2014数轴相反数绝对值过关检测
- 格式:doc
- 大小:62.50 KB
- 文档页数:2
数轴、相反数、绝对值专题训练1. 若上升5m 记作+5m ,则-8m 表示___________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作5℃,那么零下2℃记作__________;太平洋中的马里亚纳海沟深达11 034m 11 034m(即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它所在的集合里:-2,7,32-,0,2 013,0.618,3.14,-1.732,-5,+3①正数集合:{ …}②负数集合:{ …}③整数集合:{ …}④非正数集合:{ …}⑤非负整数集合:{ …}⑥有理数集合:{ …}3. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b 0aA .0<a <bB .a <0<bC .b <0<aD .a <b <04. 00.5121,小.5. 在数轴上大于-4.12的负整数有______________________.6. 到原点的距离等于3的数是____________.7. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.8. 已知数轴上点A 与原点的距离为2,则点A 对应的有理数是____________ 点B 与点A 之间的距离为3,则点B 对应的有理数是________________.9. 在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是_________.10. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西 边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米11. 如图是正方体的表面展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图 12. 上图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不正确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+- C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列正确的是( )aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______; 21+=_______; 5--=_______;3+=_______; _______=1; _______=-2.20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____;(3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____. 25、化简下列各数的符号: (1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27、若-m>0,|m|=7,求m.28、若|a+b|+|b+z|=0,求a,b的值。
数轴、相反数和绝对值的综合练习一、选择题(每小题3分, 共24分)1.如图, 数轴上点A表示数a, 则-a表示的数是( )A. -1B. 0C. 1D. 22. 在0, 1, -, -1四个数中, 最小的数是( )A. 0B. 1C. -D. -13. 如图, 若|a|=|b|, 则该数轴的原点可能为( )A. A点B. B点C. C点D. D点4. 下列各对数中, 相等的是( )A. -(-)和-0.75B. +(-0.2)和-(+)C. -(+)和-(-0.01)D. -(-)和-(+)5. 一个数的相反数比它的本身小, 则这个数是( )A. 正数B. 负数C. 正数和零D. 负数和零6. 下列说法正确的是( )A. 绝对值等于3的数是-3B. 绝对值小于2的数有±2, ±1, 0C.若|a|=-a, 则a≤0D. 一个数的绝对值一定大于这个数的相反数7. 有理数m, n在数轴上的对应点如图所示, 则下列各式子正确的是( )A. m>nB. -n>|m|C. -m>|n|D. |m|<|n|8. 若a, b是两个有理数, 则下列结论: ①如果a=b, 那么|a|=|b|;②如果|a|=|b|, 那么a=b;③如果a≠b, 那么|a|≠|b|;④如果|a|≠|b|, 那么a≠b.