2009届最有影响力高考复习题(数学)10 (3+3+4)
- 格式:doc
- 大小:456.00 KB
- 文档页数:6
2009年全国高考试题分类汇编年全国高考试题分类汇编——选做题部分广东卷13.(坐标系与参数方程选做题)若直线+=−=.2,21:1kt y t x l (t 为参数)与直线2,:12.x s l y s ==− (s 为参数)垂直,则k = . 【解析】1)2(2−=−×−k,得1−=k . 14.(不等式选讲选做题)不等式112x x +≥+的实数解为 .【解析】112x x +≥+2302)2()1(022122−≤⇔ ≠++≥+⇔ ≠++≥+⇔x x x x x x x 且2−≠x .15.(几何证明选讲选做题)如图4,点,,A B C 是圆O 上的点, 且04,45AB ACB =∠=,则圆O 的面积等于 .【解析】解法一:连结OA 、OB ,则090=∠AOB ,∵4=AB ,OB OA =,∴22=OA ,则ππ8)22(2=×=圆S ;解法二:222445sin 420=⇒==R R ,则ππ8)22(2=×=圆S .江苏卷21.[选做题]在A 、B 、C 、D 四小题中只能选做两题只能选做两题......,每小题10分,共计20分。
请在答题答题..卡指定区域.....内作答,解答时应写出文字说明、证明过程或演算步骤。
A.选修4 - 1:几何证明选讲如图,在四边形ABCD 中,△ABC ≌△BAD. 求证:AB ∥CD.[解析] 本小题主要考查四边形、全等三角形的有关知识,考查推理论证能力。
满分10分。
证明:由△ABC ≌△BAD 得∠ACB=∠BDA ,故A 、B 、C 、D 四点共圆,从而∠CBA=∠CDB 。
再由△ABC ≌△BAD 得∠CAB=∠DBA 。
因此∠DBA=∠CDB ,所以AB ∥CD 。
B. 选修4 - 2:矩阵与变换求矩阵3221A=的逆矩阵. [解析] 本小题主要考查逆矩阵的求法,考查运算求解能力。
满分10分。
解:设矩阵A 的逆矩阵为,x y z w则3210,2101x y z w=即323210,2201x z y w x z y w ++ =++ 故321,320,20,21,x z y w x z y w +=+= +=+= 解得:1,2,2,3x z y w =−===−,从而A 的逆矩阵为11223A −− = −.C. 选修4 - 4:坐标系与参数方程已知曲线C的参数方程为13(x y t t = =+(t 为参数,0t >).求曲线C 的普通方程。
135. (2009广东理)设z 是复数,a(z)表示满足D. -1,所以满足 A.8B. 25.解:因为i - -1 ,c.z n 二1的最小正整数n ,则对虚数单位i , a(i)二 2i n =1的最小正整数n 的值是4。
故,选C6. (2009海南、宁夏文)(A ) 16•【答3+2i复数——2 - 3i (B ) -1(C ) i(D) -i【解析】C3 2i (3 2i)(2 3i) 2-3i(2-3i)(23i)6 9i 4i -613=i ,故选.C o3 2i 3 -2i7. (2009海南、宁夏理)复数2 -3i 2 +3i(C ) -2i3 2i 2 3i 3-2i 2-3i 26i --------------- --------------------------- = =2i ,选 D(A) 07.解析:(B ) 23 2i 3—2i (D)2i2 -3i 2 3i13 132009年全国各地高考数学试题及解答分类汇编大全(07数系的扩充与复数的引入)一、选择题:1. ( 2009安徽文)i 是虚数单位,i(1+i)等于A . 1+i B. -1-i C.1-i21.【解析】依据虚数运算公式可知i =「1可得i(1 • i)二i - 1,选D.1 +7i2。
(2009安徽理)i 是虚数单位,若a ・bi(a,b ・R),则乘积ab 的值是…2-i(A )— 15( B ) - 3( C ) 3(D ) 15 ■-2.[解析]1 7i =(1_7i )(2 —- -1 亠 3i ,二 a = _1,b=3,ab = _3,选 B 。
2 —i 53. (2009北京理)在复平面内,复数 z =i(1 • 2i)对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.【解析】本题主要考查复数在坐标系数内复数与点的对应关系.属于基础知识的考查••• ^i(1 2i^i 2^ -2 i ••复数z 所对应的点为 -2,1,故选B.4. (2009广东文)下列n 的取值中,使i n =1 (i 是虚数单位)的是A . n=2B. n=3C. n=4D. n=524354.答 c 。
