==-=-∈,则该数列前26项的和为____.【答案】10- 【分析】根据递推公式可以求出数列的周期,利用周期进行求解即可. 【解析】因为12211,2,()n na a a n N a ++==-=-∈,所以3111a a =-=-,42112a a =-=,5311a a =-=,6412a a =-=-,因此该数列的周期为4,且1234131(2)(1)22a a a a +++=+-+-+=-, 所以该数列前26项的和为:361(2)102-⨯++-=-,故答案为:10-四、解答题14.若数列{}n a 满足12a =,111n n na a a ++=-,n *∈N ,求2021a . 【答案】2【分析】 计算出数列{}n a 的前5项的值,可知数列{}n a 为周期数列,结合数列的周期性可得结果.【解析】解:因为12a =,111n n n a a a ++=-,则1211123112a a a ++===---,23211311132a a a , 3431111211312a a a ,454111321113a a a ,所以,数列{}n a 是周期为4的数列,因此,20214505112a a a ⨯+===.15.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式,并在横线上和括号中分别填上第5项的图形和点数.(1)(2)(3)【答案】(1)第5项图形见解析,通项公式为54n a n =-,第5项的点数为521a =(2)第5项图形见解析,通项公式为32n b n =-,第5项的点数为513b =(3)第5项图形见解析,通项公式为()2n c n n =+,第5项的点数为535c =【分析】(1)根据图形中点数的规律可作出第5项的图形,并根据各项的点数可归纳出数列的通项公式;(2)根据图形中点数的规律可作出第5项的图形,并根据各项的点数可归纳出数列的通项公式; (3)根据图形中点数的规律可作出第5项的图形,并根据各项的点数可归纳出数列的通项公式. (1)解:设第n 项的点数为()n a n *∈N , 11a =,215a =+,3125a =+⨯,4135a =+⨯,该数列的第5项为514521a =+⨯=,数列{}n a 的一个通项公式为()15154n a n n =+-=-,第5项的图形如下图所示:(2)解:设第n 项的点数为()n b n N *∈, 11b =,213b =+,3123b =+⨯,4133b =+⨯,该数列的第5项为514313b =+⨯=,数列{}n b 的一个通项公式为()13132n b n n =+-=-,第5项的图形如下图所示:(3)解:设第n 项的点数为()n c n N *∈, 113c =⨯,224c =⨯,335c =⨯,446c =⨯,该数列的第5项为55735c =⨯=,数列{}n c 的一个通项公式为()2n c n n =+,第5项的图形如下图所示:。
【数学新教材】选择性必修二4.3 等比数列4.3.1 等比数列的概念基础过关练题组一 等比数列的概念及其应用1.以下条件中,能判定数列是等比数列的有( ) ①数列1,2,6,18,…;②数列{a n }中,已知a2a 1=2,a3a 2=2;③常数列a,a,…,a,…; ④数列{a n }中,a n+1a n=q(q ≠0),其中n ∈N *.A.1个B.2个C.3个D.4个 2.有下列四个说法:①等比数列中的某一项可以为0; ②等比数列中公比的取值范围是(-∞,+∞);③若一个常数列是等比数列,则这个常数列的公比为1; ④若b 2=ac,则a,b,c 成等比数列. 其中说法正确的个数为( ) A.0 B .1 C .2 D .33.(1)已知数列{a n }满足a 1=78,且a n+1=12a n +13.求证:{a n -23}是等比数列;(2)已知数列{a n }的前n 项和为S n ,且S n =13(a n -1)(n ∈N *).证明:数列{a n }是等比数列.题组二等比中项4.2-√3与2+√3的等比中项是()A.1B.-1C.2D.-1或15.(2020重庆一中高二上期中)已知等差数列{a n}的公差为2,且a3是a1与a7的等比中项,则a1等于()A.6B.4C.3D.-16.已知a是1,2的等差中项,b是-1,-16的等比中项,则ab等于()A.6B.-6C.±6D.±127.(多选)(2020山东临沂高二期末)已知三个数1,a,4成等比数列,则圆锥曲线x2+y 2a=1的离心率为()A.√22B.√32C.√62D.√3题组三等比数列的通项公式8.在等比数列{a n}中,a1=32,公比q=-12,则a6=()A.1B.-1C.2D.129.在等比数列{a n}中,a3+a4=4,a2=2,则公比q等于()A.2B.1或-2C.1D.-1或210.(2020山东济宁实验中学高二上期中)在等比数列{a n}中,a1=3,且4a1,2a2,a3成等差数列,则a5=()A.24B.48C.96D.-4811.(2019陕西西安一中高二上月考)现存入银行8万元,年利率为2.50%,若采用一年期自动转存业务,则第十年末的本利和为()A.8×1.0258万元B.8×1.0259万元C.8×1.02510万元D.8×1.02511万元是此数列的12.已知某等比数列的前三项依次为x,2x+2,3x+3,那么-272()A.第2项B.第4项C.第6项D.第8项13.已知等比数列{a n},若a3=2,a2+a4=20,求数列{a n}的通项公式.314.(2020江西九江一中高二上期中)已知数列{a n}的前n项和为S n,a1=1,S n+1=4a n+1,设b n=a n+1-2a n.(1)证明数列{b n}是等比数列;(2)数列{c n}满足c n=1(n∈N*),设T n=c1c2+c2c3+c3c4+…+c n c n+1,求log2b n+3T20.题组四 等比数列的性质及其综合运用15.(2019湖南怀化三中高二上期中)等比数列{a n }满足a 1=3,a 3=6,则a 3+a 5+a 7=( )A.21B.42C.63D.8416.在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8a 9=-98,则1a 7+1a 8+1a 9+1a 10=( )A.-56B.-53C.-83D.-10317.已知数列{a n }是等比数列,则下列说法正确的个数是( )①数列{a n 2}是等比数列;②数列{2+a n }是等比数列; ③数列{lg a n }是等比数列; ④数列{na n }是等比数列; ⑤数列{1an}是等比数列;⑥数列{a n +a n+1}是等比数列. A.2 B.3 C.4 D.518.