其中一定正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(每小题4分, 共32分)9. 计算: |-20|=.10. 若a+=0, 则a=.11. 数轴上点A表示-1, 点B表示2, 则A.B两点间的距离是.12. 将-3, -|+2|, -, -1按从小到大的顺序, 用“<”连接应当是.13. 一只小虫在数轴上先向右爬3个单位, 再向左爬7个单位, 正好停在-2的位置, 则小虫的起始位置所表示的数是.14.如图, 在数轴上点B表示的数是, 那么点A表示的数是.15. 当a=时, |a-1|+5的值最小, 最小值为.16.在数轴上点A对应的数为-2, 点B是数轴上的一个动点, 当动点B到原点的距离与到点A的距离之和为6时, 则点B对应的数为.三、解答题(共44分)17. (6分)根据如图所示的数轴, 解答下面的问题:(1)请你根据图中A, B两点的位置, 分别写出它们所表示的有理数A: ,B: ;(2分)(2)观察数轴, 与点A的距离为4的点表示的数是;(4分)(3)若将数轴折叠, 使得A点与-3对应的点重合, 则B点与数对应的点重合.(6分)18. (8分)把下列各数表示在数轴上, 并用“<”连接起来:, -(-5), -0.5, 0, -|-3|, , -(+2).19. (8分)如图, 图中数轴的单位长度为1.请回答下列问题:(1)如果点A.B表示的数是互为相反数, 那么点C.D表示的数是多少?(2)如果点D.B表示的数是互为相反数, 那么点C.D表示的数分别是多少?20. (10分)(1)已知|a|=8, |b|=5, 且a<b, 试求a, b的值;(2)已知|a-3|+|2b-6|=0, 试求a-b的值.21. (12分)随着网购的快速发展, 相关的快递送达范围也越来越广泛, 惠及乡村. 某快递公司快递员骑摩托车从某快递点出发, 先向东骑行2 km到达A村, 继续向东骑行3 km到达B村, 然后向西骑行9 km到C村, 最后回到快递点.(1)以该快递点为原点, 以向东方向为正方向, 用1个单位长度表示1 km画数轴, 并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)已知摩托车行驶100 km耗油2.5升, 完成此次任务, 摩托车耗油多少升?数轴、相反数和绝对值的六种常见题型1. 在-1, , 0.618, 0, -5%, 2 021, 0.5中, 整数有________个, 分数有________个.2.有五个有理数(不能重复), 同时满足下列三个条件:(1)其中三个数是非正数;(2)其中三个数是非负数;(3)必须有质数和分数.请写出这五个数.3. 下列说法正确的是()A. 有理数是指整数、分数、正有理数、零、负有理数这五类数B. 有理数不是正数就是负数C. 有理数不是整数就是分数D. 有理数不是正数就是分数4. 把下列各数填在相应的大括号里:15, -, 0.81, -3, , -3.1, -2 022, 171, 0, 3.14.正数: { …};负数: { …};正整数: { …};负整数: { …};有理数: {…}.5. 下列说法正确的是()A. 所有的有理数都可以用数轴上的点来表示B. 数轴上的点都用来表示有理数C.正数可用原点右边的点表示, 负数可用原点左边的点表示, 零不能在数轴上表示D. 数轴上一个点可以表示不止一个有理数6. 根据如图所示的数轴, 解答下面的问题:(1)请你根据图中A, B两点的位置, 分别写出它们所表示的有理数: ____________;(2)观察数轴, 写出与点A的距离为4的点表示的数:______________;(3)若将数轴折叠, 使得点A与数-3对应的点重合, 则点B与数________对应的点重合;(4)若数轴上M, N两点间的距离为2 022(M在N的左侧), 且M, N两点经过(3)中折叠后互相重合, 求M, N两点表示的数.7. 如图, 已知A, B, C, D四个点在一条没有标明原点的数轴上.(1)若点A和点C表示的数互为相反数, 则原点为点________;(2)若点B和点D表示的数互为相反数, 则原点为点________;(3)若点A和点D表示的数互为相反数, 请在数轴上标出原点O的位置.8. 如图, 一个单位长度表示2, 观察图形, 回答问题:(1)若B与D所表示的数互为相反数, 则点D所表示的数为多少?(2)若A与D所表示的数互为相反数, 则点D所表示的数为多少?(3)若B与F所表示的数互为相反数, 则点D所表示的数的相反数为多少?9. 