概率统计(一轮复习讲义)
- 格式:doc
- 大小:1.70 MB
- 文档页数:25
中考数学一轮复习专题解析—统计与概率复习目标1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;考点梳理一、数据的收集及整理1.一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展开调查、记录结果、得出结论.2.调查收集数据的方法:普查与抽样调查.要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想.(3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样.3.数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图.【特别提醒】这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.例1. 连云港市实行中考改革,需要根据该市中学生体能的实际情况重新制定中考体育标准.为此,抽取了50名初中毕业的女学生进行“一分钟仰卧起坐”次数测试.测试的情况绘制成表格如下:次数 6 12 15 18 20 25 27 30 32 35 36 人数 1 1 7 18 10 5 2 2 1 1 2⑴求这次抽样测试数据的平均数、众数和中位数;⑵根据这一样本数据的特点,你认为该市中考女生“一分钟仰卧起坐”项目测试的合格标准应定为多少次较为合适?请简要说明理由;⑶根据⑵中你认为合格的标准,试估计该市中考女生“一分钟仰卧起坐”项目测试的合格率是多少?【答案】⑴该组数据的平均数众数为18,中位数为18;⑵该市中考女生一分钟仰卧起坐项目测试的合格标准应定为18次较为合适,因为众数及中位数均为18,且50人中达到18次的人数有41人,确定18次能保证大多数人达标;⑶根据⑵的标准,估计该市中考女生一分钟仰卧起坐项目测试的合格率为82%.二、数据的分析1.基本概念:总体:把所要考查的对象的全体叫做总体;个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本;样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数;极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果通常称为方差.计算方差的公式:设一组数据是,是这组数据的平均数。
1.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为 (A )7 (B ) 9 (C ) 10 (D )15解:采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即30=l ,第k 组的号码为930)1(+-k ,令750930)1(451≤+-≤k ,而z k ∈,解得2516≤≤k ,则满足2516≤≤k 的整数k 有10个,故答案应选C 。
2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校 高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 15 名学生.解:分层抽样又称分类抽样或类型抽样。
将总体划分为若干个同质层,再在各层内随机抽样或机械抽样,分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性。
因此,由350=15334⨯++知应从高二年级抽取15名学生。
3、某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为B (A )7 (B )15 (C )25 (D )35 解:青年职工、中年职工、老年职工三层之比为7:5:3,所以样本容量为715715=4、从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。
由图中数据可知a = 0.030 。
若要从身高在[ 120 , 130),[130 ,140) , [140 , 150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140 ,150]内的学生中选取的人数应为 3 。
