第九章公钥密码学-资料
- 格式:ppt
- 大小:301.54 KB
- 文档页数:41
第九章密码学与信息加密1. 密码学包含哪些概念?有什么功能?答:密码学(Cryptology)是研究信息系统安全保密的科学,密码编码学(Cryptography)主要研究对信息进行编码,实现对信息的隐藏。
密码分析学(Cryptanalytics)主要研究加密消息的破译或消息的伪造。
密码学主要包含以下几个概念:1)密码学的目标:保护数据的保密性、完整性和真实性。
保密性就是对数据进行加密,使非法用户无法读懂数据信息,而合法用户可以应用密钥读取信息。
完整性是对数据完整性的鉴别,以确定数据是否被非法纂改,保证合法用户得到正确、完整的信息。
真实性是数据来源的真实性、数据本身真实性的鉴别,可以保证合法用户不被欺骗。
2)消息的加密与解密:消息被称为明文,用某种方法伪装消息以隐藏它的内容的过程称为加密,加了密的消息称为密文,而把密文转变为明文的过程称为解密。
3)密码学的功能:提供除机密性外,密码学还提供鉴别、完整性和抗抵赖性等重要功能。
这些功能是通过计算机进行社会交流至关重要的需求。
鉴别:消息的接收者应该能够确认消息的来源;入侵者不可能伪装成他人。
完整性:消息的接收者应该能够验证在传送过程中消息没有被修改;入侵者不可能用假消息代替合法消息。
抗抵赖性:发送消息者事后不可能虚假地否认他发送的消息。
4)密码算法和密钥:密码算法也叫密码函数,是用于加密和解密的数学函数。
通常情况下,有两个相关的函数:一个用做加密,另一个用做解密。
密钥是一种参数,它是在明文转换为密文或将密文转换为明文的算法中输入的数据。
基于密钥的算法通常有两类:对称算法和公开密钥算法。
对称密钥加密,又称公钥加密,即信息的发送方和接收方用一个密钥去加密和解密数据。
它的最大优势是加/解密速度快,适合于对大数据量进行加密,但密钥管理困难。
非对称密钥加密,又称私钥密钥加密。
它需要使用一对密钥来分别完成加密和解密操作,一个公开发布,即公开密钥,另一个由用户自己秘密保存,即私用密钥。
公钥密码学公钥密码学是一种通用的加密技术,用于保护用户数据,保证私密性和安全性。
它是一种非对称加密技术,意思是,它使用一对密钥公开的公钥和保密的私钥来加密和解密信息。
它可以用来保护网络通信等。
公钥密码学的发明者是美国数学家兼集合理论专家Whitfield Diffie和加拿大数学家Martin Hellman于 1976年。
他们被称为Diffie-Hellman对,或仅称为Diffie-Hellman。
他们的原理是在数学上基于离散对数问题,这是一个求解以费马小定理为基础的问题,它由他们提出。
费马小定理说,在具有质数参数的数论环上,一个大整数的任意次幂都等于另一个大整数,只要它们不相等。
不同的加密系统使用一种称为“秘密双方协议”的技术,通过共享一些信息,双方可以安全地通信。
Diffie-Hellman协议使用公钥密码学来加密它们的会话,重点是发送方使用接收方的公开密钥来加密数据,而接收方使用自己的私钥解密数据。
与其他安全性算法相比,公钥密码学有许多优势。
首先,它更安全,因为它使用非对称密钥,而不是对称密钥,可以更好地保护用户数据。
其次,它提供了更高的安全性,因为攻击者无法从用户传输的信息中推断出加密的密钥。
第三,它拥有更多的功能,可以有效地实现签名功能,防止信息抵赖。
在当今日新兴网络技术领域,公钥密码学发挥着重要作用。
许多机密信息传输方案都使用公钥密码学来保护网络安全。
公钥密码学也用于互联网支付系统,以及基于手机的缴费系统,从而保护支付信息的安全性。
公钥密码学已经成为当今社会日新月异的发展的重要技术,它为社会的发展和安全安全提供了坚实的技术支持,同时也为网络传输提供了坚强的保护。
随着技术的发展,人们应该充分了解公钥密码学在社会发展中所起的作用,并一如既往地努力改进和发展这一技术,以满足当今社会的不断变化的安全需求。
公钥密码原理公钥密码学是一种根据密码技术原理实现信息保密与数据安全传输的安全技术,它通过建立信息发送者与接收者之间的加密技术实现信息的安全传输,从而在安全技术领域中受到广泛应用。
公钥密码学是一种非常重要的安全技术,它利用了一种叫做“公钥密码”的技术,来保护信息免受未经授权的第三方间谍的窃取或窃听的行为。
