材料力学1轴向拉压
- 格式:doc
- 大小:2.65 MB
- 文档页数:25
1.衡。
设杆(A) qρ=(B)(C)(D)2.(A)(C)3. 在A和BA和点B(A) 0;(C) 45;。
4.为A(A) [] 2A σ(C) []Aσ;5.(A)(C)6. 三杆结构如图所示。
今欲使杆3哪一种措施?(A) 加大杆3的横截面面积; (B) 减小杆3的横截面面积; (C) 三杆的横截面面积一起加大; (D) 增大α角。
7. 图示超静定结构中,梁AB 示杆1的伸长和杆2的缩短,(A) 12sin 2sin l l αβ∆=∆; (B) 12cos 2cos l l αβ∆=∆; (C) 12sin 2sin l l βα∆=∆; (D) 12cos 2cos l l βα∆=∆。
8. 图示结构,AC 为刚性杆,杆1(A) 两杆轴力均减小; (B) 两杆轴力均增大;(C) 杆1轴力减小,杆2轴力增大; (D) 杆1轴力增大,杆2轴力减小。
9. 结构由于温度变化,则:(A) (B) (C) (D) 10. 面n-n 上的内力N F 的四种答案中哪一种是正确的?(A) pD ; (B) 2pD;(C) 4pD ; (D) 8pD 。
11.的铅垂位移12. 截面的形状为13. 一长为l挂时由自重引起的最大应力14. 图示杆112A A >是N1F F 题1-141. D 2. D 3. C 4. B 5. B 6. B 7. C 8. C 9. B 10. B11. Fl EA ;12. ab;椭圆形 13. 22gl gl E ρρ, 14. >,= 15. 试证明受轴向拉伸的圆截面杆,其横截面沿圆周方向的线应变s ε等于直径的相对改变量d ε。
证:()s d πππd d ddddεε+∆-∆=== 证毕。
16. 如图所示,一实心圆杆1在其外表面紧套空心圆管2。
设杆的拉压刚度分别为11E A 和22E A 。
此组合杆承受轴向拉力F ,试求其长度的改变量。
(假设圆杆和圆管之间不发生相对滑动)解: 由平衡条件 N1N2F F F += (1)变形协调条件N1N21122F l F lE A E A = (2) 由(1)、(2)得 N1111122F l F ll E A E A E A ∆==+E,17. 设有一实心钢杆,在其外表面紧套一铜管。
材料的弹性模量和线膨胀系数分别为1E2 Array证由18.解19.解20. 图示为胶合而成的等截面轴向拉杆,杆的强度由胶缝控制,已知胶的许用切应力[]τ为许用正力[]σ的1/2。
问α为何值时,胶缝处的切应力和正应力同时达到各自的许用应力。
解:2cos ασσα=≤[]σsin cos ατσαα=≤[]τ[]1tan []2τασ== 胶缝截面与横截面的夹角 57.26=α21.各杆直径为150 mm d =,许用应力[]σ=门受的水压力与水深成正比,水的质ρ=331.010 kg m ⨯,杆间的最大距离。
(取210 m s g =)解:设支杆间的最大距离为x ,闸门底部A 集度为0q 。
闸门AB 的受力如图0A M ∑=,01314cos 2q F α⨯⨯=N F F =≤21[]π4d σ3cos 5α=,0330 kN m q gx x ρ== 得:9.42 m x = 22. 图示结构中AC 为刚性梁,BD 为斜撑杆,载荷F 可沿梁AC 水平移动。
试问:为使斜杆的重量最小,斜撑杆与梁之间的夹角θ应取何值? 解:载荷F 移至C 处时,杆BD 的受力最大,如图。
θcos h FlF BD =A ≥[]cos []BD F Flh σθσ=杆BD 的体积 2sin []sin 2h FlV Aθσθ== 当sin21θ=时,V 最小即重量最轻,故π454θ==423. 图示结构,BC 为刚性梁,杆1和杆2的横截面面积均为A ,和2[]σ,且12[]2[]σσ=。
载荷F 可沿梁BC (1) 从强度方面考虑,当x 为何值时,许用载荷[]F (2) 该结构的许用载荷[]F 多大? 解:(1) 杆BC 受力如图N1F =1[]A σ,N2F =2[]A σmaxN1N22133[][]2F F F A Aσσ=+==3lx =(2) F 在C 处时最不利 N2F F =≤2[]A σ 所以结构的许用载荷 2[][]F A σ= 24. 图示结构,杆1和杆模量为E 且[]2[]σσ-+=,载荷F 虑杆的失稳,试求: (1) 结构的许用载荷[]F 。
(2) 当x 为何值时(0x <<解:(1) F 在B N12F F =(压) , N2F F =(拉)结构的许用载荷 [][]F A σ+= (2) F 在CD 正中间时能取得许用载荷最大值,此时N1N22FF F ==(压)-+N2B N2(1)12cot cos sin cos [][]l Fl l F V A A l αααασσ=+=+0d 0d Vααα==,()2200222000sin cos 10sin cos sin ααααα--=, 即22002200sin 2cos 0sin cos αααα-=0tan α=当054.74α=时,V 最小,结构用料最省。
26. 如图所示,外径为D ,壁厚为δ,长为l 的均质圆管,由弹性模量E ,泊松比ν的材料制成。