2009届高考数学名校试题精选——概率与统计部分专项训练一、选择题:1、4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .13B .12C .23D .342、调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表: 你认为婴儿的性别与出生时间有关系的把握为( ) A.80% B.90% C.95% D.99%3、在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为( ) (A )511(B )681 (C )3061(D )40814、某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是( ) A. 256625B. 192625C.96625D.166255、已知样本7,8,9,,x y 的平均数是8xy 的值为( )A、8 B、32 C、60 D、806、把一根匀均匀木棒随机地按任意点拆成两段,则“其中一段的长度大于另一段长度的2倍”的概率为( )(A)23 (B)25 (C)35 (D)137、如图,四边形ABCD 为矩形,3=AB ,1=BC ,以A 为圆心,1为半径作四分之一个圆弧DE ,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是( ). (A)31 (B)23 (C)25 (D)358.某学生通过计算初级水平测试的概率为21,他连续测试两次, 则恰有1次获得通过的概率为 ( )43.41.21.31.D C B A 9.下面事件①若a 、b ∈R ,则a ·b=b·a ;②某人买彩票中奖;③6+3>10;④抛一枚硬币出现正面向上,其中必然事件有 ( ) A .① B .② C .③④ D .①②10.在4次独立重复实验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率的范围是 ( )A .[O .4,1]B .(O ,0.4]C .(O ,0.6]D .[0.6,1)11.设袋中有8个球,其中3个白球,3个红球,2个黑球,除了颜色不同外,其余均相同.若取得1个白球得1分,取得1个红球扣1分,取得一个黑球既不得分,也不扣分,则任摸3个球后的所得总分为正分的概率为( )5623.289.74.5619.D C B A 12.从1、2、3、4、5中随机抽取3个数字(允许重复)组成一个三位数,则和等于9的概率为 ( )12513.12416.12518.12519.D C B A 13.甲、乙两人独立地对同一目标各射击一次,其命中率一分别为0.6和0.5,现已知目标被击中,则它恰是甲射中的概率为 ( )A .0.45B .0.6C .0.65D .0.7514. 教某气象站天气预报的准确率为80%.则5次预报中至少有4次准确的概率为 ( ) A ,0.2 B .0.41 C .0.74 D .0.6715.有一道试题,A 解决的概率为21,B 解决的概率为31,C 解决的概率为41,则A 、B 、C 三人独立解答此题,只有1人解出的则两人射击成绩的稳定程度是__________________。
2009年全国各地高考数学试题及解答分类汇编大全(03函数的性质及其应用)、选择题1 . (2009北京文、理)为了得到函数y的图像,只需把函数 10A .向左平移3个单位长度,再向上平移B .向右平移3个单位长度,再向上平移C .向左平移3个单位长度,再向下平移 1个单位长度D .向右平移3个单位长度,再向下平移 1个单位长度 1.【解析】本题主要考查函数图象的平移变换 .属于基础知识、基本运算的考查A y =lg x 3 1 =lg10 x 3 ,B . y =lg x 「3iT=lg10 x -3C .x +3 y -lg x 3 -1 一 lg 10D.x —3y =lg x -3 -1 =lg故应选C.12. (2009福建文)下列函数中,与函数 y有相同定义域的是J x1XA .f(x)=lnxB. f (x)C. f(x)=|x|D. f (x)二 ex112.解析 解析 由y可得定义域是x • 0. f (x) =ln x 的定义域x 0 ; f (x) 的定义域是xV x x丰0; f (x) =| x |的定义域是 x R ;f(x)=e x 定义域是R 。