【课标要求】1.统计⑴从事收集、整理、描述和分析的活动,能用计算器处理较复杂的统计数据.⑵通过丰富的实例,感受抽样的必要性,能指出总体、个体、样本,体会不同的抽样可能得到不同的结果.⑶会用扇形统计图、条形统计图、折线统计图表示数据.⑷在具体情境中理解并会计算加权平均数;根据具体问题,能选择合适的统计量表示数据的集中程度.⑸探索如何表示一组数据的离散程度,会计算极差和方差、标准差,并会用它们表示数据的离散程度.⑹通过实例,理解频数、频率的概念,了解频数分布的意义和作用,会列频数分布表,画频数分布直方图和频数折线图,并能解决简单的实际问题.⑺通过实例,体会用样本估计总体的思想,能用样本的平均数、方差来估计总体的平均数和方差.⑻根据统计结果作出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观点,并进行交流.⑼能根据问题查找有关资料,获得数据信息;对日常生活中的某些数据发表自己的看法.⑽认识到统计在社会生活及科学领域中的应用,并能解决一些简单的实际问题.2.概率⑴在具体情境中了解概率的意义,运用列举法(包括列表和画树状图)计算简单事件发生的概率.⑵通过实验,获得事件发生的频率;知道大量重复实验时频率可作为事件发生概率的估计值.⑶通过实例进一步丰富对概率的认识,并能解决一些实际问题.【课时分布】概率与统计部分在第一轮复习时大约需要7个课时,其中包括单元测试.下表为内容及课时安排(仅供参考)2、基础知识数据的收集与处理⑴通过调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展开调查、记录结果、得出结论.⑵条形统计图、折线统计图、扇形统计图是三种最常用的统计图.这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.⑶我们把所要考察的对象的全体叫做总体,把组成总体的每一个考察对象叫做个体.从总体中取出的一部分个体叫做总体的一个样本.样本中包含的个体的个数叫做样本容量.⑷普查是通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.⑸用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样.⑹在记录实验数据时,每个对象出现的次数称为频数.每个对象出现的次数与总次数的比值(或者百分比)称为频率.⑺绘制频数分布直方图的步骤是:①计算最大值与最小值的差;②决定组距和组数;③决定分点;④画频数分布表;⑤画出频数分布直方图.数据的代表⑻在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数.⑼将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组数据的中位数.⑽在一组数据中,出现频数最多的数叫做这组数据的众数.⑾在一组数据中,各个数在总结果中所占的百分比称为这个数的权重,每个数乘以它相应的权重后所得的平均数叫做这组数据的加权平均数.⑿一组数据中的最大值减去最小值所得差称为极差.⒀方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果通常称为方差..则这组数据的方差是:用公式可表示为:Array可能性与概率⒂那些无需通过实验就能够预先确定他们在每一次实验中都一定会发生的事件称为必然事件.那些在每一次实验中都一定不会发生的事件称为不可能事件.必然事件和不可能事件统称为确定事件.⒃无法预先确定在一次实验中会不会发生的事件称为不确定事件或随机事件. ⒄表示一个事件发生的可能性大小的数,叫做该事件的概率. ⒅概率的理论计算有:①树状图;②列表法. 2、 能力要求例1为了了解某区九年级7000名学生的体重情况,从中抽查了500名学生的体重,就这个问题来说,下面说法正确的是 ( )A .7000名学生是总体B .每个学生是个体C .500名学生是所抽取的一个样本D .样本容量为500【分析】这个问题主要考查学生对总体、个体、样本、样本容量概念的理解.此题学生容易把研究对象的载体(学生)当作研究对象(体重).【解】D .例2 下面两幅统计图(如图1、图2),反映了某市甲、乙两所中学学生参加课外活动的情况.请你通过图中信息回答下面的问题.⑴通过对图1的分析,写出一条你认为正确的结论; ⑵通过对图2的分析,写出一条你认为正确的结论;⑶2003年甲、乙两所中学参加科技活动的学生人数共有多少?【分析】此题就是考查学生的读图、识图的能力. 从统计图中处理数据的情况一般有以下几种:一、分析数据大小情况;二、分析数据所占的比例;三、分析数据的增加、减少等趋势或波动情况.【解】⑴1997年至2003年甲校学生参加课外活动的人数比乙校增长得快; ⑵甲校学生参加文体活动的人数比参加科技活动的人数多; ⑶200038%110560%1423⨯+⨯=(人).答:2003年两所中学的学生参加科技活动的总人数是1423人.【说明】⑴本题是利用折线统计图和扇形统计图展示数据,折线统计图清楚地反映参加课外活动人数的变化情况,扇形统计图清楚地表示出参加课外活动人数占总人数的比例. ⑵从折线统计图可获得2003年甲校参加课外活动人数为2000人,乙校为1105人,再根据扇形统计图参加各类活动人数的百分比即可算出参加各类活动的人数.