(2020福建福州八县一中高二上期中)已知等比数列{a n }的各项均为正数,且a 10a 11+a 8a 13=64,则log 2a 1+log 2a 2+…+log 2a 20=( ) A.60 B.50 C.40 D.20+log 2519.(1)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),求a 2的值;(2)已知等比数列{a n }为递增数列.若a 1>0,且2(a 4+a 6)=5a 5,求数列{a n }的公比q.20.在等比数列{a n}(n∈N*)中,a1>1,公比q>0.设b n=log2a n,且b1+b3+b5=6,b1b3b5=0.(1)求证:数列{b n}是等差数列;(2)求{b n}的前n项和S n及{a n}的通项公式.能力提升练题组一等比数列的概念及其应用1.(2020天津耀华中学高二上期中,)若b≠0,则“a,b,c成等比数列”是“b=√ac”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(2020陕西西安电子科技大学附属中学高二上期中,)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还粟a 升,b 升,c 升,1斗为10升,则下列判断正确的是( ) A.a,b,c 成公比为2的等比数列,且a=507B.a,b,c 成公比为2的等比数列,且c=507C.a,b,c 成公比为12的等比数列,且a=507D.a,b,c 成公比为12的等比数列,且c=5073.()已知a,b,c 均为正数,若a+b+c,b+c-a,c+a-b,a+b-c 成等比数列,且公比为q,则q 3+q 2+q=( ) A.0 B.1 C.3 D.不确定 4.(2020江西九江一中高二上期中,)已知三角形的三边构成等比数列,若它们的公比为q,则q 的取值范围是 . 题组二 等比数列的通项公式 5.(2020山东济宁实验中学高二上期中,)等比数列{a n }满足a 4+a 7=4,a 5·a 6=3,则a 1+a 10=( ) A.-283B.-13C.13D.2836.()已知数列{a n}满足a1=1,a n+1=a na n+2(n∈N*).若b n=log2(1a n+1),则数列{b n}的通项公式b n=()A.12n B.n-1 C.n D.2n7.(2020北京石景山高二上期末,)已知数列{a n}是各项均为正数的等比数列,且a2=1,a3+a4=6.设数列{a n-n}的前n项和为S n,那么S4S5(填“>”“<”或“=”).8.()已知数列{a n}的前n项和为S n,数列{b n}中,b1=a1,b n=a n-a n-1(n≥2),且a n+S n=n.(1)设c n=a n-1,求证:{c n}是等比数列;(2)求数列{b n}的通项公式.9.(2020河南郑州高二期中,)在数列{a n}中,S n为数列{a n}的前n项和,2S n+2n=3a n(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=1+a na n·a n+1,数列{b n}的前n项和为T n,证明T n<14.题组三等比数列的性质及其综合运用10.(2020湖南长沙高二上期中,)在等比数列{a n}中,a2=2,a4=8,a n>0,则数列{log2a n}的前n项和为()A.n(n+1)2B.(n-1)22C.n(n-1)2D.(n+1)2211.(2020山东聊城高二上期末,)已知数列{a n}满足a n≠0,则“a1a4=a2a3”是“{a n}为等比数列”的()A.充分不必要条件B.充分必要条件C.必要不充分条件D.既不充分也不必要条件12.(2019广东湛江一中高二月考,)已知数列{a n}是等比数列,数列{b n}是等差数列,若a1a6a11=-3√3,b1+b6+b11=7π,则tan b3+b91−a4a8的值是()A.-√3B.√22C.-√22D.√313.(2020山东聊城高二上期末,)各项互不相等的等比数列{a n}满足a5·a7=a m·a n,则1m +4n的最小值为.14.()已知等差数列{a n}的前n项和为S n,等比数列{b n}的各项均为正数,公比是q,且满足a1=3,b1=1,b2+S2=12,S2=b2q.(1)求数列{a n}与{b n}的通项公式;(2)设c n=3b n-λ·2a n3,若数列{c n}是递增数列,求实数λ的取值范围.15.(2020辽宁省实验中学高二上期中,)黄河被称为我国的母亲河,它的得名据说来自于河水的颜色,黄河因携带大量泥沙所以河水呈现黄色,黄河的水源来自青海高原,从源头开始1000千米的河水是非常清澈的.只是在刘家峡水库附近,清澈的黄河和携带大量泥沙的洮河汇合,在两条河流的交汇处,水的颜色一清一浊,互不交融,形成了一条奇特的水中分界线,设黄河和洮河在汛期的水流量均为2000m3/s,黄河水的含沙量为2kg/m3,洮河水的含沙量为20kg/m3,假设从交汇处开始沿岸设有若干个观测点,两股河水在流经相邻的观测点的过程中,其混合效果相当于两股河水在1秒内交换1000m3的水量,即从洮河流入黄河1000m3的水混合后,又从黄河流入1000m3的水到洮河再混合.(1)求经过第二个观测点时,两股河水的含沙量;(2)从第几个观测点开始,两股河水的含沙量之差小于0.01kg/m3?(不考虑泥沙沉淀)答案全解全析 基础过关练1.A ①中,数列不符合等比数列的定义,故不是等比数列;②中,前3项是等比数列,多于3项时,无法判定,故不能判定是等比数列;③中,当a=0时,不是等比数列;④中,数列符合等比数列的定义,是等比数列.故选A.2.B 对于①,因为等比数列中的各项都不为0,所以①不正确;对于②,因为等比数列的公比不为0,所以②不正确;对于③,若一个常数列是等比数列,则这个常数不为0,根据等比数列的定义知此数列的公比为1,所以③正确;对于④,只有当a,b,c 都不为0时,a,b,c 才成等比数列,所以④不正确.因此,正确的说法只有1个,故选B.3.证明 (1)∵a n+1=12a n +13,∴a n+1-23=12a n +13-23=12(a n -23),又a 1-23=78-23=524≠0,∴{a n -23}是首项为524,公比为12的等比数列.(2)∵S n =13(a n -1),∴S n+1=13(a n+1-1),两式相减得,a n+1=13a n+1-13a n ,即a n+1=-12a n ,又当n=1时,a 1=S 1=13(a 1-1),∴a 1=-12.∴数列{a n }是首项为-12,公比为-12的等比数列.4.D 由题意可设2-√3与2+√3的等比中项是m,则m 2=(2-√3)(2+√3)=1,解得m=-1或m=1.