故选A.3. (2009福建文)定义在R 上的偶函数f x 的部分图像如右图所示,则在-2,0上,下列函数中与f x 的单调性不同的是2A . y =x 1 B. y =| x | 12x 1,x — 0e x ,x _oC. y =3D . y x[x 3+1,x v 0[e ,xv03.解析解析根据偶函数在关于原点对称的区间上单调性相反, 故可知求在-2,0上单调递减,注意到要与f x 的单调性不同, 故所求的函数在 -2,0上应单调递增。
而函数 y =x 2,1在(-°°,1】上递减;函数y = x +1在(—°°,0】时单调递减;函数 y =递减,理由如下y'=3x 2>0(x<0),故函数单调递增,显然符合题意;而函数y =lg x 的图像上所有的点1个单位长度一1个单位长度 N+1,xA 0,有在―,0]上单调y'=-e"x<0(x<0),故其在(-°°,0]上单调递减,不符合题意,综上选C。
2009年全国高考理科数学试题及答案(全国卷Ⅱ)一、选择题: 1.10i2-i=A.-2+4iB.-2-4iC.2+4iD.2-4i解:原式10i(2+i)24(2-i)(2+i)i ==-+.故选A.2.设集合{}1|3,|04x A x x B x x -⎧⎫=>=<⎨⎬-⎩⎭,则A B = A.∅B.()3,4 C.()2,1-D.()4.+∞解:{}{}1|0|(1)(4)0|144x B x x x x x x x -⎧⎫=<=--<=<<⎨⎬-⎩⎭.(3,4)A B ∴=.故选B. 3.已知ABC ∆中,12cot5A =-,则cos A = A.1213 B.513 C.513-D.1213-解:已知ABC ∆中,12cot 5A =-,(,)2A ππ∴∈.12cos 13A ===-故选D. 4.曲线21xy x =-在点()1,1处的切线方程为A.20x y --=B.20x y +-=C.450x y +-=D.450x y --=解:111222121||[]|1(21)(21)x x x x x y x x ===--'==-=---, 故切线方程为1(1)y x -=--,即20x y +-=故选B.5.已知正四棱柱1111ABCD A B C D -中,12AA AB=,E 为1AA 中点,则异面直线BE 与1CD 所成的角的余弦值为A.10B.15C.10D.35解:令1AB =则12AA =,连1A B 1C D ∥1A B ∴异面直线BE 与1CD 所成的角即1A B与BE 所成的角。
在1A BE ∆中由余弦定理易得1cos 10A BE ∠=。
故选C6.已知向量()2,1,10,||a a b a b =⋅=+=||b =A.C.5D.25解:222250||||2||520||a b a a b b b =+=++=++||5b ∴=。
2009届箴言中学高三数学二轮试题(文科)、选择题(本大题共8小题,每小题5分,共40分)设集合A珂-1,0,1},集合B -{0,1,2,3,},定义A BA*B中元素个数是A. 7已知全集UB . 10=R,集合A ={y y =-2%, x EC. 25R , B ={y y二{(x, y) x A B, y A B},则( )D. 52=x3— 3x,x • R,则Ap| eu B =()5.8.1 f< x;0 \ (B W xJ * f[a1 3a8 a15 =120,则2a g -印。
的值为( )B 22C 24> 2,命题q : x w Z ;如果"p且q ”与"非()x -1, x )Z(D){x(A 丫一等差数列CaJ中,A 20已知命题p: x -1条件的x为(A (x x^ 3或w—1,致}Z (B ){x-1 w x w 3,x^z}C 1—1, 0,1, 2,3D :0,1,2?在正整数数列中,由1开始依次按如下规则将某些数染成红色. 先染1 ,再染2个偶数2、4;再染4后面最邻近的3个连续奇数5、7、9;再染9后面最邻近的4个连续偶数10、12、14、16;再染此后最邻近的5个连续奇数17、19、21、23、25.按此规则一直染下去,得到一红色子数列1, 2, 4, 5, 7, 9, 10, 12, 14, 16, 17,….