这里着重考查了学生的甲、乙两校参加课外活动的学生人数统计图 (1997~2003年)/年乙校 (图1)2003年甲、乙两校学生参加课外活动情况统计图(图2) 甲校 乙校读图能力.例3 某市实行中考改革,需要根据该市中学生体能的实际情况重新制定中考体育标准.为此,抽取了50名初中毕业的女学生进行“一分钟仰卧起坐”次数测试.测试⑵根据这一样本数据的特点,你认为该市中考女生“一分钟仰卧起坐”项目测试的合格标准应定为多少次较为合适?请简要说明理由;⑶根据⑵中你认为合格的标准,试估计该市中考女生“一分钟仰卧起坐”项目测试的合格率是多少?【分析】本题是以统计初步知识在该市怎样定中考女生“一分钟仰卧起坐”项目测试的合格标准中的应用为背景,把制定体育成绩的某项合格指标转化为统计问题,投出了统计中的平均数、众数、中位数运算.【解】⑴该组数据的平均数=,5. 20)2361351322302275251020181871511216(50 1=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯众数为18,中位数为18;⑵该市中考女生一分钟仰卧起坐项目测试的合格标准应定为18次较为合适,因为众数及中位数均为18,且50人中达到18次的人数有41人,确定18次能保证大多少人达标;⑶根据⑵的标准,估计该市中考女生一分钟仰卧起坐项目测试的合格率800.【说明】本题不仅有很强的现实性和很好的问题背景,而且联系学生的生活实际,易引起学生的解题兴趣,既可以有效地考查学生对统计量的计算,又将关注的重点转变为结合学生实际问题进行定量和定性分析,进而整理数据、分析数据、做出判断、预测、估计和决策,突出了题目的教育价值.例4 两人要去某风景区游玩,每天某一时段开往该风景区有三辆车(票价相同),但是他们不知道这些车的舒适程度,也不知道车子开过来的顺序. 两人采取了不同的乘车方案:甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时他不上车,而是仔细观察车的舒适度,如果第二辆车的状况比第一辆车好,他就上第二辆车;如果第二辆车不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解决下面的问题:⑴三辆车按出现的先后顺序工有哪几种不同的可能?⑵ 你认为甲、乙两人采用的方案, 哪一种方案使自己..乘上等车的可能性大? 为什么? 【分析】由于各车的舒适度不同,而且开过来的顺序也事先未知,因此不同的乘车方案使自己乘坐上等车的可能性不一样.我们只要将三种不同的车开来的可能性顺序全部列出来,再对照甲乙二人不同的乘车方案,就可以得出两人乘坐上等车的可能性. 【解】⑴三辆车开来的先后顺序有6种可能,分别是:(上、中、下)、(上、下、中)、(中、上、下)、(中、下、上)、(下、中、上)、(下、上、中);⑵由于不考率其他因素,三辆车6种顺序出现的可能性相同.甲、乙二人分别乘坐上等车的概率,用列表法可得.于是不难看出,甲乘上等车的概率是31;而乙乘上等车的概率是21. ∴乙采取的方案乘坐上等车的可能性大. 【说明】解决本题的关键是通过列表的方法将三辆车开来的顺序列出来,再根据甲、乙两种不同的乘车方案求出他们乘坐上等车的概率.另外本题也可以通过画数状图来求解.例5 某电脑公司现有A 、B 、C 三种型号的甲品牌电脑和D 、E 两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.⑴写出所有选购方案(利用树状图或列表方法表示); ⑵ 如果⑴中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?⑶ 现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A 型号电脑,求购买的A 型号电脑有几台.【分析】本题实际上是要在A ,B ,C 三种型号的甲品牌电脑中选择一种,再从D ,E 两种型号的乙品牌电脑中选择一种,我们可以在所有选购方案中按照题意要求就可以确定符合条件的方案. 【解】⑴ 树状图如下:或列表如下:有6种可能结果:(A ,D ),(A ,E ),(B ,D ),(B ,E ),(C ,D ),(C ,E ). ⑵ 因为选中A 型号电脑有2种方案,即(A ,D )(A ,E ),所以A 型号电脑被选中的概率是31.(3) 由(2)可知,当选用方案(A ,D )时,设购买A 型号、D 型号电脑分别为x ,y台,根据题意,得⎩⎨⎧=+=+.10000050006000,36y x y x解得⎩⎨⎧=-=.116,80y x 经检验不符合题意,舍去;当选用方案(A ,E)时,设购买A 型号、E型号电脑分别为x ,y 台,根据题意,得⎩⎨⎧=+=+.10000020006000,36y x y x 解得⎩⎨⎧==.29,7y x所以希望中学购买了7台A 型号电脑.