故选D.5.B 依题意得,a 32=a 1a 7,∴(a 1+4)2=a 1(a 1+12),解得a 1=4.故选B. 6.C 由题意可得,a=1+22=32,b 2=(-1)×(-16)=16,解得b=±4,∴ab=±6.7.AD 由三个数1,a,4成等比数列, 得a=±2.当a=2时,曲线x 2+y22=1为焦点在y 轴上的椭圆,此时离心率e=√2−1√2=√22. 当a=-2时,曲线x 2-y 22=1为焦点在x 轴上的双曲线,此时离心率e=√2+11=√3. 故选AD.8.B 由题知a 6=a 1·q 5=32×(-12)5=-1.9.B 设等比数列{a n }的首项为a 1, 根据题意,得{a 1q 2+a 1q 3=4,a 1q =2,解得{a 1=2,q =1或{a 1=−1,q =−2.故选B.10.B 设等比数列{a n }的公比为q, 依题意得,4a 2=4a 1+a 3, 即4a 1q=4a 1+a 1q 2. 又a 1=3≠0,∴q 2-4q+4=0,解得q=2, 则a 5=a 1q 4=3×24=48,故选B.11.C 由题意得,每年末的本利和依次构成以1+2.50%=1.025为公比,8×1.025为首项的等比数列,所以第十年末的本利和为8×1.025×1.02510-1=8×1.02510万元.故选C.12.B 由题意得,(2x+2)2=x(3x+3), 解得x=-1或x=-4.当x=-1时,2x+2=3x+3=0,不符合题意,舍去,∴x=-4. 此时2x+2=-6,3x+3=-9,∴该等比数列的首项为-4,公比为32.设-272为此数列的第n 项,则-4×(32)n -1=-272,解得n=4.故选B.13.解析 设等比数列{a n }的首项为a 1,公比为q,则q ≠0. 由题意得,a 2=a3q=2q ,a 4=a 3q=2q,∴2q+2q=203,解得q=13或q=3.当q=13时,a 1=18,∴a n =18×(13)n -1=2×33-n .当q=3时,a 1=29, ∴a n =29×3n-1=2×3n-3.综上,当q=13时,a n =2×33-n ,n ∈N *;当q=3时,a n =2×3n-3,n ∈N *.14.解析 (1)证明:由S n+1=4a n +1, ① 得当n ≥2时,S n =4a n-1+1,② ①-②得,a n+1=4a n -4a n-1, 所以a n+1-2a n =2(a n -2a n-1),又b n =a n+1-2a n ,所以b n =2b n-1(n ≥2).当n=1时,由S n+1=4a n +1得,a 1+a 2=4a 1+1,又a 1=1,所以a 2=3a 1+1=4. 所以b 1=a 2-2a 1=2.所以数列{b n }是首项为2,公比为2的等比数列. (2)由(1)可知b n =2n , 则c n =1log 2b n +3=1n+3(n ∈N *).所以T n =c 1c 2+c 2c 3+c 3c 4+…+c n c n+1 =14×5+15×6+16×7+…+1(n+3)(n+4)=(14-15)+(15-16)+…+1n+3-1n+4=14-1n+4=n4(n+4).因此,T 20 =204×(20+4)=524.15.B 设等比数列{a n }的公比为q,易知a 1,a 3,a 5,a 7构成等比数列,且a 3=a 1q 2=3q 2=6,得q 2=2.所以a 3+a 5+a 7=a 3+a 3q 2+a 3q 4=6+12+24=42.故选B. 16.B ∵数列{a n }是等比数列, ∴a 7a 10=a 8a 9. ∴1a 7+1a 8+1a 9+1a 10=(1a 7+1a 10)+(1a 8+1a 9)=a 7+a 10a 7a 10+a 8+a 9a 8a 9=a 7+a 10a 8a 9+a 8+a 9a 8a 9 =a 7+a 8+a 9+a 10a 8a 9=158-98=-53.17.A 设等比数列{a n }的公比为q,b n =a n 2,则b n+1b n =a n+12a n 2=(a n+1a n)2=q 2,∴{a n 2}为等比数列,①正确;当a n =3n 时,2+a n+12+a n≠常数,②错误;当a n <0时,lg a n 无意义,③错误;设c n =na n ,则c n+1c n =(n+1)a n+1na n =(n+1)q n ≠常数,④错误;{1a n }是以1a 1为首项,1q为公比的等比数列,⑤正确;当数列{a n }的公比为-1时,a n +a n+1=0,而等比数列的各项均不为0,∴⑥错误.故选A.18.B 由等比数列的性质可得,a 10a 11+a 8a 13=2a 10a 11=64,∴a 10a 11=32,∴a 1a 20=a 2a 19=a 3a 18=…=a 10a 11=32.结合对数的运算法则可得,log 2a 1+log 2a 2+…+log 2a 20=log 2(a 1a 2…a 20)=log 23210=50.故选B.19.解析 (1)设等比数列{a n }的公比为q,由a 3a 5=4(a 4-1),得a 42=4(a 4-1),解得a 4=2,∴q 3=a 4a 1=8,∴q=2,∴a 2=a 1q=12.(2)由2(a 4+a 6)=5a 5,得2(a 4+a 4q 2)=5a 4q,易知a 4≠0,所以2+2q 2=5q,即(2q-1)(q-2)=0,解得q=2或q=12.因为等比数列{a n }为递增数列,且a 1>0, 所以q>1,所以q=2.20.解析 (1)证明:因为b n =log 2a n , 所以b n+1-b n =log 2a n+1-log 2a n =log 2a n+1a n=log 2q(q>0)为常数,所以数列{b n }是公差为log 2q 的等差数列. (2)设等差数列{b n }的公差为d,因为b 1+b 3+b 5=6,所以(b 1+b 5)+b 3=2b 3+b 3=3b 3=6,所以b 3=2. 因为a 1>1,所以b 1=log 2a 1>0, 又因为b 1b 3b 5=0,所以b 5=0,即{b 3=2,b 5=0,即{b 1+2d =2,b 1+4d =0,解得{b 1=4,d =−1,因此S n =4n+n(n -1)2×(-1)=9n -n 22,所以d=log 2q=-1,解得q=12, b 1=log 2a 1=4,解得a 1=16, 所以a n =a 1q n-1=25−n(n ∈N *).能力提升练1.B ∵b ≠0,且b=√ac ,∴b 2=ac,且a,b,c 均不为0,∴a,b,c 成等比数列,因此必要性成立;由a,b,c 成等比数列得,b 2=ac,从而b=±√ac ,因此充分性不成立.