则在这个红色子数列中,由1开始的第2003个数是()A 3844B 3943C 3945如图,设A、B、C、D为球0上四点,若AB、AC、AD两两互相垂直,且AB=AC = .6 , AD=2,则A、D两点间的球面距离为()D -8同时为假命题, 则满足JIA32nC —3已知点A、B、C不共线,A CB A且有D 二T TAB BCC如图,在平面直角坐标系xOy中,P x,y对应到另一个平面直角坐标系BC CA CA AB一=:r——,则有( v3 \3-2)l t吕(B )BC|c|cA AB<I BC'DA 1,0、B 1,1、C 0,1,映射f将xOy平面上的点uO'v上的点P,2xy,x2-y2,则当点P沿着折线9.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a,b •「1,2,3,4,5,6二若a 二b 或a 二b -1,就称甲乙 心有灵犀”•现任意找两人 玩这个游戏,则他们心有灵犀”的概率为 _______________ . 10.直线3x ・4y-15=0被圆x 2y 2 25截得的弦AB 的长为 __________ 。
2009届箴言中学高三数学二轮试题(文科)一、选择题:本小题共 10小题,每小题5分,共50分,在每小题所给的四个选项中,只有一项是符合题目要求的。
1 •设条件p : x一1 0 ;条件q : (x 1)(x 1) 0 ,则q 是p 的()条件x 1A.充分不必要B.必要不充分C.充要D.既不充分也不必1 2•二项式(2x 43)n的展开式中含有非零常数项,则正整数 n 的最小值为( )3x 3A • 7B • 12C . 14D • 53 •对于一个有限数列p ( P 1, P 2, , P n ) , p 的蔡查罗和(蔡查罗为一数学家)定义为 1—(S s 2 ,其中 S kP 1 P 2P n (1 k n),若一个 99 项的数列n(P 1, P 2, , p 99)的蔡查罗和为1000,那么100项数列(1,P 1, P 2, , P 99)的蔡查罗和为()A . 991B . 992C . 993D . 99924.对于使 x 2xM成立的所有常数 M 中,我们把 2M 的最小值1叫做 x 2x 的上确界, 若 a,b R ,且ab 1,则1 -的上确界为 ( )2a b991A .-B一C.—D . -42245 •古代“五行”学说认为:“物质分金,木,土,水,火五种属性,金克木,木克土,土克水, 水克火,火克金”将五种不同属性的物质任意排成一列, 则属性相克的两种物质不能相邻的排 法数为 ( )、填空题:本小题共 5小题,每小题5分,共25分,将答案填在题中相应的横线上。
外接球的半径 R 为 ( ) A . 5、、2 22B . 5C .5.2D . 4 28 •椭圆C 1:x ay1的左准线为 l ,左、 右焦点分别为 F 1、F 2,抛物线C 2的准线为1,焦点ABCD 中,三组对棱棱长分别相等且依次为 7 .在四面体 则此四面体ABCD 的 OF 1 OGP ,线段PF 2的中点为 G ,O 是坐标原点,则的PF 1PF 21 1C .--D . 一22为F 2, C 1与C 2的一个交点为 值为()A . 1B . 1B • 10C . 156 .已知平面内的四边形 边形ABCD A •梯形 r 曰 定是 ABCD 和该平面内任一点( )B .菱形D . 20juu2 jujjP 满足:AP CP uuuu uujirBP 2 DP 2,那么四C .矩形D .正方形 34、 ,41、5,9. 若 x x 1 a 。
2009年普通高等学校招生全国统一考试理科数学试题汇编三角部分.1.(全国1/17)在∆ABC 中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知222a c b -=,且sin cos 3cos sin A C A C =,求b.分析:此题事实上比较简单,但考生反应不知从何入手.对已知条件(1)222a c b -=左侧是二次的右侧是一次的,学生总感觉用余弦定理不好处理,而对已知条件(2)sin cos 3cos sin ,A C A C =过多的关注两角和与差的正弦公式,甚至有的学生还想用现在已经不再考的积化和差,导致找不到突破口而失分. 解法一:在ABC ∆中sin cos 3cos sin ,A C A C =则由正弦定理及余弦定理有:2222223,22a b c b c a ac ab bc+-+-=化简并整理得:2222()a c b -=.又由已知222a c b -=24b b ∴=.解得40(b b ==或舍).解法二:由余弦定理得: 2222cos a c b bc A -=-.又222a c b -=,0b ≠。