【分析】本题通过画树状图确定了所有选购方案后,再运用方程组对所有的方案进行取舍,从而确定符合题意的方案,题目设计巧妙,各问之间环环相扣,并且渗透了方程思想,是一道不可多得的好题. 【复习建议】⑴立足教材,理清概念,夯实基础,学生通过复习,应熟练掌握概率与统计的基本知识、基本技能和基本方法.⑵要突出统计思想,用样本估计总体是统计的基本思想,在复习中要使学生更多的机会接触这一思想,使学生对抽样的必要性、样本的代表性、用样本估计总体的可行性,以及对不同的抽样所得结果的不确定性有更多的体会.⑶统计与现实生活、科学领域的联系是非常紧密的,教学中应特别注意将统计的学习与实际问题密切结合,选择典型的、充满趣味性和富有时代气息的现实问题作为例子,使学生在解决问题的过程中,学习数据处理方法,理解统计的概念和原理,培养学生的统计观念.⑷突出概率建模思想,对概率的计算问题,可以把不同背景下的各类问题加以变通,寻找他们之间是否存在相同的数学本质,对相同的一类问题,我们可以用一个概率模型来解决.这样也能对学生思维的灵活性、缜密性和开放性加以锤炼.⑸加强用列表法和树状图求解决简单事件的概率的复习,渗透分类讨论思想. ⑹重视学科间知识、方法的渗透,复习中可综合物理、化学等学科相关知识及特点,用数学的视角来加强相关知识的学习与巩固.。
第十二章概率与统计(理)网络体系总览考点目标定位1.离散型随机变量的分布列.离散型随机变量的期望和方差.2.抽样方法、总体分布的估计、正态分布、线性回归.复习方略指南在复习中,要注意理解变量的多样性,深化函数的思想方法在实际问题中的应用,充分注意一些概念的实际意义,理解概率中处理问题的基本思想方法,掌握所学概率知识的实际应用.1.把握基本题型应用本章知识要解决的题型主要分两大类:一类是应用随机变量的概念,特别是离散型随机变量分布列以及期望与方差的基础知识,讨论随机变量的取值范围,取相应值的概率及期望、方差的求解计算;另一类主要是如何抽取样本及如何用样本去估计总体.作为本章知识的一个综合应用,教材以实习作业作为一节给出,应给予足够的重视.2.强化双基训练主要是培养扎实的基础知识,迅捷准确的运算能力,严谨的判断推理能力.3.强化方法选择特别在教学中要掌握思维过程,引导学生发现解决问题的方法,达到举一反三的目的,还要进行题后反思,使学生在大脑记忆中构建良好的数学认知结构,形成条理化、有序化、网络化的有机体系.4.培养应用意识要挖掘知识之间的内在联系,从形式结构、数字特征、图形图表的位置特点等方面进行联想和试验,找到知识的“结点”.再有就是将实际问题转化为纯数学问题进行训练,以培养利用所学知识解决实际问题的能力.12.1 离散型随机变量的分布列巩固·夯实基础一、自主梳理1.随机变量的概念如果随机试验的结果可以用一个变量表示,那么这样的变量叫做随机变量,它常用希腊字母ξ、η等表示.(1)离散型随机变量.如果对于随机变量可能取的值,可以按一定次序一一列出,那么这样的随机变量叫做离散型随机变量.(2)若ξ是随机变量,η=aξ+b,其中a、b是常数,则η也是随机变量.2.离散型随机变量的分布列(1)概率分布(分布列).设离散型随机变量ξ可能取的值为x1,x2,…,x i,…,ξ取每一个值x i(i=1,2,…)的概率P(ξ=x i)=p i,则称表为随机变量ξ的概率分布,简称ξ的分布列.(2)二项分布.如果在一次试验中某事件发生的概率是p,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是P(ξ=k)=C k n p k q n-k .C k n p k q n-k =b(k;n,p). 二、点击双基1.抛掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是( ) A.一颗是3点,一颗是1点 B.两颗都是2点C.两颗都是4点D.一颗是3点,一颗是1点或两颗都是2点 解析:对A 、B 中表示的随机试验的结果,随机变量均取值4,而D 是 ξ=4代表的所有试验结果.掌握随机变量的取值与它刻画的随机试验的结果的对应关系是理解随机变量概念的关键. 答案:DA.1B.1±22 C.1+22 D.1-22解析:∵0.5+1-2q+q 2=1,∴q=1±22. 当q=1+22时,1-2q<0,与分布列的性质矛盾, ∴q=1-22. 答案:D3.已知随机变量ξ的分布列为P(ξ=k)=k21,k=1,2,…,则P(2<ξ≤4)等于( ) A.163 B.41 C.161 D.51 解析:P(2<ξ≤4)=P(ξ=3)+P(ξ=4)=321+421=163.答案:A4.某批数量较大的商品的次品率为10%,从中任意地连续取出5件,其中次品数ξ的分布列为 __________________________.解析:本题中商品数量较大,故从中任意抽取5件(不放回)可以看作是独立重复试验n=5,因而次品数ξ服从二项分布, 即ξ—B(5,0.1).5.