下列说法不正确的有()①互为相反数的两个数一定不相等;②如果两个数的绝对值相等, 那么这两个数必定相等;③有理数的绝对值一定大于0;④有理数的绝对值不是负数.A. 1个B. 2个C. 3个D. 4个10. 如图, 数轴的单位长度为1, 请回答下列问题:(1)如果点A, B表示的数互为相反数, 那么点C表示的数是多少?(2)如果点D, B表示的数互为相反数, 那么点C表示的数是正数还是负数?图中所示的5个点中, 哪一个点表示的数的绝对值最小, 最小的绝对值是多少?11. 如图, A, B为数轴上的两个点, A点表示的数为-10, B点表示的数为90.(1)请写出与A, B两点距离相等的M点表示的数;(2)电子蚂蚁P从B点出发, 以3个单位长度/s的速度向左运动, 同时另一只电子蚂蚁Q从A点出发, 以2个单位长度/s的速度向右运动, 经过多长时间这两只电子蚂蚁在数轴上相距35个单位长度?12. 情境问题某工厂负责生产一批螺帽, 根据产品质量要求, 螺帽的内径可以有0.02 mm的误差.抽查5个螺帽, 超过规定内径的毫米数记作正数, 不足规定内径的毫米数记作负数, 检查结果如下表:螺帽编号①②③④⑤内径/mm +0.030 -0.018 +0.026 -0.025 +0.015(1)指出哪些产品是合乎要求的(即在误差范围内);(2)指出合乎要求的产品中哪个质量好一些(即最接近标准);拓展延伸:(3)如果对两个螺帽进行上述检查, 检查的结果分别为a和b, 请利用学过的绝对值知识指出哪个螺帽的质量好一些.。
有理数测试题班级: 姓名: 得分:一、选择题(每小题3分,合计36分)1. 下列说法中错误的有( )个①125-是负有理数;②正有理数和负有理数统称为有理数;③自然数和分数统称为有理数;④正分数和负分数统称为分数;⑤小数可以化成分数。
A .2个 B.3个 C.4个 D.5个2列各数中,互为相反数的是( )A 、│-32│和-32B 、│-23│和-32 C 、│-32│和23 D 、│-32│和32 3. 下列说法错误的是( )A 、一个正数的绝对值一定是正数B 、一个负数的绝对值一定是正数C 、任何数的绝对值都不是负数D 、任何数的绝对值一定是正数4. │5a │= -5a , 5a 一定是( )A 、正数B 、负数C 、非正数D 、非负数5. 下列说法正确的是( )A 、两个有理数不相等,那么这两个数的绝对值也一定不相等B 、任何一个数的相反数与这个数一定不相等C 、两个有理数的绝对值相等,那么这两个有理数不相等D 、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
6. -│a │= -3.2,则a 是( )A 、3.2B 、-3.2C 、±3.2D 、以上都不对7. 已知|a|>a,|b|>b,且|a|>|b|,则( )(A)a>b (B)a<b (C)不能确定 D.a=b8. 给出下面说法: <1>互为相反数的两数的绝对值相等; <2>一个数的绝对值等于本身,这个数不是负数; <3>若|m|>m,则m<0; <4>若|a|>|b|,则a>b,其中正确的有( )(A)<1><2><3> (B)<1><2<4>(C)<1><3><4> (D)<2><3><4>9.下列图形中不是数轴的是( )10.下列各式中正确的是( )A.-3.14<-πB.211->-1C.3.5>-3.4D.-21<-211.若数轴上A 、B 两点所对应的有理数分别为a 、b ,且B 在A 的右边,则a -b 一定( )A.大于零B.小于零C.等于零D.无法确定12.已知a 为有理数,下列式子一定正确的是A .︱a ︱=aB .︱a ︱≥aC .︱a ︱=-aD . 2a >0二、填空题(每空3分,共60分)1.│-2│的相反数是2.如果a 的相反数是-3,那么a =3.如果a 的相反数是最大的负整数,则a =4.一个数的相反数大于它本身,那么,这个数是 .一个数的相反数等于它本身,这个数是 ,一个数的相反数小于它本身,这个数是 .5. 数轴上表示 -3的点离开原点的距离是_______个单位长度;数轴上与原点相距3个单位长度的点有________个,它们表示的数是_________。
数量数轴相反数绝对值练习卷
在这份练卷中,我们将探索数量数轴上的相反数和绝对值。
希望通过这些练,能够帮助您更好地理解和运用这些概念。
数量数轴
数量数轴是一种表示数值大小和相对位置的图形工具。
它是由一条直线和一系列标记组成,其中标记表示具体的数值。
数轴的左侧代表负数,右侧代表正数。
通过在数轴上移动,我们可以形象地理解数值的大小和位置关系。
相反数
在数轴上,每个数值都有一个相反数。