所以2cos 2b c A =+…………………………………①又sin cos 3cos sin A C A C =,sin cos cos sin 4cos sin A C A C A C ∴+=sin()4cos sin A C A C +=,即sin 4cos sin B A C =由正弦定理得sin sin bB C c=,故4cos b c A =………………………② 由①,②解得4b =。
评析:从08年高考考纲中就明确提出要加强对正余弦定理的考查.在备考中应注意总结、提高自己对问题的分析和解决能力及对知识的灵活运用能力.另外提醒:两纲中明确不再考的知识和方法了解就行,不必强化训练 2.(全国1/16)若42ππ<X <,则函数3tan 2tan y x x =的最大值为 .解:令tan ,x t =142x t ππ<<∴>,3.(全国1/8)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么π的最小值为(A )6π (B )4π (C )3π (D) 2π 解:函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称 423k πφπ∴⋅+=42()3k k Z πφπ∴=-⋅∈由此易得min ||3πφ=.故选C 4.(全国2/8) 若将函数()tan 04y x πωω⎛⎫=+> ⎪⎝⎭的图像向右平移6π个单位长度后,与函数tan 6y x πω⎛⎫=+ ⎪⎝⎭的图像重合,则ω的最小值为A .16 B.14C.13D.12答案:D 解析:由646x x k πππωωπ-+=++()可得5.(全国2/3) 已知ABC ∆中,12cot 5A =-, 则cos A =A.1213B.513C.513-D. 1213-答案:D解析:同角三角函数基本关系并注意所在象限的符号6.(全国2/17)设ABC ∆的内角A 、B 、C 的对边长分别为a 、b 、c ,3cos()cos 2A CB -+=,2b ac =,求B 。
2009年高考模拟试卷数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自已的姓名和考生号、试室号、座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2. 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,选划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液. 不按以上要求作答的答案无效.4. 作答选做题时,请先用2B铅笔填涂选做题的题号(或题组号)对应的信息点,再作答•漏涂、错涂、多涂的,答案无效.5. 考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.1参考公式:锥体的体积公式V Sh,其中S是锥体的底面积,h是锥体的高.3一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合P={x|x c1},集合Q=«x| 丄c0?,则P“Q =A. "Xx c O〉B. <xx>l}C. {xx c O或x > "D.空集©2 —ai2. 若复数(a・R)是纯虚数(i是虚数单位),则a =()1+i c 1 1A. -2B.C. 一D. 22223. 若函数f (x)二sin 2x(x・ R)是()A .最小正周期为的偶函数B .最小正周期为的奇函数2 2C.最小正周期为■:的偶函数 D .最小正周期为■:的奇函数4 .某校共有学生2000名,各年级男、女生人数如下表;已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19 .现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()A. 24B. 18C. 16D. 125 •在边长为1的等边二ABC 中,设BC 二a , CA 二b ,则a b 二()■ 0A. 1B. 2C. 3D. 4C. 命题“若m • 0,则方程x 2 x 「m 二0有实根”的逆否命题为“若方程x 2 • x 「m = 0无 实根,则m 乞0D. “ x -1 ”是“ x 2 -3x • 2 = 0 ”的充分不必要条件2&函数f (x )=mx -x -1在(0,1)内恰有一个零点,则实数 m 的取值范围是( )A.2]C.[2, ::)D. (2,::)9 .设有直线m 、n 和平面〉、:•下列四个命题中,正确的是 ()A.若 m 「,n // :•,则 m II nB.