某射手有5发子弹,射击一次命中目标的概率为0.9,如果命中就停止射击,否则一直到子弹用尽,则耗用子弹数ξ的分布列为___________________________. 解析:ξ可以取1,2,3,4,5,P(ξ=1)=0.9,P(ξ=2)=0.1×0.9=0.09,P(ξ=3)=0.12×0.9=0.009,P(ξ=4)=0.13×0.9=0.000 9,P(ξ=5)=0.14=0.000 1. 诱思·实例点拨【例1】 一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以ξ表示取出的三只球中的最小号码,写出随机变量ξ的分布列.剖析:因为在编号为1,2,3,4,5的球中,同时取3只,所以小号码可能是1或2或3,即ξ可以取1,2,3.解:随机变量ξ的可能取值为1,2,3.当ξ=1时,即取出的三只球中最小号码为1,则其他两只球只能在编号为2,3,4,5的四只球中任取两只,故有P (ξ=1)=3524C C =106=53;当ξ=2时,即取出的三只球中最小号码为2,则其他两只球只能在编号为3,4,5的三只球中任取两只,故有P (ξ=2)=3523C C =103;当ξ=3时,即取出的三只球中最小号码为3,则其他两只球只能在编号为4,5的两只球中任取两只,故有P (ξ=3)=3522C C =101.讲评:求随机变量的分布列,重要的基础是概率的计算,如古典概率、互斥事件的概率、相互独立事件同时发生的概率、n 次独立重复试验有k 次发生的概率等.本题中基本事件总数,即n=C 35,取每一个球的概率都属古典概率(等可能性事件的概率).【例2】(2005北京高考,理)甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为32. (1)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望E ξ;(2)求乙至多击中目标2次的概率;(3)求甲恰好比乙多击中目标2次的概率.剖析:(1)甲射击有击中目标与击不中目标两个结果,且3次射击是3次独立重复试验.∴ξ—B(3,21).(2)“乙至多击中目标2次”的对立事件是“乙击中目标3次”.(3)“甲恰好比乙多击中目标2次”即“甲击中2次乙没击中目标或甲击中目标3次乙击中1次”.解:(1)P(ξ=0)=C 03(21)3=81; P(ξ=1)=C 13(21)3=83;P(ξ=2)=C 23(21)3=83;P(ξ=3)=C 33(21)3=81.∵ξ—B(3,2), ∴E ξ=3×21=1.5.(2)乙至多击中目标2次的概率为1-C 33(32)3=2719. (3)设甲恰好比乙多击中目标2次为事件A,甲恰好击中目标2次且乙恰好击中目标0次为事件B 1,甲恰好击中目标3次且乙恰好击中目标1次为事件B 2,则A=B 1+B 2,B 1、B 2为互斥事件,∴P(A)=P(B 1)+P(B 2)=83×271+81×92=241. ∴甲恰好比乙多击中目标2次的概率为241.讲评:求离散型随机变量的概率分布的步骤为:(1)找出随机变量ξ的所有可能的值x i (i=1,2,…);(2)求出各值的概率P(ξ=x i )=p i ;(3)列成表格.【例3】(2005广东高考)箱中装有大小相同的黄、白两种颜色的乒乓球,黄、白乒乓球的数量比为s ∶t.现从箱中每次任意取出一个球,若取出的是黄球则结束,若取出的是白球,则将其放回箱中,并继续从箱中任意取出一个球,但取球的次数最多不超过n 次.以ξ表示取球结束时已取到白球的次数. (1)求ξ的分布列; (2)求ξ的数学期望.解:(1)ξ的可能取值为0,1,2,…,n.(2)ξ的数学期望为E ξ=0×t s s ++1×2)(t s st++2×32)(t s st ++…+(n-1)×n n t s st )(1+-+n ×n n t s t )(+. ① t s t +E ξ=3)(t s st ++42)(2t s st ++…+n n t s st n )()2(1+--+1)()1(++-n n t s st n +11)(+++n n t s nt . ②①-②,得E ξ=s t +1)()1(-+-n n t s s t n -n n t s t n )()1(+--nn t s s nt )(1++. 讲评:本题是几何分布问题,其中用到数列的错位相减法求和,注意运算的严谨性.。
专题二:统计与概率1、随即现象的概念:必然现象是在一定的条件下必然发生的某种结果的现象.在试验中必然不发生的现象叫做不可能现象,在相同条件下多次观察同一现象,每次观察到得结果不一定相同,事先很难预料哪一种结果会出现,这种现象就叫做随机现象.2.必然事件、不可能事件、随机事件在一定条件下,必然会发生的事件叫做必然事件.在一定条件下,肯定不会发生的事件叫做不可能事件. 在一定条件下,可能发生也可能不发生的事件叫做随机事件.通常用大写的英文字母A 、B 、C 。
