关于利用微分与积分性质计算卷积的条件
- 格式:docx
- 大小:36.74 KB
- 文档页数:1
函数卷积及其应用摘要 卷积是一个很重要的数学概念.它描述了对两个〔或多个〕函数之积进展变换的运算法则,是频率分析的最有效的工具之一。
本文通过对卷积的概念,性质,具体应用以及对卷积公式,卷积定理等方面进展较为全面和系统的论述和总结,使得对卷积的内涵有更全面更深刻的理解和认识。
关键词 卷积 卷积公式 性质 应用1引言卷积是在信号与线性系统的根底上或背景中出现的。
狄拉克为了解决一些瞬间作用的物理现象而提出了"冲击函数〞这一符号,而卷积的诞生正是为了研究"冲击函数〞效劳的;卷积是一种数学积分变换的方法,也是分析数学中一种重要的运算。
卷积在物理学,统计学,地震预测,油田勘察等许多方面有十分重要的应用。
本文通过对卷积的概念,性质,应用等方面进展较为全面和系统的论述和总结,使得对卷积的内涵有更全面更深刻的理解和认识。
2卷积的定义和性质 2.1卷积的定义〔根本内涵〕设:)(),(x g x f 是1R 上的两个可积函数,作积分:()()τττd x g f -⎰+∞∞- 随着*的不同取值,这个积分就定义了一个新函数)(x h ,称为函数()x f 与)(x g 的卷积,记为)(x h =)()(x g x f *(或者()()x g f *) .注(1)如果卷积的变量是序列()()n h n x 和,则卷积的结果:∑+∞-∞=*=-=i n h n x i n h i x n y )()()()()(,其中星号*表示卷积。
当时序n=0时,序列h(-i)是)(i h 的时序i 取反的结果;时序取反使得)(i h 以纵轴为中心翻转180度,所以这种相乘后求和的计算法称为卷积和,简称卷积.另外,n 是使)(i h -位移的量,不同的n 对应不同的卷积结果. 〔2〕如果卷积的变量是函数)(t x 和)(t h ,则卷积的计算变为:)()()()()(t h t x dp p t h p x t y *=-=⎰+∞∞-,其中p 是积分变量,积分也是求和,t 是使函数)(p h -位移的量,星号*表示卷积.〔3〕由卷积得到的函数g f *一般要比g f 和都光滑.特别当g 为具有紧致集的光滑函数,f 为局部可积时,它们的卷积g f *也是光滑函数. 2.2卷积的性质性质〔交换律〕设)(x f ,)(x g 是1R 上的两个可积函数,则)()()()(x f x g x g x f *=*. 证=*)()(x g x f ()()τττd x g f -⎰+∞∞-令τ-=x u ,则u x -=τ,τd du -= 所以=*)()(x g x f ()()τττd x g f -⎰+∞∞-=()()du u g u x f ⎰-∞∞+--=()()du u x f u g ⎰+∞∞--=)()(x f x g *性质〔分配律〕设)(),(x g x f )(x h 是1R 上的三个可积函数,则()()[]x h x g x f +*)()()()()(x h x f x g x f *+*=.证 根据卷积定义()()[]x h x g x f +*)(=()()()[]ττττd x h x g f -+-⎰+∞∞-=()()τττd x g f -⎰+∞∞-+()()τττd x h f -⎰+∞∞-性质〔结合律〕设)(),(x g x f )(x h 是1R 上的三个可积函数,则()()[]()x h x g x f **()()()[]x h x g x f **=.证 令()()=*=x g x f x m )(()()τττd x g f -⎰+∞∞-,()()()()()dv x h v x g x h x g x s ⎰+∞∞--=*=,则()()[]()x h x g x f **=()()x h x m *=()()du u x h u m -⎰+∞∞-=()()()du u t h d u g f -⎥⎦⎤⎢⎣⎡-⎰⎰+∞∞-+∞∞-τττ=()()τττd du u t h u g f ⎥⎦⎤⎢⎣⎡--⎰⎰+∞∞-+∞∞-)(令v x u u x v -=-=则,,上式=()()τττd dv v h v x g f ⎥⎦⎤⎢⎣⎡--⎰⎰+∞∞-+∞∞-)( =()()du u x s f -⎰+∞∞-τ=()()x s x f *性质()()x g x f x g x f *≤*)()(. 