若 m 二卅,n 二圧,m // :,n // :,则〉// :C.若:•— :,m 二圧,则 m 」■;'D.若:■ _ :, m 」, m-:,则 m // :■10 .对于函数f (x )二e x 定义域中任意捲公2(捲=X2)有如下结论:上述结论中正确的结论个数是( A 1 1.3.B.-C.D2 226. 已知几何体的三视图女口图 1所示, 它的表面积是( )A. 4.2B. 2..2C.3 、2D.67. 卜列命题错误的是()A .命题“若xy 二0 , 则x, y 中至少 有一个为零” 的否定是: “若xy = 0,则x, y 都不为零”— 2;则—p :- x R ,均有 x • x T _ 0① f (x 「X 2)= f (xj f (X 2) ② f (捲 X 2) = f (xj f (X 2) f (X 1)- f(X 2)④ X 1 x 2f(X 1)f (X 2)2 2E.对于命题 p : T x • R ,使得X x ^:: 0二、填空题:本大题共5小题,每小题5分,满分20分•其中14、15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分。
2009年高考数学试题2009年高考数学试题是中国高考中的一套数学试题,该试题对考生的数学知识和解题能力进行了全面考察。
下面将对2009年高考数学试题进行逐题分析和解答,以帮助考生更好地理解和应对类似的数学考试题目。
一、选择题1. 设函数f(x) = 3x^2 + 2x - 1,若f(ax^2 - bx + 1) = 0恰好有一个实数根,则实数a和b的乘积为多少?解答:首先代入f(ax^2 - bx + 1) = 0,得到3(ax^2 - bx + 1)^2 +2(ax^2 - bx + 1) - 1 = 0。
展开并整理得到3a^2x^4 - (6ab - 2a)x^3 + (2a^2 - 2)b^2x^2 + (2a^2 - 2b - 2)x + (3a^2 + 2a - 1) = 0。
由于方程有一个实数根,根据实根系数定理可知系数a^2大于等于0,故3a^2 + 2a - 1 = 0。
解此方程得到a = 1/3或a = -1。
考虑a = 1/3的情况,将3ax^2 - bx + 1带入f(x) = 0得到3(1/3x^2 -bx + 1)^2+ 2(1/3x^2 - bx + 1) - 1 = 0,化简后得到x^2 - 9bx + 25 = 0。
由于方程有一个实数根,根据判别式可知b^2 - 4ac = (-9b)^2 - 4(1)(25) =81b^2 - 100 ≥ 0。
解此不等式得到 -10/9 ≤ b ≤ 10/9。
因此,当a = 1/3时,b的取值范围为[-10/9, 10/9]。
考虑a = -1的情况,将-3x^2 - bx + 1带入f(x) = 0得到3(-x^2 - bx + 1)^2 + 2(-x^2 - bx + 1) - 1 = 0,化简后得到x^2 + 5bx + 6 = 0。
由于方程有一个实数根,根据判别式可知b^2 - 4ac = (5b)^2 - 4(1)(6) = 25b^2 - 24≥ 0。
2009最有影响力高考复习题(数学)10(3+3+4)一、选择题:1、设随机变量ξ服从正态分布(2,9)N ,若(1)(1)P c P c ξξ>+=<-,则c = ( )A.1B.2C.3D.42、如图(1)所示,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,EF 与面AC 的距离为2,则该多面体的体积是( )A.29B.5C.6D.215 3、已知数列{}n x 满足122x x =,121()2n n n x x x --=+,3,4,n = ,若lim 2n n x →+∞=,则1x =( )A 、32B3 C 、4 D 、5 二、填空题:4、三角形ABC 中AP 为BC3=,2-=⋅=5、O 为坐标原点,正△OAB 中A 、B 在抛物线x y 22=上,正△OCD 中C 、D 在抛物线22x y =上,则△ OAB 与△OCD 的面积之比为 .6、已知函数()y f x =在定义域3(,3)2-上可导,其图像如图,记()y f x =的导函数'()y f x =,则不等式'()0xf x ≤的解集是________.三、解答题: 7、同时抛掷15枚均匀的硬币一次.(1)试求至多有1枚正面向上的概率;(2)试问出现正面向上为奇数枚的概率与出现正面向上为偶数枚的概率是否相等?