表示随机事件,随机事件可以简称为事件.3.基本事件和基本事件空间在试验中,能够表示其他事件且不能再分的最简单的事件成为基本事件. 所有基本事件构成的集合称为基本事件空间,常用大写的希腊字母Ω表示. 4.频率与概率(1).在n 次重复进行的试验中,事件A 发生的频率nm ,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动的幅度越来越小,这时就把这个常数叫做事件A 的概率,记作P(A).0《P(A)《1,这个定义叫做概率的统计定义.当A 是必然事件时,P(A)=1,当A 是不可能事件时,P(A)=0.(2).频率与概率的关系频率不能很准确的反应出事件发生的可能性大小,但从大量的重复试验中发现,随着试验次数的的增多,频率就稳定与某一固定的值.概率是通过频率来测量的,或者说频率是概率的一个近似值. 5.概率的加法公式 (1).互斥事件不能同时发生的两个事件叫做互斥事件.(或称互不容事件)不能同时发生的两个事件A 、B 是指,如果A 发生,则B 不一定发生;如果B 发生,则A 不一定发生.推广:如果A 、B 、C 、D 。
中的任何两个都互斥,就称事件A 、B 、C 、D 。
彼此互斥,从集合角度看,n 个事件彼此互斥是指各个事件所含结果的集合彼此不相交.(2).事件的并一般的,事件A 与B 至少有一个发生(即A 发生,或B 发生,或A 、B 都发生),则由事件A 与B 构成的事件C 叫做A 与B 的并.记作:A ∪B ;类比集合:事件A ∪B 是由事件A 或事件B 所包含的基本事件组成的集合. 事件A 与事件B 的并等于事件B 与事件A 的并,即A ∪B=B ∪A. (3).互斥事件的概率加法公式 如果A 、B 是互斥事件,在n 次试验中,事件A 出现的频数为n 1,事件B 出现的频数为n 2,则事件A ∪B 出现的频数正好是n 1+n 2,所以时间A ∪B 的频数为nnnnnnn2121+=+.而).()(nnnn21nB A B A n B nA nnμμμμ+=⋃)(总有中事件出现的频率,则次试验表示在果用出现的频率,因此,如是事件出现的频率,是事件由概率的统计定义,可知P (A ∪B )=P (A )+P(B). 6.对立事件及概率公式(1).对立事件:不能同时发生且必有一个发生的两个事件叫做互为对立事件。
第八章统计与概率第二十七讲数据的收集与处理【基础知识回顾】一、数据的收集方式。
1、全面调查(普查):是为了一定的目的对考察对象进行的全面调查,其中所要考查对象的称为总体,组成总体的考查对象称为个体2、抽样调查(抽查):是指从总体中抽取对象进行调查,然后根据调查数据推理全体对象的情况,其中,被抽取的那些组成一个样本,样本中的数目叫做样本容量。
【名师提醒:1、对被考查对象进行全面调查还是抽样调查要根据就考查对象的特点而选择,例如:当被考查对象数量有限时可采取,当受条件限制无法对所有个体都进行调查或调查具有破坏性时,应采用,然后用样本估计总体的情况。
2、注意:被考察对象不是笼统的某人某物,而是某人某物的某项指标。
】二、统计图:1、统计图是表示统计数据的图形,是数据及其关系的直观表现的反映,几种常见的统计图有统计图统计图统计图2、频数分布直方图:⑴频数:在统计数据中落在不同小组中的个数,叫做频数⑵频率:=⑶绘制频数直方图的步骤:a:计算与的差,b:决定和c:确定分点d:列出f:画出【名师提醒:1、各类统计图的特点:条形统计图可以反映折线统计图能够显示从扇形统计图能够看出,扇形的圆心角=3600×2、频数分布直方圆中每个长方形的高是所有小长方形高的和为】【典型例题解析】1.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有条鱼.3.2013年3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表分数段频数频率50.5-60.5 16 0.0860.5-70.5 40 0.270.5-80.5 50 0.2580.5-90.5 m 0.3590.5-100.5 24 n(1)这次抽取了名学生的竞赛成绩进行统计,其中:m= ,n= ;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?第二十八讲数据分析【基础知识回顾】一、数据的代表:1、平均数:⑴算术平均数如果有n个数x1 ,x2 ,x3 …xn那么它们的平均数x=⑵加权平均数:若在一组数据中x1出现f1次,x2出现f2次...... xk出现fk次,则其平均数x= (其中f1+ f2+...... fk=n)2、中位数:将一组数据按大小依次排列,把处在或叫做这组数据的中位数。
2014届艺术班数学复习概率统计第1节:抽样方法梳理知识:1、几个基本概念:(1)总体:;(2)个体:;(3)样本:;(4)样本容量:。
2、简单随机抽样:(1)定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样;(2)最常用的简单随机抽样的方法:。