一个数的相反数是与其在数轴上位置对称的数。
例如,数值5的相反数是-5,数值-3的相反数是3。
两个数的和为0时,它们互为相反数。
绝对值
绝对值是一个数与零的距离,它始终为正数。
绝对值可以表示数值的大小,而不考虑其正负。
例如,数值5的绝对值是5,数值-3的绝对值也是3。
练题
请根据以下题目,在空白处填写正确的答案:
1. 数量数轴上,数值-4的相反数是 ______。
2. 数值-7的绝对值为 ______。
3. 数值3和数值-3的和为 ______。
4. 数值-2的相反数的绝对值为 ______。
请在答案后的括号内写出您的选择。
1. (-4) (4) (0)
2. (-7) (7) (3)
3. (-6) (0) (9)
4. (2) (4) (0)
总结
通过这份练习卷,您有机会进一步巩固和应用数量数轴上的相反数和绝对值的概念。
通过仔细思考和勤奋练习,相信您能够在数学中取得更好的成绩。
祝您成功!。
《正、负数 数轴 相反数 绝对值》测试一.选择题(在四个选项中选出唯一正确的选项,每题3分,共30分)1. 有一种记分法,80分以上如85分记为+5分.某学生得分为72分,则应记为( )A .72分B .+8分C .-8分D .-72分2.一个数在数轴上所对应的点向右移动5个单位长度后得到它的相反数对应的点,则这个数是( )A .-52 B .-5 C .52D .+53.一个数的相反数大于它本身,这个数是( )A.. 正数B. 负数C. 0D. 非负数 4. 用-m 表示的数一定是( ) A .负数 B .负数或正数 C .负整数 D .以上都不对 5. M 点在数轴上表示-4,N 点离M 的距离是3,那么N 点表示( )A. -1 B . -7 C . -1或-7 D. -1或1 6.下列说法中正确的是( )A. - a 不是正数B. -a -是负数C. a -不是负数D. a -是正数7.若|a |=2,|b |=5,则a +b = ( ) A. ±3或±7 B. ±3; C. ±7; D . 3或7; 8.若a +b =0,则有理数a 、b 一定( )A .都是0B .互为相反数C .两数异号D .至少有一个是0 9.以下关系一定成立的是( )A.. 若|a |=|b |,则a =bB. 若|a |=a ,则a >0C. 若|a |+a =0,则a ≤0D. 若 a >b , 则|a |>|b |.10.下列语句:①一个数的绝对值一定是正数;②-a 一定是一个负数;③ 没有绝对值为-3的数;④若a =a ,则a 是一个正数;⑤离原点左边越远的数就越小.正确的有( )个. A. 0 B. 3 C. 2 D. 4 二.填空题(每题3分,共30分)11.相反数是它本身的数是 ;绝对值是它本身的数是 . 12.数轴上表示-5和表示-14的两点之间的距离是 . 13.若4a =,5b =,且ab <0,则a b -= . 14.|m +7|+2013的最小值为 ,此时m = . 15.数轴上与表示124的点的距离为5个单位长度的点所表示的数为 . 16.若2<a <4,则42a a -+-= .17.如果a a=-1,则a 的取值范围是 .18. 计算:111134232323+-----= . 19.点A 、B 在数轴上对应的数分别是-7和6,则线段AB 的中点对应的数是: . 20.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为5,则2a b cm cd c+++-= . 三.解答题(共60分)21.(8分)若2120x y ++-=,分别求x 、y 的值. 22. (10分)若|x |=3,|y |=2,且|x -y |=y -x ,求x +y .23. (10分)已知:a >0,b <0,且∣a │<∣b │,请你借助数轴比较a 、b 、-a 、-b 四个数的大小。
分数数轴相反数绝对值练习卷一、填空题1. 在数轴上,如果一个数的相反数的绝对值是3/4,那么这个数是____。
2. 在数轴上,如果一个数的绝对值是7/5,那么这个数的相反数是____。
3. 在数轴上,如果一个数的相反数是-1/2,那么这个数是____。
4. 在数轴上,如果一个数的绝对值是6/7,那么这个数的相反数是____。
5. 在数轴上,如果一个数的相反数的绝对值是13/8,那么这个数是____。