请说明理由.8、已知(sin ,cos ),33x x a = (cos )33x x b = ,函数()f x a b =⋅ .(1)将f(x)写成)sin(φω+x A 的形式,并求其图象对称中心的坐标;(2)如果△ABC 的三边a ,b ,c 满足b 2=ac ,且边b 所对的角为x ,试求x 的范围及此时函数f(x)的值域.9、如图,正三棱柱ABC —A 1B 1C 1中,D 是BC 的中点,AA 1=AB =1.(I )求证:A1C //平面AB 1D ;(II )求二面角B —AB 1—D 的大小; (III )求点C 到平面AB 1D 的距离.10、设直线)1(:+=x k y l 与椭圆)0(3222>=+a a y x 相交于A 、B 两个不同的点,与x轴相交于点C ,记O 为坐标原点.(I )证明:222313kk a +> (II )若OAB CB AC ∆=求,2的面积取得最大值时的椭圆方程.四、10答案:1、【解析】2(2,3)N ⇒ 12(1)1(1)(),3c P c P c ξξ+->+=-≤+=Φ 12(1)(),3c P c ξ--<-=Φ31()()1,33c c --∴Φ+Φ=311()()1,33c c --⇒-Φ+Φ=解得c =2, 所以选B.2、【解析】用特殊图形.如图(2)所示,使ED ⊥平面ABCD ,且使ED=2.连AF 、DF.则EF ⊥面ADE.∵V F —ADE =31·EF ·S △ADE =212331⨯⨯×3×2=23.V F —ABCD =31·DE ·S □ABCD =31·2·32=6. ∴V多面体=23+6=215.选D.3、【解析】由条件121()2n n n x x x --=+有12122n n n n n n n x x x x x x x ----=+⇒-=-,∴3213,x x x x -=-4324,x x x x -=- 1231,n n n n x x x x -----=-12n n n n x x x x ---=-,累加得2121n n n x x x x x x --=+--,代入122x x =得1122n n x x x -+=,两边同取极限得, 11lim 2lim lim 2n n n n n x x x -→∞→∞→∞+=,即1122223x x ⨯+=⇒=,选B4、【解析】22=,即22)()(+=+,5222=⋅+=,=5,故选C .5、【解析】设△OAB 的边长为a ,则不妨设11,,,2222A a a B a a ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,代入x y 22=,得a =;同理,设△OCD 的边长为b ,可得b =.:4:1a b ∴=,:16:1OAB OCD S S ∴= .6、【解析】:本题是一道改编题,利用函数()f x 的图像信息得出'()0f x ≤的解集是1[,1]2-,'()0f x ≥的解集是31(,][1,3)22-- ,从而由'()0xf x ≤,得00'()0'()0x x f x f x ≥≤⎧⎧⎨⎨≤≥⎩⎩或,从而3101.22x x ≤≤-<≤-或答案:31[0,1](,].22--7、【解析】(1):记“抛掷1枚硬币1次出现正面向上”为事件A ,P (A )=21 抛掷15枚均匀的硬币一次相当于做15次独立的重复试验,根据n 次独立重复试验中事件A 发生k 次的概率公式,记至多有1枚正面向上的概率为P 1,则P 1=P (0)+P (1)=20481)21()21(1511515015=+C C(2):记正面向上为奇数枚的概率为P 2,记正面向上为偶数枚的概率为P 3,则有15151515315151152)21()21()21()15()3()1(C C C P P P P +++=+++=21)()21(151531511515=+++=C C C 又“出现正面向上为奇数枚”的事件与“出现正面向上为偶数枚”的事件是对立事件 ∴P 3=1-21=21.∴出现正面向上为奇数枚的概率与出现正面向上为偶数枚的概率相等. 8、【解析】(1)122()sin cos )233x x f x a b =⋅=+ 122sin23232x x =++2sin()332x π=++.令2sin()33x π+=0,得231()()332x k k k z x k Z πππ-+=∈=∈,即.而y=()f x 的图象可由2s i n ()33xy π=+向上平移个单位得到,故所求对称中心的坐标为31()2k k Z π⎛-∈ ⎝⎭.