材料力学1-拉压杆件应力
- 格式:ppt
- 大小:967.50 KB
- 文档页数:31
材料力学第一章拉压一、构件设计应满足的要求:1、足够的强度:即抵抗破坏的能力;2、足够的刚度:即抵抗变形的能力;3、足够的稳定性:即保持平衡的能力;二、失稳:构件在一定外力的作用下,不能保持原有的平衡形式,称为失稳;细长杆件在压缩中容易产生失稳现象。
三、材料力学的基本假设:1、连续性假设:构件的整个体积内毫无空隙的充满了物质;2、均匀性假设:认为材料是均匀的,其力学性能与构件中的位置无关;(材料在外力作用下表现出来的性能,称为力学性能或机械性能)3、各项同性假设:沿各个方向均具有相同的力学性能;(相反,存在各向异性材料,常见的有碳纤维、玻璃纤维、环氧树脂、陶瓷等四、杆件变形的基本形式:拉伸或压缩、弯曲和扭转。
五、内力:外力作用下,构件内部相连两部分之间的相互作用力。
六、同一杆件在受力方式变化的情况下,即使只受轴向力作用,不同部分的轴向力大小也可能不同,如在杆端和杆中点均受力,切合力为0的情况。
七、设杆件的横截面积为A,轴力为N,且为均匀性材料,则横截面上各点处的正应力均为:Pa、Mpa、Gpa)。
八、圣维南原理:力作用于杆端的方式不同,只会使于杆端距离不大于杆横向尺寸的范围受其影响。
九、拉压杆上的最大剪应力发生在于杆轴成45°的斜截面上,其值为横截面正应力的一半。
十、单位长度的变形,称为正应变。
十一、材料的应力——应变曲线:工程中常用的材料的应力应变曲线分成以下几个阶段:1、线性阶段:在拉伸的初始阶段,应力——应变为一直线;此阶段的应力最高点,为材料的比例极限;2、屈服阶段:超过比例极限之后,应力和应变之间不再保持正比例关系。
此阶段内,应力几乎不变,但变形却极具增长,材料失去抵抗继续变形的能力,此种现象称为屈服。
相应的应力称为材料的屈服应力或屈服极限。
3、强化阶段:经过屈服阶段之后,材料又增强了抵抗变形的能力,此种现象称为强化。
强化节点最高点对应的应力称为材料的强度极限。
如果材料表面光滑,当材料屈服时,试样表面将出现于轴线成45°的线纹,作用有最大剪应力。
轴向拉压应力与材料的力学性能典型习题解析1 图示直杆截面为正方形,边长a =200 mm ,杆长L = 4 m ,F = 10 kN ,材料密度3m /kN 20=ρ. 考虑杆的自重,计算1-1和2 -2截面轴力,并画轴力图。
解题分析:杆的自重为体积力。
当杆件重量与外载荷大小在同一数量级时,应考虑杆自重对内力、应力的影响。
为画轴力图,要先计算一些特殊截面上的轴力,如集中力作用的截面和A-A 截面。
解:1、计算1-1截面轴力:从1-1截面将杆截成两段,研究上半段。
设截面上轴力为1N F ,为压力(见图b ),则1N F 应与该杆段所受外力平衡。
杆段所受外力为杆段的自重,大小为ρ24a L ,方向向下。
于是由静力平衡条件∑=0y F 得 042N1=+−ρa L F N 800N/m 1020m 2.0m 2.04m 44332N1=××××==ρa L F 2、计算2-2截面轴力:从2-2截面将杆截成两段,研究上半段。
设截面上轴力为N2F ,为压力(见图c ),则N2F 应与该杆段所受外力平衡。
杆段所受外力为杆段的自重和集中力F ,杆段自重为ρ243a L ,方向向下。
于是由静力平衡条件∑=0y F 得(c)(a) (b)题1图(d)kN 12.4N 104.12N/m 1020m 2.0m 2.04m43N 10104333332N2=×=×××××+×=+=ρa L F F 3、计算集中力F 作用截面上的轴力:首先将杆沿力F 作用截面(B-B )上侧截开,设截面上轴力为压力+B F N ,研究上半部分杆段。
由于只受本身重量作用,所以由静力平衡条件得F 作用截面上侧轴力为kN 1.6N 106.1N/m 1020)m 2.0(2m 4233322N =×=×××==+ρa L F B 然后将杆沿F 作用截面(B-B )下侧截开,设截面上轴力为压力−B F N ,研究上半部分杆段。