故选B.2.D 依题意得,a,b,c 成等比数列,且公比为12,∴b=12a,c=12b=14a,∴a+12a+14a=5×10,解得a=2007,∴c=14a=507,故选D.3.B 依题意,有q 3+q 2+q=a+b -ca+b+c +c+a -ba+b+c +b+c -aa+b+c=1.4.答案 (√5-12,√5+12) 解析 由题意可设三角形的三边分别为aq,a,aq,a>0,q>0,因为三角形中任意两边之和大于第三边,所以{aq +a >aq,a q +aq >a,a +aq >a q ,解得-1+√52<q<1+√52.5.D ∵{a n }是等比数列,∴a 5a 6=a 4a 7=3,又a 4+a 7=4,∴a 4,a 7是一元二次方程x 2-4x+3=0的两根,解此方程得x=1或x=3. 当a 4=1,a 7=3时,a 1=a 42a 7=13,a 10=a 72a 4=9,∴a 1+a 10=283.当a 4=3,a 7=1时,同理可得a 1=9,a 10=13,∴a 1+a 10=283.故选D.6.C 由a n+1=a n a n +2,得1a n+1=1+2a n ,所以1a n+1+1=2(1a n+1),又1a1+1=2,所以数列{1an+1}是首项为2,公比为2的等比数列,所以1a n+1=2·2n-1=2n ,所以b n =log 2(1a n+1)=log 22n =n.故选C.7.答案 <解析 设正项等比数列{a n }的首项为a 1,公比为q,则q>0, 所以{a 2=a 1q =1,a 3+a 4=a 1q 2+a 1q 3=6,解得{a 1=12,q =2或{a 1=−13,q =−3(舍去). 所以a n =a 1q n-1=2n-2,所以S 5-S 4=a 5-5=23-5=3>0,故S 5>S 4. 8.解析 (1)证明:∵a n +S n =n,① ∴a n+1+S n+1=n+1,② ②-①得a n+1-a n +a n+1=1. ∴2a n+1=a n +1, ∴2(a n+1-1)=a n -1,∴a n+1-1=12(a n -1),即c n+1=12c n .又a 1+a 1=1,∴a 1=12,∴c 1=a 1-1=-12≠0,∴{c n }是以-12为首项,12为公比的等比数列.(2)由(1)可知,c n =(-12)·(12)n -1=-(12)n, ∴a n =c n +1=1-(12)n.当n ≥2时,b n =a n -a n-1 =1-(12)n-[1−(12)n -1]=(12)n -1-(12)n =(12)n. 又当n=1时,b 1=a 1=12,符合上式, ∴b n =(12)n(n ∈N *). 9.解析 (1)∵2S n +2n=3a n , ∴2S n+1+2(n+1)=3a n+1, 两式相减得a n+1=3a n +2, ∴a n+1+1=3(a n +1).又2S 1+2=3a 1,∴2a 1+2=3a 1,∴a 1=2. ∴a 1+1=3≠0,∴数列{a n +1}是以3为首项, 3为公比的等比数列, ∴a n +1=3n ,∴a n =3n -1. (2)证明:由(1)可得, b n =1+a n a n ·a n+1=3n(3n -1)(3n+1-1)=12(13-1-13-1), ∴T n =1213−1-132-1+132-1-133-1+…+13n -1-13n+1-1=12(12-13n+1-1) =14-12·13-1<14.10.C 设等比数列{a n }的公比为q,则a 1>0,q>0. ∵a 4=a 2q 2,即8=2q 2,∴q=±2. 又q>0,∴q=2.∴a n =a 2·q n-2=2×2n-2=2n-1, ∴log 2a n =log 22n-1=n-1.∴数列{log 2a n }的前n 项和为0+1+2+…+(n-1)=n(n -1)2.故选C.11.C 如果a 1=1,a 2=2,a 3=8,a 4=16,满足a 1a 4=a 2a 3,但{a n }不是等比数列;反之,若{a n }为等比数列,则根据等比数列的性质可知a 1a 4=a 2a 3,所以“a 1a 4=a 2a 3”是“{a n }为等比数列”的必要不充分条件,故选C.12.A 因为{a n }是等比数列,所以a 1a 6a 11=a 63=-3√3,所以a 6=-√3,所以a 4a 8=a 62=3.因为{b n }是等差数列,所以b 1+b 6+b 11=3b 6=7π,所以b 6=7π3,所以b 3+b 9=2b 6=14π3.所以b 3+b 91−a 4a 8=-7π3,所以tanb 3+b 91−a 4a 8=tan (-7π3)=-tan π3=-√3. 13.答案 34解析 由题意知m+n=5+7=12,即m 12+n12=1(m,n ∈N *),则1m +4n =(1m +4n )(m 12+n 12)=512+n 12m +m3n ≥512+2√n 12m ·m 3n =34,当且仅当4m 2=n 2时等号成立,此时m=4,n=8,所以1m +4n的最小值为34.14.解析 (1)由已知得,b 2=b 1q=q(q>0), S 2=a 1+a 2=3+a 2,∴{b 2+S 2=q +3+a 2=12,S 2=3+a 2=q 2, 解得{q =3,a 2=6或{q =−4,a 2=13(舍去),∴a 2-a 1=3,a n =3+(n-1)×3=3n, b n =b 1q n-1=3n-1.(2)由(1)知,c n =3b n -λ·2a n 3=3n -λ·2n .由题意知c n+1>c n 对任意n ∈N *恒成立,即3n+1-λ·2n+1>3n -λ·2n 恒成立,即λ·2n <2·3n 恒成立,即λ<2·(32)n恒成立,只需λ<[2·(32)n]min即可.∵函数y=(32)n是增函数,∴[2·(32)n]min =2×32=3,∴λ<3,∴实数λ的取值范围为(-∞,3).15.解析 (1)在第二个观测点时,洮河流入黄河1 000 m 3的水混合后,黄河的含沙量为2×2 000+20×1 0003 000=8 kg/m 3,又从黄河流入1 000 m 3的水到洮河再混合后,洮河的含沙量为8×1 000+20×1 0002 000=14 kg/m 3.(2)设在第n 个观测点时黄河的含沙量为a n kg/m 3,洮河的含沙量为b n kg/m 3,由题意有a 1=2,b 1=20,且a n+1=1 000b n +2 000a n 3 000=2a n +b n 3,b n+1=1 000b n +1 000a n+12 000=a n+1+b n 2=a n +2b n3,所以b n+1-a n+1=13(b n -a n ),又b 1-a 1=18≠0,所以{b n -a n }是首项为18,公比为13的等比数列,∴b n -a n =18×(13)n -1.根据题意,有18×(13)n -1<0.01,即3n-1>1800,n ∈N *,解得n>7,所以从第8个观测点开始,两股河水的含沙量之差小于0.01 kg/m 3.。