(2)由已知b 2=a c ,2222221cos 2222a c b a c ac ac ac x ac ac ac +-+--==≥= 125cos 10233339x x x ππππ∴≤<<≤<+≤,, ,5||||,3292ππππ->- 22sin sin()1,sin()133333x x πππ∴<+≤<+≤+ 即)(x f 的值域为]231,3(+.综上所述,]3,0(π∈x ,)(x f 值域为]231,3(+. 9、【解析】解法一(I )证明:连接A 1B ,设A 1B ∩AB 1 = E ,连接DE.∵ABC —A 1B 1C 1是正三棱柱,且AA 1 = AB ,∴四边形A 1ABB 1是正方形, ∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C.∵DE ⊂平面AB 1D ,A 1C ⊄平面AB 1D ,∴A 1C ∥平面AB 1D.(II )解:在面ABC 内作DF ⊥AB 于点F ,在面A 1ABB 1内作FG ⊥AB 1于点G ,连接DG.∵平面A 1ABB 1⊥平面ABC , ∴DF ⊥平面A 1ABB 1,∴FG 是DG 在平面A 1ABB 1上的射影, ∵FG ⊥AB 1, ∴DG ⊥AB 1 ∴∠FGD 是二面角B —AB 1—D 的平面角 设A 1A = AB = 1,在正△ABC 中,DF=.43 在△ABE 中,82343=⋅=BE FG ,在Rt △DFG 中,36tan ==FG DF FGD , 所以,二面角B —AB 1—D 的大小为.36arctan(III )解:∵平面B 1BCC 1⊥平面ABC ,且AD ⊥BC ,∴AD ⊥平面B 1BCC 1,又AD ⊂平面AB 1D ,∴平面B 1BCC 1⊥平面AB 1D. 在平面B 1BCC 1内作CH ⊥B 1D 交B 1D 的延长线于点H ,则CH 的长度就是点C 到平面AB 1D 的距离.由△CDH ∽△B 1DB ,得.5511=⋅=D B CD BB CH 即点C 到平面AB 1D 的距离是.55 解法二:建立空间直角坐标系D —xyz ,如图,(I )证明:连接A 1B ,设A 1B ∩AB 1 =E ,连接DE.设A 1A = AB = 1, 则).0,0,21(),21,43,41(),1,23,0(),0,0,0(1C E A D -),21,43,41(),1,23,21(1-=--=∴DE C A.//,211DE C A A ∴-=∴DAB C A D AB DE 111,平面平面⊄⊂ ,.//11D AB C A 平面∴(II )解:)1,0,21(),0,23,0(1-B A , )1,0,21(),0,23,0(1-==∴B , 设),,(1r q p n =是平面AB 1D 的法向量,则0,0111=⋅=⋅B n n 且, 故)1,0,2(,1.021,0231===-=-n r r p q 得取;同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n设二面角B —AB 1—D 的大小为θ,515||||cos 2121=⋅=n n n n θ ,∴二面角B —AB 1—D 为.515arccos(III )解由(II )得平面AB 1D 的法向量为)1,0,2(1=n , 取其单位法向量).0,0,21(),51,0,52(==n 又∴点C 到平面AB 1D 的距离.55||=⋅=n DC d 10、【解析】依题意,直线l 显然不平行于坐标轴,故.11)1(-=+=y kx x k y 可化为 将x a y x y k x 消去代入,311222=+-=,得.012)31(222=-+-+a y k y k① 由直线l 与椭圆相交于两个不同的点,得3)31(,0)1)(31(4422222>+>---=∆a k a kk 整理得,即.313222k k a +>(II )解:设).,(),,(2211y x B y x A 由①,得221312k ky y +=+因为212,2y y -==得,代入上式,得.31222kky +-= 于是,△OAB 的面积 ||23||||21221y y y OC S =-⋅=.23||32||331||32=<+=k k k k 其中,上式取等号的条件是.33,132±==k k 即 由.33,312222±=+-=y kk y 可得 将33,3333,3322=-=-==y k y k 及这两组值分别代入①,均可解出.52=a 所以,△OAB 的面积取得最大值的椭圆方程是.5322=+y x。