证明 =*)()(x g x f ()()τττd x g f -⎰+∞∞-≤()()τττd x g f -⋅⎰+∞∞-=()()x g x f *.性质〔微分性〕设)(),(x g x f 是1R 上的两个可积函数,则())()()()()()(x g x f x g x f x g x f dxd'*=*'=*. 证明 ()()()()()τττττd h dxx df d dx x dg x f x g x f dx d ⎰⎰∞+∞-∞+∞-=-=*-)()( 即意义 卷积后求导和先对其任一求导再卷积的结果一样. 性质〔积分性〕设()()()x h x g x f *=,则()()()()()()()x h x g x h x g x f11)1(---*=*=.意义 卷积后积分和先对其任一积分再卷积的结果一样. 推广 ()()()()()()()()x h x g x h x g x fn n n *=*=.性质〔微积分等效性〕设)(x f ,)(x g 是1R 上的两个可积函数,则()()ττd g x f x g x f x⎰∞-*'=*)()(.例2.1设()0010≥<⎩⎨⎧=x x x f ,()000≥<⎩⎨⎧=-x x e x g x ,求()x g x f *)(.解 由卷积定义知()x g x f *)(=()()τττd x g f -⎰+∞∞-=()()t t t tx e e e d e-----=-=⋅⎰1110ττ例2.2 设函数试计算其卷积()()()t f t f t y 21*=. 解 由卷积定义知所以()()()t f t f t y 21*==()()τττd t f f -⎰+∞∞2-1显然这个积分值与函数()ttt ><⎩⎨⎧=-τττμ01,所取非零值有关,即与参数t 的取值有关.()1当t 0<时,因30<<<τt ,所以()0=-τμt ,此时()()()t f t f t y 21*==003)(=⋅⎰--ττd e t()2当30<<t 时,只有t <<τ0时,有()1=-τμt ,此时()()()t f t f t y 21*==t tt e d e ----=⎰10)(ττ()3当3>t 时,因为t <<<30τ,所以()1=-τμt ,此时()()()t f t f t y 21*==()t t e e d e ----=⎰1330)(ττ综上所述,有()()()t f t f t y 21*==()33001-103><<<⎪⎩⎪⎨⎧⋅---t t t e e e tt3.卷积定理3.1 时域卷积定理设两函数)(),(21t f t f ,的傅里叶变换分别为:[],)()(1~1t f s F =ω[],)()(1~1t f s F =ω则两函数卷积的傅里叶变换为:[]),()()()(2121~ωωF F t f t f s ⋅=*上式称为时域卷积定理,它说明两信号在时域的卷积积分对应于在频域中该两信号的傅立叶变换的乘积.证明 []=*)()(21~t f t f s ()()dt e d t f f t j ωτττ-+∞∞-+∞∞-⎰⎰⎥⎦⎤⎢⎣⎡-21 =()()τττωd dt e t f f tj ⎥⎦⎤⎢⎣⎡-⎰⎰+∞∞--+∞∞-21=()()τωτωd e F f t j -+∞∞-⎰21=()()ττωωd e f F t j -+∞∞-⎰12=()()=⋅ωω12F F ),()(21ωωF F ⋅ 3.2频域卷积定理设两函数)(),(21t f t f ,的傅里叶变换分别为:[],)()(1~1t f s F =ω[],)()(1~1t f s F =ω则两函数卷积的傅里叶变换为:[]),()(21)()(2121~ωωπF F t f t f s *=上式称为频域卷积定理,它说明两信号在时域的乘积对应于这两个函数傅氏变换的卷积除以π2.证明 ()()()()ωππωωπωd e du u w F u F F F s tj ⎰⎰∞+∞-∞+∞-⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡*21211-~212121 于是例3.1 求积分方程的解,其中()()t f t h ,为函数,且()()()t h t f t g 和,的Fourier 变换都存在. 