二、选择题1. 数轴上的点A和点B的坐标分别是3/4和-3/4,点A和点B的关系是:a) 相同的数b) 相反的数c) 互为倒数d) 不同的数2. 数轴上的点C和点D的坐标分别是-5/6和1/6,点C和点D 的关系是:a) 相同的数b) 相反的数c) 互为倒数d) 不同的数3. 数轴上的点E和点F的坐标分别是7/8和-7/8,点E和点F 的关系是:a) 相同的数b) 相反的数c) 互为倒数d) 不同的数4. 数轴上的点G和点H的坐标分别是-2/3和2/3,点G和点H 的关系是:a) 相同的数b) 相反的数c) 互为倒数d) 不同的数5. 数轴上的点I和点J的坐标分别是11/12和-11/12,点I和点J的关系是:a) 相同的数b) 相反的数c) 互为倒数d) 不同的数三、解答题1. 将数轴上的点A和点B的坐标相加,得出结果。
2. 将数轴上的点C和点D的坐标相减,得出结果。
3. 将数轴上的点E和点F的坐标相加,得出结果。
4. 将数轴上的点G和点H的坐标相减,得出结果。
5. 将数轴上的点I和点J的坐标相加,得出结果。
四、评分标准- 每道填空题1分,共计5分。
- 每道选择题2分,共计10分。
- 每道解答题5分,共计25分。
请按规定时间完成练习卷,并将答案提交给授课老师。
绝对值(30分钟50分)一、选择题(每小题4分,共12分)1.(2014·黄冈模拟)下面各对数中互为相反数的是( )A.2与-|-2|B.-2与-|2|C.|-2|与|2|D.2与-(-2)【解析】选A.因为-|-2|=-2,且2与-2互为相反数,所以A中2与-|-2|互为相反数.【知识归纳】化简题中的括号与绝对值化简或计算时,要按运算顺序进行,如果既有“括号”,又有“绝对值符号”,要注意运算顺序.(1)如果绝对值号里有括号,应该先化简括号,再求绝对值.(2)如果括号里有绝对值号,可以先求绝对值,再化简括号,也可以先化简括号,再求绝对值.2.下列说法中正确的是( )A.-|a|一定是负数B.若|a|=|b|,则a=bC.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数是负数【解析】选D.当a=0时,-|a|=0,故A错误;若|a|=|b|,则a=b或a=-b,故B,C错误.3.(2013·菏泽中考)如图,数轴上的A,B,C三点所表示的数分别为a,b,c,其中AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在( )A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边【解析】选C.因为|a|>|c|>|b|,所以点A到原点的距离最大,点C到原点的距离其次,点B到原点的距离最小,又因为AB=BC,所以原点O的位置在点B与点C之间,且靠近点B的地方.【一题多解】排除法选C.若原点在A点左侧,则|c|>|b|>|a|,因此排除选项A;若原点在点A与点B之间,则|c|最大,因此排除选项B;若原点在点B与点C之间,则|a|最大,此时,若原点靠近点B,则|c|>|b|;若原点在点C的右边,则|a|>|b|>|c|,因此排除选项D.二、填空题(每小题4分,共12分)4.(2013·南充中考)-3.5的绝对值是.【解析】根据绝对值的意义,负数的绝对值是它的相反数,所以-3.5的绝对值是3.5.答案:3.55.(2014·黄冈中学质检)若|a|=|-3|,则a= .【解析】因为|a|=|-3|=3,所以a=3或-3.答案:3或-3【互动探究】若把|a|变为|-a|,则a= .【解析】因为|-a|=3,所以-a=±3,所以a=±3.答案:±36.当a为时,式子8-|2a-6|有最大值,最大值是.【解析】因为|2a-6|≥0,所以当|2a-6|=0,即2a-6=0,a=3时,8-|2a-6|有最大值,最大值是8.答案:3 8【知识归纳】绝对值的两个应用(1)若|a|+|b|=0,则a=b=0.(2)m-|a|有最大值m,m+|a|有最小值m.三、解答题(共26分)7.(8分)(2014·任县三中质检)计算:(1)|-5|+|-2|.(2)÷.(3)×|-24|.(4).【解题指南】先利用绝对值的意义去掉绝对值符号,再按四则运算进行计算.【解析】(1)|-5|+|-2|=5+2=7.(2)÷=÷=×=.(3)×|-24|=×24=4+54+32=90.(4)===.8.(8分)有一只小昆虫在数轴上爬行,它从原点开始爬,“+”表示此昆虫由原点向右,“-”表示此昆虫由原点向左,总共爬行了10次,其数据统计如下(单位:cm):+3,-2,-3,+1,+2,-2,-1,+1,-3,+2.如果此昆虫每分钟爬行4cm,则此昆虫爬行过程中,它用了多少分钟?【解析】由题意知,这只昆虫所爬的路程为:|+3|+|-2|+|-3|+|+1|+|+2|+|-2|+|-1|+|+1|+|-3|+|+2|=20(cm),所以它所用的时间为:20÷4=5(min).