4.3.1.1等比数列的概念和通项公式知识点一 等比数列的概念(1)文字语言:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q ≠0)表示. (2)符号语言:a n +1a n =q (q 为常数,n ∈N *)【重点总结】(1)由等比数列的定义知,数列除末项外的每一项都可能作分母,故每一项均不为0,因此公比也不为0,由此可知,若数列中有“0”项存在,则该数列不可能是等比数列.(2)“从第2项起”是因为首项没有“前一项”,同时注意公比是每一项与其前一项之比,前后次序不能颠倒.(3)定义中的“同一个常数”是定义的核心之一,一定不能把“同”字省略.要点二 等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 【重点总结】(1)若G 是a 与b 的等比中项,则G a =bG,所以G 2=ab ,G =±ab.(2)与“任意两个实数a ,b 都有唯一的等差中项A =a +b2”不同,只有当a 、b 同号时a 、b 才有等比中项,并且有两个等比中项,分别是ab 与-ab ;当a ,b 异号时没有等比中项.(3)在一个等比数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项. 要点三 等比数列的通项公式设等比数列{a n }的公比为q ,则这个等比数列的通项公式是a n =11n a q (a 1,q ≠0且n ∈N *). 【重点总结】(1)已知首项a 1和公比q ,可以确定一个等比数列. (2)在公式a n =a 1q n -1中,有a n ,a 1,q ,n 四个量,已知其中任意三个量,可以求得第四个量,其中a 1,q 为两个基本量.(3)对于等比数列{a n },若q<0,则{a n }中正负项间隔出现,如数列1,-2,4,-8,16,…;若q>0,则数列{a n }各项同号.从而等比数列奇数项必同号;偶数项也同号.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)若一个数列为{a n },且满足a na n -1=q (n ≥2,q 为不等于0的常数),则这个数列是等比数列.( )(2)在等比数列{a n }中,若已知任意两项的值,则可以求出首项、公比和数列任一项的值.( ) (3)G 为a ,b 的等比中项⇔G 2=ab .( )(4)若一个数列从第二项开始,每一项都是它前后两项的等比中项,则这个数列是等比数列.( ) 【答案】(1)√(2)√(3)×(4)× 2.(多选题)下列数列不是等比数列的是( )A .2,22,3×22,… B.1a ,1a 2,1a3,…C .s -1,(s -1)2,(s -1)3,…D .0,0,0,… 【答案】ACD【解析】A 中,222≠3×2222,A 不是等比数列;B 中,1a 21a =1a 31a 2=…,B 是等比数列;C 中,当s =1时,不是等比数列;当s ≠1时,是等比数列,所以C 不是等比数列;D 显然不是等比数列.故选ACD. 3.已知{a n }是等比数列,a 1=1,a 4=22,则a 3=( ) A .±2 B .2 C .-2 D .4 【答案】B【解析】设等比数列{a n }的公比为q ,则有1×q 3=22=(2)3,∴q =2,∴a 3=a 4q=2,故选B.4.已知等比数列{a n }中,a 1=-2,a 3=-8,则a n =________. 【答案】-2n 或(-2)n【解析】∵a 1=-2,a 3=-8,∴a 3a 1=q 2=-8-2=4,∴q =±2,∴a n =(-2)·2n -1或a n =(-2)·(-2)n -1,即a n=-2n 或a n =(-2)n .题型一 等比数列通项公式的求法及应用 探究1 基本量的计算 【例1】在等比数列{a n }中 (1)a 4=2,a 7=8,求a n ;(2)a 2+a 5=18,a 3+a 6=9,a n =1,求n .【解析】(1)因为⎩⎪⎨⎪⎧ a 4=a 1q 3,a 7=a 1q 6,所以⎩⎪⎨⎪⎧a 1q 3=2, ①a 1q 6=8, ② 由②①得q 3=4,从而q =34,而a 1q 3=2, 于是a 1=2q 3=12,所以a n =a 1q n -1=22-53n .(2)方法一:由已知可得⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18, ①a 3+a 6=a 1q 2+a 1q 5=9, ② 由②①得q =12,从而a 1=32.又a n =1,所以32×⎝⎛⎭⎫12n -1=1,即26-n =20,所以n =6. 方法二:因为a 3+a 6=q (a 2+a 5),所以q =12.由a 1q +a 1q 4=18,得a 1=32.由a n =a 1q n -1=1,得n =6. 【重点小结】 (1)由a 7a 4=q 3便可求出q ,再求出a 1,则a n =a 1·q n -1.(2)两个条件列出关于a 1,q 的方程组,求出a 1,q 后再由a n =1求n ;也可以直接先由q =a 3+a 6a 2+a 5入手.【方法归纳】等比数列通项公式的求法(1)根据已知条件,建立关于a 1,q 的方程组,求出a 1,q 后再求a n ,这是常规方法.(2)充分利用各项之间的关系,直接求出q 后,再求a 1,最后求a n ,这种方法带有一定的技巧性,能简化运算.探究2 等比数列的实际应用【例2】计算机的价格不断降低,若每台计算机的价格每年降低13,现在价格为8 100元的计算机3年后的价格可降低为( )A .300元B .900元C .2 400元D .3 600元 【答案】C【解析】降低后的价格构成以23为公比的等比数列,则现在价格为8 100元的计算机3年后的价格可降低为8 100×⎝⎛⎭⎫233=2 400(元). 【方法技巧】关于等比数列模型的实际应用题,先构造等比数列模型,确定a 1和q ,然后用等比数列的知识求解. 【跟踪训练1】(1)在等比数列{a n }中,a 3+a 4=4,a 2=2,则公比q 等于( ) A .-2 B .1或-2 C .1 D .1或2 【答案】B【解析】a 3+a 4=a 2q +a 2q 2=2q +2q 2=4, 即q 2+q -2=0,解得q =1或q =-2,故选B.