解 假设()[](),ωG t g F =()[](),ωH t h F =()[](),ωF t f F = 由卷积定义知现对积分方程两端取Fourier 变换可得解得所以原方程的解为例3.2 求常系数非齐次线性微分方程 的解,其中()t f 为函数. 解 设()[]()[]()ωωF t f F Y t y F ==),(现对原方程两端取Fourier 变换,并根据Fourier 变换的性质可得 解得所以原方程的解 由卷积定理得=()()τττd e f t f et t--∞+∞--⎰=*212. 例3.3求微分积分方程的解.其中c b a t ,,,+∞<<∞-均为常数. 解 设()[]()()[]()ωωH t h F X t x F ==,现对原方程两端取Fourier 变换,并根据Fourier 变换的性质可得解得()()()⎪⎭⎫⎝⎛-+=++=ωωωωωωωc a i b H i c b ai H X ,所以原方程的解4.卷积公式及其应用与推广 4.1卷积公式设X 和Y 的联合密度函数为)y x f ,(,则Y X Z +=得概率密度为证明 Y X Z +=的分布函数是:⎰⎰=≤+=≤=Dz xy f p z Z p Z F )()z Y X ()()(其中D ={}z y x y x ≤+:),(于是⎰⎰⎰⎰⎰⎰+∞∞-∞-+=+∞∞--∞-≤+-===zy x u yz zy x Z dudy y y u f dxdyy x f dxdy y x f Z F ),(),(),()(=⎰⎰∞-+∞∞--z dydu y y u f ),(从而⎰+∞∞--='=dy y y z f Z F Z f z z ),()()(由X 和Y 的对称性知⎰+∞∞--='=dx x x z f Z F Z f z z ),()()(。
第二章 连续时间系统的时域分析1.已知连续时间信号1()e ()t f t u t -=和2()e ()t f t u t =-,求卷积积分12()()()f t f t f t =*,并画出()f t 的波形图。
解:1212()()()()()f t f t f t f t f d τττ∞-∞=*=-⎰反褶1()f τ得1()f τ-,右移t 得11[()]()f t f t ττ--=-,作出2()f τ图形及不同t 取值的1()f t τ-图形,由此可得:当0t ≤时,21()e e ee e 2ttt tt f t d d τττττ---∞-∞===⎰⎰当0t ≥时,0021()e e e e e 2t t t f t d d τττττ----∞-∞===⎰⎰综上,||111()e ()e ()e 222t t t f t u t u t --=-+=()f t 是个双边指数函数。
讨论:当1()f t 、2()f t 为普通函数(不含有()t δ、()t δ'等)时,卷积结果()f t 是一个连续函数,且()f t 非零取值区间的左边界为1()f t 、2()f t 左边界之和,右边界为1()f t 、2()f t 右边界之和,也就是说,()f t 的时宽为1()f t 、2()f t 时宽之和。
τttt2.计算题图2(a )所示函数)(1t f 和)(2t f 的卷积积分)()()(21t f t f t f *=,并画出)(t f 的图形。
解法一:图解法1212()()()()()f t f t f t f t f d τττ∞-∞=*=-⎰其中1()f t τ-的波形见题图2(b),由此可得: 当10t +≤,即1t ≤-时,()0f t = 当011t ≤+≤,即10t -≤≤时,120()2(1)t f t d t ττ+==+⎰当11t +≥但10t -≤,即01t ≤≤时,1()21f t d ττ==⎰当011t ≤-≤,即12t ≤≤时,121()21(1)t f t d t ττ-==--⎰当11t -≥,即2t ≥时,()0f t =综上,220,1,2(1),10()1,011(1),12t t t t f t t t t ≤-≥⎧⎪+-≤≤⎪=⎨≤≤⎪⎪--≤≤⎩ ()f t 波形见题图2(c)。
讲义二:卷积与微分方程的数值法求解一、 从离散卷积和到连续卷积序列f 1(k )和f 2(k )的离散卷积定义式为()()()()1212i f k f k f i f k i ∞=−∞∗=−∑ 用来计算离散卷积的函数为:f=conv(f1,f2) f1,f2为参与卷积运算的两个序列,f 为卷积的结果,长度为length(f1)+length(f2)-1。