这种安全技术的原理是,一个称为公钥的需要保密的信息发送者将信息编码成一个数字算法后,便将这个数字算法发送给收件人,收件人拥有相应的数字算法,称为私钥,这样收件人就可以用自己的私钥对发件人发来的公钥进行解密,解密后就可以和发件人进行安全的信息传输,而且任何未经授权的第三方无法从中获得任何有关信息。
公钥密码学技术的发展有着悠久的历史,它最初出现在1970年代,当时由美国国家安全局(NSA)主导的一系列称之为“曲折历史”的项目中首次被提出。
该项目的最终成果是美国国家安全局(NSA)与加拿大安全局(CSEC)的MD5数学算法,它是支持公钥密码学技术最早的瑞士中央银行发放的那批椭圆曲线函数及数字签名标准(ECDSA)和统一椭圆曲线算法(ECC)之前被研发出来的最初算法。
为了更有效地支持公钥密码学技术,一些重要的数学原理和安全算法,如Diffie-Hellman算法、RSA算法等,被开发出来,它们被广泛用于公钥加密、数字签名和数字信封等安全性高的应用场景中。
由于Diffie-Hellman算法的特殊性,它被公认为是现代公钥密码学中的主要基础,而RSA算法被认为是现代公钥密码学中最为重要的数学基础,它是现代公钥密码学最基本的算法。
公钥密码学技术通过在发送信息时使用一个公钥,在接收信息时使用一个私钥,实现了信息的安全传输,从而应用于很多安全性要求较高的场景,如网络支付、金融支付、网上银行、电子商务等,从而大大提高了信息传输的安全性。
当今,公钥密码学技术已成为信息安全领域最重要的一种技术,它被广泛地应用于各种安全场景中,如电子商务、金融支付、网上银行等,这些安全场景中所使用的公钥密码学技术有效地保护了个人信息不被未经授权的第三方间谍窃取和窃听。
公钥密码学
公钥密码学是一种新型的数字复杂算法,用来保护在网络上传输的信息和数据的安全性,是一种加密算法体系,它将源信息转化成一种难以解读的形式,而且只有猜测解密密钥的对象才能够解读。
公钥密码是一种新型的加密算法,它可以简单快捷,安全可靠地实现信息的传输和存储。
公钥密码学以公钥和私钥为核心,是一种不对称的密码算法。
公钥密码利用公钥和私钥加密和解密,这两个密钥体系是独立的,公钥可以向任何人公开,而私钥则只能由它本身的持有者独享,这样就可以大大提高数据的安全性。
公钥密码的特点是可以同时实现加解密,也就是说不论是发送者还是接收者,都可以使用同一密钥进行信息的加解密,而不用降低安全性。
公钥密码学的传输过程是这样的:发送者先将信息进行加密,然后通过公钥将加密后的信息发送给接收者,接收者使用私钥将发送的信息解密,这样就可以实现无疑问的信息传输,而不被拦截或攻击。
在这个过程中,信息的安全性可以得到充分的保证。
由于公钥密码学支持广泛的应用,它已经成为当今智能设备上的一种重要的安全加密技术。
公钥密码技术可以应用于Web安全以及访问控制,可以用于电子商务安全,远程银行注册,电子签名,多人协同工作,电子邮件,数据加密及安全存储等多领域。
公钥密码学是一种抗拦截,安全可靠的加密技术,它具有传统密码技术无法提供的安全性,而且可以应用到智能设备上,被广泛应用
于各种互联网服务,可以有效地提高网络安全性和系统的可靠性。
公钥密码的基本原理
公钥密码是一种密码机制,使用了两个密钥,一个是公钥(用于加密数据),另一个是私钥(用于解密数据)。
其基本原理如下:
1. 密钥生成:使用一种特定的算法生成一对密钥,其中一个是公钥,另一个是私钥。
公钥可以公开给任何人使用,而私钥必须保密。
2. 加密:使用公钥对要传输的数据进行加密。
只有拥有相应私钥的人才能解密该数据。
3. 解密:使用私钥对加密的数据进行解密,恢复原始数据。
这种机制的安全性基于一个重要的数学问题,即大数因式分解问题。
该问题指的是将一个大的合数分解为其素数因子的乘积。
目前没有有效的算法可以在合理时间内解决大数因式分解问题,这就保证了公钥密码的安全性。
公钥密码的基本原理是通过使用不同的密钥进行加密和解密,确保数据的机密性和完整性,并阻止未经授权的访问。
由于公钥是公开的,因此任何人都可以使用公钥对数据进行加密,但只有拥有私钥的人才能解密数据。
这种机制广泛应用于网络通信、数据加密和数字签名等领域。