3、系统抽样:。
4、分层抽样:(1)定义:在抽样时,将总体分成互不相交的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样;(2)分层抽样的应用范围:当总体是由差异明显的几部分组成时,往往选用分层抽样。
不放回抽样和放回抽样:在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样。
随机抽样、系统抽样、分层抽样都是不放回抽样。
四、热身小题:1、某校有40个班,每班有50人,每班选派3人参加“学代会”,在这个问题中样本容量是()A、40;B、50;C、120;D、1502、某单位有老年人27人,中年人54人,青年人81人,为了调查他们身体状况的某项指标,需从他们中抽取一个容量为36的样本,适合抽取样本的方法是()A、抽签法;B、系统抽样;C、随机数表法;D、分层抽样3、老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是()A、随机抽样;B、分层抽样;C、系统抽样;D、以上都不是4、一个年级210人,某次考试中成绩优秀的有40人,成绩中等的有150人,成绩较差的有20人,为了解考试情况,从中抽取一个容量为21的样本,则宜采用抽样方法,且各类成绩中抽取的人数分别是。
5、在一有45名学生的班级调查学生的身体发育状况,决定分成男生、女生两部分采用分层抽样,现每个女生被抽取的概率为0.2,抽取了3名女生,则男生应抽取人。
五、精讲例题:例1、某次考试有70000名学生参加,为了了解这70000名考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个问题中,有以下四种说法:①1000名考生是总体的一个样本;②可用1000名考生数学成绩的平均数区估计总体平均数;③70000名考生的数学成绩是总体;④样本容量是1000。
其中正确的说法有()A 、1种;B 、2种;C 、3种;D 、4种 【变式】:为了了解参加运动会的2000名运动员的年龄情况,从中抽取100名运动员;就这个问题,下列说法中正确的有 个。
①2000名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100;⑤这个抽样方法可采用按年龄进行分层抽样;⑥每个运动员被抽到的概率相等。
( ) A 、1;B 、2;C 、3;D 、4【变式】某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为( ) A 、9;B 、18;C 、27;D 、36六、训练习题:1、某校有160名教职工,其中教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,现抽取一个容量为20的样本,其中后勤人员应抽人数为( )A 、3;B 、15;C 、2;D 、52、某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②;则完成①②这两项调查宜采用的抽样方法依次是( ) A 、分层抽样法、系统抽样法; B 、分层抽样法、简单随机抽样法; C 、系统抽样法、分层抽样法; D 、简单随机抽样法、分层抽样法3、某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现分层抽样容量为45的样本,那么高一、高二、高三年级抽取的人数分别为( ) A 、15,10,20;B 、10,5,30;C 、15,15,15;D 、15,5,254、一个公司有1000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知部门有200名员工,那么从该部门抽取的工人数是 。
5、一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人,为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工 人。
第2节:图表与数字特征 梳理知识:1、用样本的数字特征估计总体的数字特征:(1)众数、中位数:在一组数据中出现 的数据叫做这组数据的众数;将一组数据按从大到小(或从小到大)排列,处在 上的一个数据(或中间两个数据的平均数)叫做这组数据的中位数;(2)平均数和方差:如果这n 个数据是12,,,n x x x ,那么 叫做这n 个数据平均数;如果这n 个数据是12,,,n x x x ,那么 叫做这n 个数据方差,同时, 叫做这n 个数据标准差。
2、频率分布直方图、折线图与茎叶图:样本中所有数据(或数据组)的频率和样本容量的比,就是该数据的频率;所有数据(或数据组)的频率的分布变化规律叫做频率分布,可以用频率分布直方图、折线图、茎叶图来表示。