[f,r]=deconv(f1,f2) 解卷运算,使f1=conv(f,f2)+r 成立EX 错误!文档中没有指定样式的文字。
-1 ()()1sin ,010x k k k =≤≤,()20.8,015k x k k =≤≤,计算离散卷积和()y k =()1x k ∗()2x k 。
%程序5_1 计算离散卷积和k1=0:10; %x1的变量取值范围x1=sin(k1); %构建x1序列k2=0:15; %x2的变量取值范围x2=0.8.^k2; %构建x2序列y=conv(x1,x2); %计算卷积结果%显示卷积结果subplot(3,1,1);stem(k1,x1);title('x_1(k)');subplot(3,1,2);stem(k2,x2);title('x_2(k)');k=0:length(y)-1;subplot(3,1,3);stem(k,y);title('y(k)');下面讨论连续卷积的计算:连续时间函数1()f t 和2()f t 的卷积定义为:()()()()()1212f t f t f t f f t d τττ∞−∞=∗=−∫由于计算机实际处理的数据必须满足:1、离散存储;2、有限数据量。
连续信号的处理必须首先经过数值化的过程,以离散的形式被分析、保存和处理。
用数值方法计算卷积需要将卷积积分看作信号的分段求和来实现,这样会得到一定的精确度要求下的卷积。
()()()()()()()1212120lim k f t f t f t f f t d f k f t k τττ∞∞−∞Δ→=−∞=∗=−=Δ−ΔΔ∑∫ 如果我们只求当t n =Δ(n 为整数)时f (t )的值()f n Δ,则得:()()()()1212[()]k k f n f k f n k f k f n k ∞∞=−∞=−∞Δ≈ΔΔ−ΔΔ=ΔΔ−Δ∑∑ 式中的()12[()]k f k f n k ∞=−∞Δ−Δ∑实际上就是连续信号f 1(t )和f 2(t )经等时间间隔Δ均匀抽样的离散序列1()f k Δ和2()f k Δ的离散卷积和。
常用的卷积积分公式(二)常用的卷积积分公式1. 卷积公式卷积是一种数学运算,常用于信号处理和图像处理中。
给定两个函数 f(x) 和 g(x),它们的卷积定义为:∞(τ)⋅g(t−τ) dτ(f∗g)(t)=∫f−∞其中,(f * g) 表示 f(x) 和 g(x) 的卷积,t 表示卷积结果的自变量。
举例说明,假设有两个函数 f(x) = 2x 和 g(x) = x^2,它们的卷积为:∞(f∗g)(t)=∫2τ⋅(t−τ)2 dτ−∞2. 线性平移不变性卷积的一个重要性质是线性平移不变性。
如果函数 f(x) 和 g(x) 的卷积为 h(x) = (f * g)(x),那么对于任意常数 a,b,有:(a⋅f+b⋅g)∗g=a⋅(f∗g)+b⋅(g∗g)=a⋅ℎ+b⋅(g∗g)这个公式表明,卷积运算对于输入函数的线性组合是满足的。
举例说明,假设有两个函数 f(x) = 2x 和 g(x) = x^2,它们的卷积为 h(x) = (f * g)(x),那么对于任意常数 a,b,有:(a⋅f+b⋅g)∗g=a⋅ℎ+b⋅(g∗g)3. 卷积定理卷积定理是卷积在频域中的表示。
给定两个函数 f(x) 和 g(x) 的傅里叶变换为 F(k) 和 G(k),它们的卷积的傅里叶变换为:ℱ{f∗g}=F(k)⋅G(k)其中,({f * g}) 表示 f(x) 和 g(x) 的卷积的傅里叶变换。
举例说明,假设有两个函数 f(x) = e(-x2) 和 g(x) = e(-x2/2),它们的傅里叶变换分别为 F(k) 和 G(k),那么它们的卷积的傅里叶变换为:ℱ{f∗g}=F(k)⋅G(k)这个公式可以方便地在频域中计算卷积运算。
总结以上是常用的卷积积分公式的列举及说明。
卷积运算在信号处理和图像处理中具有广泛的应用,理解这些公式对于深入理解卷积的原理和应用非常重要。
卷积的介绍先看到卷积运算,知道了卷积就是把模版与图像对应点相乘再相加,把最后的结果代替模版中⼼点的值的⼀种运算。
但是,近来⼜看到了积分图像的定义,⽴马晕菜,于是整理⼀番,追根溯源⼀下吧。