若在管端的环形横截面上有集度为q 的均布力作用,试求受力前后圆管的长度,厚度和外径的改变量。
解:长度的改变量 l l ql l E Eσε∆=== 厚度的改变量 qEδνδεδνεδ'∆==-=-外径的改变量 D qD D D Eνενε'∆==-=-27.正方形截面拉杆,边长为,弹性模量200 GPa E =,泊松比0.3ν=。
当杆受到轴向拉力作用后,横截面对角线缩短了0.012 mm ,试求该杆的轴向拉力F 的大小。
解:对角线上的线应变0.0120.000340ε-'==- 则杆的纵向线应变0.001εεν'=-=杆的拉力160 kN F EA ε==28. 图示圆锥形杆的长度为l ,材料的弹性模量为E ,质量密度为ρ,试求自重引起的杆的伸长量。
解:x 处的轴向内力 ()()()N 13F x gV x g A x x ρρ==⋅杆的伸长量N00()d ()d ()3()l l F x x gA x x l x EA x EA x ρ⋅∆==⎰⎰20d 36l gx x gl E Eρρ==⎰29. 设图示直杆材料为低碳钢,弹性模量200 GPa E =,杆的横截面面积为25 cm A =,杆长 1 m l =,加轴向拉力150 kN F =,测得伸长 4 mm l ∆=。
试求卸载后杆的残余变形。
解:卸载后随之消失的弹性变形e 1.5 mm Fll EA∆== 残余变形为p e 2.5 mm l l l ∆=∆-∆=30. 图示等直杆,已知载荷F ,BC 段长l ,横截面面积A ,弹性模量E ,质量密度ρ,考虑自重影响。
试求截面B 的位移。
解:由整体平衡得43C F gAl ρ=BC 段轴力()N 43F x gA x l ρ⎛⎫=- ⎪⎝⎭截面B 的位移 ()N 020d 453d ()6lB BC l F x xΔl EA gA x l gl x EA Eρρ=∆=⎛⎫- ⎪⎝⎭==-↓⎰⎰ 31. 已知图示结构中三杆的拉压刚度均为EA ,设杆AB 为刚体,载荷F ,杆AB 长l 。
试求点C 的铅垂位移和水平位移。
解:杆AB 受力如图N20F =, N1N32FF F ==132y FlΔl l EA=∆=∆=因为杆AB 作刚性平移,各点位移相同,且N20F =,杆2不变形。
又沿45由A 移至A '。
所以 2x y FlΔΔEA==32. 电子秤的传感器是一个空心圆筒,承受轴向拉伸或压缩。
已知圆筒外径80 mm D =,壁厚9 mm δ=,材料的弹性模量210 GPa E =。
在称某重物时,测得筒壁的轴向应变647610ε-=-⨯,试问该物重多少?l=1kNN3'xΔ解:圆筒横截面上的正应力FE Aσε== ()221π4F EA E D d εε==⋅-262 mm d D δ=-= 该物重 200.67 kF = 33. 图示受力结构,AB 为刚性杆,CD 为钢制斜拉杆。
已知杆CD 的横截面面积2100 mm A =,弹性模量200 GPa E =。
载荷1 5 kN F =,210 kN F =,试求: (1) 杆CD 的伸长量l ∆; (2) 点B 的垂直位移B ∆。
解:杆AB 受力如图0A M =∑,N2120F F F --=)N 212F F F =+=N 2 mm F ll EA∆==2 5.66 mm B C ΔΔl ===34. 如图示,直径16 mm d =的钢制圆杆ABB 处铰接。
当D 处受水平力F 0.0009ε=。
已知钢材拉伸时的弹性模量E =(1) 力F 的大小; (2) 点D 的水平位移。
解:折杆BCD 受力如图(1)0C M ∑=,N 1.520F F ⨯-⨯=N1.5 1.528.5kN 22F F E A ε=== (2)0.0018 m 1.8 mm l l ε∆=== 2 1.5Dx Δl∆=22.4 mm 1.5Dx Δl ε== 11B35. 如图示等直杆AB 在水平面内绕A 端作匀速转动,角速度为ω,设杆件的横截面面积为A ,质量密度为ρ。
则截面C 处的轴力N C F = 。
答:22x A x l ρω⎛⎫- ⎪⎝⎭36. 如图示,两端固定的等直杆AB ,已知沿轴向均匀分布的载荷集度为q ,杆长为l ,拉压刚度为EA ,试证明任意一截面的位移()2x qx l x EA δ-=,最大的位移2max 8ql EA δ=。
证:由平衡条件得0A B F F ql +-=()2 N 0 0d d 2ll AA F qx x F x F l ql l EA EA EA EA-∆===-⎰⎰ 由变形协调条件0l ∆=,得2A qlF =22d 222xA A x F qx F x qx ql x qx x EA EA EA EA EA δ-==-=-=⎰令0x δ'=,20ql qx -= 即当2lx =时,杆的位移最大,2max 2228l l q l qlEA EAδ⎛⎫- ⎪⎝⎭==证毕。
37. 图示刚性梁AB ,在BD 两点用钢丝悬挂,钢丝绕进定滑轮G 、F ,已知钢丝的弹性模量210 GPa E =,横截面面积2100 mm A =,在C处受到载荷20 kN F =的作用,不计钢丝和滑轮的摩擦,求C 点的铅垂位移。
解:设钢丝轴力为N F ,杆AB 受力如图示。