频率分布直方图,注:频率分布直方图中小长方形的面积=组距×频率组距=频率。
四、热身小题:1、如图是2008年元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的众数和中位数分别为( ) A 、84,85;B 、84,84;C 、85,84;D 、85,852、在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( ) A 、9.4,0.484;B 、9.4,0.016;C 、9.5,0.04;D 、9.5,0.0163、某工厂对一批产品进行了抽样检测,如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106]已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是()A 、90;B 、75;C 、60;D 、454、从一堆苹果中任取5只,称得它们的质量如下(单位:克):125,124,121,123,127,则该样本标准差 s 克5、如图是样本容量为200的频率分布直方图。
根据样本的频率分布直方图估计,样本数据落在[6,10]内的频数为 ,数据落在[2,10)内的概率约为 。
五、精讲例题:例1、为了解A ,B 两种轮胎的性能,某汽车制造厂分别从这两种轮胎中随机抽取了8个进行测试,下面列出了每一个轮胎行驶的最远里程数(单位:1000km ) 轮胎A :96,112,97,108,100,103,86,98 轮胎B :108,101,94,105,96,93,97,106(1)分别计算A ,B 两种轮胎行驶的最远里程的平均数,中位数; (2)分别计算A ,B 两种轮胎行驶的最远里程的极差,标准差; (3)根据以上数据你认为哪种型号的轮胎性能更加稳定?7 8 9 94 5 6 4 73(2)画出频率分布直方图;(3)根据累积频率分布,估计分数不满110分的学生所占的百分比。
(2)频率分布直方图如下:(3)根据累积频率分布,分数不满110分的学生所占的百分比约为40%。
【变式】:某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人),现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)。
从A类工人中的抽查结果和从B类工人中的抽插结果分别如下表1和表2。
表1:(1)根据分层抽样,从A 、B 两类工人中分别抽取多少人?并求出,x y 的值;(2)画出频率分布直方图; (3)就生产能力而言,A 类工人中个体间的差异程度与B 类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)(4)分别估计A 类工人和B 类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数,同一组中的数据用该组区间的中点值作代表) 3、随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm ),获得身高数据的茎叶图如图7。
(1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率。
六、训练习题:1、10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( ) A 、a b c >>;B 、b c a >>;C 、c a b >>;D 、c b a >>2、某路段检查站监控录像显示,在某时段内,有1000辆汽车通过该站,现在随机抽取其中的200辆汽车进行车速分析,分析的结果表示为右图的频率分布直方图,则估计在这一时段内通过该站的汽车中速度不小于90km/h 的车辆数为( ) A 、200;B 、600;C 、500;D 、3004、甲、乙两名同学在5次体育测试中的成绩茎叶图如图所示,若甲、乙两人的平均成绩分别是x甲,x 乙,则下列结论正确的是( )A 、x x <乙甲,乙比甲成绩稳定;B 、x x >乙甲,甲比乙成绩稳定;C 、x x >乙甲,乙比甲成绩稳定;D 、x x <乙甲,甲比乙成绩稳定。
段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”,根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()A、甲地:总体均值为3,中位数为4;B、乙地:总体均值为1,总体方差大于0;C、丙地:中位数为2,众数为3;D、丁地:总体均值为2,总体方差为37、一个容量为20的样本数据,分组后,组距与频数如下:(10,20],2;(20,30],3,(30,40],4,(40,50],5,(50,60],4,(60,70],2,则样本在区间[50,)上的频率为。