【培优训练】9.(10分)北京航天研究院所属工厂,制造“嫦娥三号”上的一种螺母,要求螺母内径可以有±0.02mm的误差,抽查5个螺母,超过规定内径的毫米数记做正数,没有超过规定内径的毫米数记做负数,检查结果如下:+0.010,-0.018,+0.006,-0.002,+0.015.(1)指出哪些产品是合乎要求的?(即在误差范围内的)(2)指出合乎要求的产品中哪个质量好一些,哪个质量稍差一些?【解析】(1)因为|+0.010|=0.010<0.02,|-0.018|=0.018<0.02,|+0.006|=0.006<0.02,|-0.002|=0.002<0.02,|+0.015|=0.015<0.02,所以所抽查的产品都合乎要求.(2)绝对值越接近0质量越好,|-0.002|=0.002最接近0,所以质量好一些;|-0.018|=0.018最大,所以质量稍差一些.【变式训练】某工厂为组装学校的新桌椅,生产了一批配套的螺母.产品质量要求是:螺母的内径可以有0.20mm的误差.抽查7只螺母,超过规定内径的毫米数记做正数,不足规定的记做负数,检测结果如表:(单位:mm)(1)其中第几号螺母不合格?(2)第几号螺母的尺寸最标准?(3)误差最大的螺母与6号螺母相差多少mm?【解析】(1)2,3 (2)5(3)误差最大的螺母是2号,故|+0.30|+|-0.01|=0.31(mm),即误差最大的螺母与6号螺母相差0.31mm.文末学习倡导书:学习不是三天打鱼,两天晒网。
数轴绝对值相反数复习题数轴绝对值相反数复习题在数学学习中,数轴是一个非常重要的概念。
它能够帮助我们更好地理解数的相对大小和位置关系。
而绝对值则是数的大小,与数的正负无关。
在这篇文章中,我将给大家带来一些关于数轴和绝对值的复习题,希望能够帮助大家巩固相关知识。
1. 请在数轴上标出数-3和数5的位置,并计算它们的绝对值。
解答:在数轴上,我们可以将数-3标在原点的左边3个单位的位置,将数5标在原点的右边5个单位的位置。
绝对值是一个数到原点的距离,所以绝对值|-3| = 3,|5| = 5。
2. 请在数轴上标出数-2和数-7的位置,并计算它们的绝对值。
解答:在数轴上,我们可以将数-2标在原点的左边2个单位的位置,将数-7标在原点的左边7个单位的位置。
绝对值是一个数到原点的距离,所以绝对值|-2| = 2,|-7| = 7。
3. 请在数轴上标出数4和数-4的位置,并计算它们的绝对值。
解答:在数轴上,我们可以将数4标在原点的右边4个单位的位置,将数-4标在原点的左边4个单位的位置。
绝对值是一个数到原点的距离,所以绝对值|4| = 4,|-4| = 4。
4. 请在数轴上标出数0和数-1的位置,并计算它们的绝对值。
解答:在数轴上,数0位于原点,数-1位于原点的左边1个单位的位置。
绝对值是一个数到原点的距离,所以绝对值|0| = 0,|-1| = 1。
5. 请在数轴上标出数-6和数2的位置,并计算它们的绝对值之和。
解答:在数轴上,我们可以将数-6标在原点的左边6个单位的位置,将数2标在原点的右边2个单位的位置。
绝对值是一个数到原点的距离,所以绝对值|-6| = 6,|2| = 2。
绝对值之和为6 + 2 = 8。
通过以上的复习题,我们可以更好地理解数轴和绝对值的概念。
数轴可以帮助我们直观地表示数的相对大小和位置关系,而绝对值则可以帮助我们计算数的大小,与数的正负无关。
在解决实际问题时,数轴和绝对值的应用也非常广泛。
绝对值与相反数知识点以及专项训练知识点1:相反数的概念1. 定义:两个数相加和等于0,那么这两个数就互为相反数。
比如:a +b =0,a 、b 互为相反数。
换句话说:如果两个数只有符号不同,那么称其中的一个数为另一个数的相反数.特别地,0的相反数是0.举例:5的相反数是-5;-3的相反数是3; 2. 互为相反数的两个数在数轴上的位置关系:互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).知识点2:简单的多重符号的化简(只涉及到正、负号)多重符号的化简我们只需要看这个数前面有多少个“负号”。
① 如果有奇数个负号,那么化简后的结果:只需要在这个数的前面加一个负号即可;举例:-[-(-5)]=-5 ; -{-[-(+3)]}=-3.② 如果有偶数个负号,那么化简后的结果:就是这个数。
举例:+[-(-9)]=9 ; -{-[-(-10)]}=10.知识点3:绝对值1. 定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。