(2)在等比数列{a n }中,a n >0,已知a 1=6,a 1+a 2+a 3=78,则a 2等于( ) A .12 B .18 C .24 D .36 【答案】B【解析】设公比为q ,由已知得6+6q +6q 2=78, 即q 2+q -12=0解得q =3或q =-4(舍去). ∴a 2=6q =6×3=18.故选B.(3)某林场的树木每年以25%的增长率增长,则第10年末的树木总量是今年的________倍. 【答案】1.259【解析】设这个林场今年的树木总量是m ,第n 年末的树木总量为a n ,则a n +1=a n +a n ×25%=1.25a n . 则a n +1a n=1.25,则数列{a n }是公比q =1.25的等比数列. 则a 10=a 1q 9=1.259 m.所以a 10a 1=1.259.题型二 等比中项【例3】已知等比数列的前三项和为168,a 2-a 5=42,求a 5,a 7的等比中项.【解析】设该等比数列的公比为q ,首项为a 1, 因为a 2-a 5=42,所以q ≠1,由已知,得⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=168a 1q -a 1q 4=42, 所以⎩⎪⎨⎪⎧ a 1(1+q +q 2)=168a 1q (1-q 3)=42①②因为1-q 3=(1-q )(1+q +q 2),所以由②除以①,得q (1-q )=14.所以q =12.所以a 1=4212-⎝⎛⎭⎫124=96.若G 是a 5,a 7的等比中项,则应有G 2=a 5a 7=a 1q 4·a 1q 6=a 21q 10=962×⎝⎛⎭⎫1210=9. 所以a 5,a 7的等比中项是±3. 【方法归纳】(1)首项a 1和q 是构成等比数列的基本量,从基本量入手解决相关问题是研究等比数列的基本方法. (2)解题时应注意同号的两个数的等比中项有两个,它们互为相反数,而异号的两个数没有等比中项. 【跟踪训练2】如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B .b =-3,ac =9 C .b =3,ac =-9 D .b =-3,ac =-9【答案】B【解析】∵-1,a ,b ,c ,-9成等比数列, ∴a 2=(-1)×b ,b 2=(-1)×(-9)=9 ∴b <0,∴b =-3.又b 2=ac ,∴ac =9.故选B.题型三 等比数列的判定与证明【例4】已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *)(1)求a 1,a 2;(2)求证:数列{a n }是等比数列.【解析】(1)当n =1时,S 1=13(a 1-1)=a 1,解得:a 1=-12,当n =2时,S 2=13(a 2-1)=a 1+a 2,解得a 2=14.(2)证明:当n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12.又a 1=-12,所以{a n }是首项为-12,公比为-12的等比数列.【变式探究1】将本例中条件换为“数列{a n }满足a 1=1,a n +1=2a n +1”,求证:{a n +1}成等比数列,并求a n .【解析】由a n +1=2a n +1,∴a n +1+1=2(a n +1),∴a n +1+1a n +1=2,∴{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2×2n -1=2n , ∴a n =2n -1.【变式探究2】将本例中的条件换为“数列{a n }中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1”,求a n . 【解析】令a n +1-A ·⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -A ·⎝⎛⎭⎫12n ,则a n +1=13a n +A 3·⎝⎛⎭⎫12n +1. 由已知条件知A3=1,得A =3,所以a n +1-3×⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -3×⎝⎛⎭⎫12n . 又a 1-3×⎝⎛⎭⎫121=-23≠0, 所以⎩⎨⎧⎭⎬⎫a n -3×⎝⎛⎭⎫12n 是首项为-23,公比为13的等比数列. 于是a n -3×⎝⎛⎭⎫12n =-23×⎝⎛⎭⎫13n -1,故a n =3×⎝⎛⎭⎫12n -2×⎝⎛⎭⎫13n . 【方法归纳】判定数列是等比数列的常用方法(1)定义法:a n +1a n =q (q 是常数)或a na n -1=q (q 是常数,n ≥2)⇔{a n }为等比数列.(2)等比中项法:a 2n +1=a n ·a n +2(a n ≠0,n ∈N *)⇔{a n }为等比数列.(3)通项公式法:a n =a 1q n -1(其中a 1,q 为非零常数,n ∈N *)⇔{a n }为等比数列. 【易错辨析】忽略等比数列各项的符号规律致错【例5】在等比数列{a n }中,a 5=1,a 9=81,则a 7=( ) A .9或-9 B .9 C .27或-27 D .-27 【答案】B【解析】由等比中项的性质得a 27=a 5a 9=81,∴a 7=±9,由于等比数列中的奇数项的符号相同,所以a 7=9,故选B. 【易错警示】 1. 出错原因没有弄清等比数列各项的符号规律,直接由等比中项得a 7=±9,错选A. 2. 纠错心得在等比数列中,奇数项的符号相同,偶数项的符号相同.解此类题时要小心谨慎,以防上当.一、单选题1.已知等比数列{}n a 中,3a 是1a ,2a 的等差中项,则数列{}n a 的公比为( ) A .12-或1B .12-C .12D .1【答案】A【分析】首先根据题意得到3122a a a =+,从而得到2210q q --=,再解方程即可. 【解析】由题知:3122a a a =+,所以221q q =+,即2210q q --=,解得12q =-或1q =.故选:A2.已知等比数列{}n a 满足2512,4a a ==,则公比q =( ) A .12-B .12C .2-D .2【答案】B 【分析】由352a a q =即可求出.【解析】 352a a q =,即3124q =,解得12q =. 故选:B .3.已知{}n a 为等比数列,n S 是它的前n 项和.