1 卷积图像1.1 源头⾸先找到了⼀篇讲解特别好的博⽂,原⽂为:贴过正⽂来看:---------------------------------------------------------------------------------------------------------------信号处理中的⼀个重要运算是卷积.初学卷积的时候,往往是在连续的情形, 两个函数f(x),g(x)的卷积,是∫f(u)g(x-u)du 当然,证明卷积的⼀些性质并不困难,⽐如交换,结合等等,但是对于卷积运算的来处,初学者就不甚了了。
其实,从离散的情形看卷积,或许更加清楚, 对于两个序列f[n],g[n],⼀般可以将其卷积定义为s[x]= ∑f[k]g[x-k] 卷积的⼀个典型例⼦,其实就是初中就学过的多项式相乘的运算, ⽐如(x*x+3*x+2)(2*x+5) ⼀般计算顺序是这样, (x*x+3*x+2)(2*x+5) = (x*x+3*x+2)*2*x+(x*x+3*x+2)*5 = 2*x*x*x+3*2*x*x+2*2*x+ 5*x*x+3*5*x+10 然后合并同类项的系数, 2 x*x*x 3*2+1*5 x*x 2*2+3*5 x 2*5 ---------- 2*x*x*x+11*x*x+19*x+10 实际上,从线性代数可以知道,多项式构成⼀个向量空间,其基底可选为 {1,x,x*x,x*x*x,...} 如此,则任何多项式均可与⽆穷维空间中的⼀个坐标向量相对应, 如,(x*x+3*x+2)对应于 (1 3 2), (2*x+5)对应于 (2,5). 线性空间中没有定义两个向量间的卷积运算,⽽只有加法,数乘两种运算,⽽实际上,多项式的乘法,就⽆法在线性空间中说明.可见线性空间的理论多么局限了. 但如果按照我们上⾯对向量卷积的定义来处理坐标向量, (1 3 2)*(2 5) 则有 2 3 1 _ _ 2 5 -------- 2 2 3 1 _ 2 5 ----- 6+5=11 2 3 1 2 5 ----- 4+15 =19 _ 2 3 1 2 5 ------- 10 或者说, (1 3 2)*(2 5)=(2 11 19 10) 回到多项式的表⽰上来, (x*x+3*x+2)(2*x+5)= 2*x*x*x+11*x*x+19*x+10 似乎很神奇,结果跟我们⽤传统办法得到的是完全⼀样的. 换句话,多项式相乘,相当于系数向量的卷积. 其实,琢磨⼀下,道理也很简单, 卷积运算实际上是分别求 x*x*x ,x*x,x,1的系数,也就是说,他把加法和求和杂合在⼀起做了。
关于利用微分与积分性质计算卷积的条件
微积分是数学中非常重要的研究分支,可以用来计算函数的微分和积分,当处理函数时,
微分和积分特性在各方面都有重要作用。
而卷积作为理论物理学中重要的概念之一,在现实应用中也有着重要的地位。
因此,利用微分和积分性质来计算卷积也变得尤为重要。
卷积的定义如下:它是两个函数(或称信号)的乘积,它们各自用一个变量从某一时间段(截止到时间t)表示。
即函数f (t)与g(t)的卷积为f (t) * g (t) 或 C (t)。
利用微分和积分来计算卷积,要求有三个条件:其一,函数f(t)与g(t)必须可导,即f’(t),g’(t)必须存在;其二,尤其是f’(t)和g’(t)必须连续变化或有限;其三,尤其是函数f(t)和
g(t)有定义域,该定义域必须是有限的或者可以用积分的二阶定义域近似。
当这三个条件满足时,即可利用微分和积分计算卷积,具体方法如下:根据泰勒展开式,
函数f (t)和g(t)之间的卷积可以以f (t)正余弦级数的形式表示(其中t为时间):
f (t) = f (0) + f' (0) t + \frac{d^2 f(t)}{2!} t^2 +...
g (t) = g (0) + g' (0) t + \frac{d^2 g(t)}{2!} t^2 + ...
因此,
C (t) = f(t) * g(t) = \int_0^t \left[f (0) g(u) + f' (0) g(u) + \frac{d^2 f(t)}{2!}g (u)+…\right]du 显然,以上表达式即为函数f (t)和g(t)的卷积,表明利用微分和积分计算卷积是可行的。
从而可见,利用微分和积分计算卷积,可以有效地处理不同函数的卷积,从而在实际应用
中发挥重要作用。
但要满足利用微分和积分性质来计算卷积的条件,就必须满足三个条件:函数f (t)和g(t)必须可导,尤其是f’(t)和g’(t)必须连续变化或有限,同时还要求定义域是
有限的或可用积分的二阶定义域近似。