比如:5的绝对值是5;-3的绝对值是3;0的绝对值是0. 记作: |5|=5; |-3|=3; |0|=0. 2. 绝对值的代数意义:如何去掉绝对值: 判断该数是非正数还是非负数;非负数的绝对值是它本身;|a |=a ↔a ≥0 非正数的绝对值是它本身的相反数;|a |=−a ↔a ≤0若是代数式则需要进行分类讨论判断正、负数。
3. 绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小. 4. 绝对值的性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数. (2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.(0)||0(0)(0)aa a a a a >⎧⎪==⎨⎪-<⎩知识点4:含有绝对值的多重符号的化简含有绝对值的多重符号的化简,我们只需要看绝对值前面有多少个“负号”。
有理数测试题
姓名: 分数:100分 分数: 一、 填空。
(每小题3分,共24分) 1、如果-30表示支出30元,那么+200元表示 。
2、在数轴上与原点距离2个单位长度的点表示的数有 个,为 。
3、规定了 的直线叫做数轴。
4、在数轴上表示整数(原点除外)的点中,与原点距离最近的点有 个,表示的数是 。
5、
103的相反数是__ _,1132⎛⎫
- ⎪⎝⎭
的相反数是___ ,(a-2)的相反数是__ __。
6、化简:
—[—(—0.3)]= ; —[—(+4)]=__________; —[+(—50)]=_________;
7、比较大于(填写“>”或“<”号) (1)-2.1 1 (2)-
4
1
0 (3)-21 -3
1
(4)-3.1 -3.09
8、在数轴上表示-2的点相距8个单位长度的点表示的数为_____________。
二、选择题。
(每小题3分,共24分) 9、绝对值相等的两个数在数轴上对应的两点距离为8,则这两个数为( ) A)+8或- 8 B)+4或-4
C)-4或+8 D)-8或+4
10、给出下面说法: <1>互为相反数的两数的绝对值相等; <2>一个数的绝对值等于本身,这个数不是负数; <3>若|m|>m,则m<0; <4>若|a|>|b|,则a>b,其中正确的有( ) (A)<1><2><3> (B)<1><2<4> (C)<1><3><4> (D)<2><3><4> 11.一个数等于它的相反数的绝对值,则这个数是( )
A.正数和零
B.负数或零
C.一切正数
D.所有负数 12、若|a|>-a,则( )
A)a>0 B)a<0 C)a<-1 D)1<a 13、一个数的相反数小于原数,这个数是( ) A)正数 B)负数 C)零 D)正分数 14、不小于-4的非整数有( ) A 、5个 B 、4个 C 、3个 D 、2个 15、如图所示,数a ,b 在数轴上的位置,
下列判断正确的是( )
A 、a<0
B 、a>1
C 、b>-1
D 、b<-1 16、在数轴上,原点及原点右边的点表示的数是( )
A.正数
B.负数
C.正整数
D.非负数 三、解答题。
(共52分)
17、(7分)在中国地形图上,珠穆朗玛峰和吐鲁番盆地处都标有表明它们高度的数(单位:米)
,这个数通常称为海拔高度,它是
相对于海平面来说的.请说出8848和-155表示的实际意义.海平面的高度用什么数表示?
18、(7分)把下列各数填在相应的大括号里: 0.275,|2|--, —1.04, )10(--,
0.1010010001…,-4, 722,31
-
.
(1)正数集合:{ …};
(2)负数集合:{ …}; (3)整数集合:{ …}; (4)分数集合:{ …}; 19、(7分)画出数轴并标出表示下列各数的点,并用“<”把下列各数连接起来。
-3.5, 4, -2, 0, 1, -5
20、(7分)a ,b 为两个有理数,在数轴上的位置如图,把a ,b ,-a ,-b ,0按从小到大的顺序排列出来。
21、(7分)初一(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A 队-50分;B 队150分;C 队-300分;D 队0分;E 队100分。
(1)将5个队按由低分到高分的顺序排序; (2)把每个队的得分标在数轴上,并将代表该队的字母标上;
(3)从数轴上看A 队与B 队相差多少分?C 队与E 队呢?
22、(7分)若-m>0,|m|=7,求m.
23、(10分)一个有理数在数轴上对应的点为A ,将A 点向左移动3个单位长度,再向左移动2个单位长度,得到点B ,点B 所对应的数和点A 对应的数的绝对值相等,求点
A 的对应的数是什么?。