若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ) A .29 B .31 C .33 D .35【答案】B 【分析】设等比数列{}n a 的公比为q ,由已知可得q 和1a ,代入等比数列的求和公式即可 【解析】因为 2312a a a =23114a q a a ==,42a ∴=,3474452224a a a a q +=⨯=+, 所以11,162q a ==,551161231112S ⎛⎫- ⎪⎝⎭==-,故选:B.4.《莱茵德纸草书》(RhindPapyrus )是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是( )个. A .12 B .24 C .36 D .48【答案】D 【分析】设等比数列{}n a 的首项为10a >,公比1q >,根据题意,由()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩求解. 【解析】设等比数列{}n a 的首项为10a >,公比1q >,由题意得:123123453493a a a a a a a a ⎧+=⎪⎨⎪++++=⎩,即()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩, 解得132a q =⎧⎨=⎩,所以45148a a q ==,故选:D5.在等比数列{}n a 中,若1614a a a ⋅⋅为定值,n T 为数列{}n a 的前n 项积,则下列各数为定值的是( ) A .11T B .12TC .13TD .14T【答案】C 【分析】根据等比数列的通项公式用1,a q 表示出1614a a a ,然后再分别表示出各选项中的积进行判断. 【解析】设公比为q ,则()35133186161411111a a a a a q a q a q a q =⋅==为定值,即61a q 为定值,(1)112(1)211111n n n n n n n T a a q a qa qa q--+++-=⋅==,11555111111()T a q a q ==,不是定值,1211126621211T a q a q ⎛⎫== ⎪⎝⎭,不是定值,13786131311()T a q a q ==,是定值,1413131414221411()T a q a q ⨯==,不是定值.故选:C .6.在各项都为正数的数列{}n a 中,首项12,n a S =为数列{}n a 的前n 项和,且()2121(42)0n n n S S a n ----=≥,则10S =( ) A .1022 B .1024C .2046D .2048【答案】C 【分析】当2n ≥时,1n n n a S S -=-,故可以得到()()11220n n n n a a a a --+-=,因为120n n a a -+>,进而得到120n n a a --=,所以{}n a 是等比数列,进而求出102046S = 【解析】由()2121(42)0n n n S S a n ----=≥,得22140nn a a --=,得()()11220n n n n a a a a --+-=, 又数列{}n a 各项均为正数,且12a =, ∴120n n a a -+>,∴120n n a a --=,即12nn a a -= ∴数列{}n a 是首项12a =,公比2q 的等比数列,其前n 项和()12122212n n nS +-==--,得102046S =,故选:C.7.已知数列{}n a 的前n 项和为n S ,若21n n S a =-,则202120221S a +=( )A .2B .1C .12D .13【答案】B 【分析】由21n n S a =-,根据n a 与n S 的关系,得出{}n a 是首项为1,公比为2的等比数列,结合等比数列的求和公式,即可求解. 【解析】由数列{}n a 的前n 项和21n n S a =-,当1n =时,可得11121a S a ==-,所以11a =;当2n ≥时,()112121n n n n n a S S a a --=-=---,所以12n n a a -=, 所以{}n a 是首项为1,公比为2的等比数列,所以202120212021122112S -==--,202120222a =,所以2021202211S a +=. 故选:B.8.在等比数列{}n a 中,()23122a a a a +=+,则数列{}n a 的公比q =( ) A .2 B .1 C .1-或1 D .1-或2【答案】D 【分析】用1,a q 表示出已知等式后可得结论. 【解析】由题意知()()211210a q q a q +-+=,所以()()120q q +-=,所以1q =-或2q.故选:D .二、多选题9.(多选题)已知等比数列{}n a 的前n 项和是n S ,则下列说法一定成立的是( ) A .若30a >,则20210a > B .若40a >,则20200a > C .若30a >,则20210S > D .若30a >,则20210S <【答案】ABC【分析】根据等比数列通项式,前n 项和n S 代入即可得出答案. 【解析】设数列{}n a 的公比为q ,当30a >,则2018202130a a q=>,A 正确; 当40a >,则2016202040a a q=>,B 正确. 又当1q ≠时,()20211202111a q qS -=-,当1q <时,2021202110,10,0q qS ->->∴>,当01q <<时,2021202110,10,0q q S ->->∴>,当1q >时,2021202110,10,0q qS -<-<∴>当1q =时,2021120210S a =>,故C 正确,D 不正确. 故选:ABC10.(多选题)若数列{a n }是等比数列,则下面四个数列中也是等比数列的有( ) A .{ca n }(c 为常数) B .{a n +a n +1}C .{a n ·a n +1)D .{}3n a【答案】CD 【分析】A. 由c =0判断;B.q =-1时判断;CD.由等比数列的定义判断. 【解析】当c =0时,{ca n }不是等比数列,故A 错误;当数列{a n }的公比q =-1时,a n +a n +1=0,{a n +a n +1}不是等比数列,故B 错误; 由等比数列的定义,选项CD 中的数列是等比数列,故CD 正确. 故选:CD11.设数列{}n a 是各项均为正数的等比数列,n T 是{}n a 的前n 项之积,227a =,369127a a a ⋅⋅=,则当n T 最大时,n 的值为( )A .4B .5C .6D .7【答案】AB【分析】 设等比数列{}n a 的公比为q ,求出q 的值,进而可求得数列{}n a 的通项公式,解不等式1n a ≥,求出n 的取值范围,即可得解.【解析】设等比数列{}n a 的公比为q ,则33696127a a a a ⋅⋅==,可得613a =,13q ∴==,所以,225212733n n n n a a q ---⎛⎫==⨯= ⎪⎝⎭, 令531n n a -=≥,解得5n ≤,故当n T 最大时,4n =或5.故选:AB.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.在等比数列{}n a 中,1521,8,n a a a S ==是数列{}n a 的前n 项和,若63k S =,则k =________.【答案】6【分析】由1521,8a a a ==,解得2q求解. 【解析】在等比数列{}n a 中,设公比为q ,因为1521,8a a a ==,所以48,0q q q =≠,解得2q, 所以126312kk S -==-,解得6k =, 故答案为:613.在正项等比数列{}n a 中,若13a 、312a 、22a 成等差数列,则2021202020232022a a a a -=-________.【答案】19【分析】设正项等比数列{}n a 的公比为q ,则0q >,根据已知条件求出q 的值,再结合等比数列的基本性质可求得结果.【解析】设正项等比数列{}n a 的公比为q ,则0q >,因为13a 、312a 、22a 成等差数列,则31232a a a =+,即211132a q a a q =+, 可得2230q q --=,0q >,解得3q =, 因此,()20212020202120202202320222021202019a a a a a a q a a --==--. 故答案为:19. 14.已知正项数列{}n a 的前n 项和为n S ,若241,4n n a S b a a +==,数列{}n a 的通项公式为___________. 【答案】21()2n n a -= 【分析】当1n =时,求得102b a =>,再由n n S a b =-+,得到11(2)n n S a b n --=-+≥, 相减可得120n n a a --=,结合等比数列的通项公式,求得b ,进而求得数列的通项公式.【解析】由题意,正项数列{}n a 满足241,4n n a S b a a +==, 当1n =时,可得1111a S a a b =++=,则102b a =>, 由n n S a b =-+,则11(2,)n n S a b n n N +--=-+≥∈,两式相减可得120n n a a --=,所以1(22)1,n n n n N a a +-≥=∈, 即数列{}n a 为公比为12的等比数列, 所以2416,4b a a b ==,所以2441461a b a b =⨯=,解得4b =, 所以122b a ==,所以数列{}n a 的通项公式为1121112()()22n n n n a a q ---==⨯=.故答案为:21()2n n a -=.四、解答题15.已知n S 为数列{}n a 的前n 项和,12a =,172n n S a ++=,2211log log n n n b a a +=⋅,n T 为数列{}n b 的前n 项和.(1)求数列{}n a 的通项公式;(2)若2022n m T >对所有*n N ∈恒成立,求满足条件m 的最小整数值.【答案】(1)322n n a -= (2)674【分析】(1)利用递推公式,结合前n 项和与第n 项的关系、等比数列的定义进行求解即可; (2)根据对数的运算性质,结合裂项相消法进行求解即可.(1)由题意172n n S a ++=,当2n ≥时,172n n S a -+=,两式相减得:17n n n a a a +=-,即:()182n n a a n +=≥,所以2n ≥时,{}n a 为等比数列又因为1n =时,217272216a S =+=⨯+=, 所以218a a =, 所以,对所有*n N ∈,{}n a 是以2为首项,8为公比的等比数列,所以132282n n n a --=⨯=;(2) 由题知:32312212211log log log 2log 2n n n n n b a a -++==⋅⋅ ()()13231n n =-+11133231n n ⎛⎫=- ⎪-+⎝⎭所以12111111111134473231331n n T b b b n n n ⎛⎫⎛⎫=+++=-+-++-=- ⎪ ⎪-++⎝⎭⎝⎭所以111202220221674167433131n T n n ⎛⎫⎛⎫=⨯-=-< ⎪ ⎪++⎝⎭⎝⎭所以满足2022n m T >恒成立的最小m 值为674.16.等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =. (1)求n a 与n b ;(2)求12111nS S S +++. 【答案】(1)33(1)3n a n n =+-=,13n n b -=(2)()231n n + 【分析】(1)由{}n b 的公比22S q b =及2212b S +=可解得3q =,由11b =则n b 可求,又由22S q b =可得29S =,26a =,213d a a =-=,则n a 可求;(2)由(1)可得3(1)2n n n S +=,则122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,故由裂项相消法可求12111nS S S +++. (1) 等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =,222212S q b b S ⎧=⎪⎨⎪+=⎩,解得3q =,13n n b -=. {}n b 各项均为正数,∴3q =,13n n b -=.由23b =,得29S =,26a =,213d a a =-=,∴()3313n a n n =+-=. (2)3(1)3(1)322n n n n n S n -+=+=, 122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,12111211111132231n S S S n n ⎛⎫+++=-+-++- ⎪+⎝⎭ 2121313(1)n n n ⎛⎫=-= ⎪++⎝⎭. 17.已知数列{a n }中,a 1=4,a n +1=2a n -5,求证{a n -5}是等比数列.【答案】证明见解析【分析】由a n +1-5=2(a n -5)结合等比数列的定义证明即可.【解析】证明:由a n +1=2a n -5得a n +1-5=2(a n -5). 又a 1-5=-1≠0,故数列{a n -5}是首项为-1,公比为2的等比数列.。