第十二讲概率统计讲义
- 格式:ppt
- 大小:848.00 KB
- 文档页数:12
2020高中物理竞赛江苏省苏州高级中学竞赛讲义第十二章量子物理第三次课:2学时1 题目:§12-5 波函数及统计解释§12-6 薛定谔方程2 目的:1.了解波函数及其统计解释。
2.了解薛定谔方程(选讲)。
一、引入课题:二、讲授新课:§12-5 波函数及统计解释历史上两种典型的看法,很容易把微观粒子看作是经典粒子和经典波的混合体。
“粒子是由波组成的”:把粒子看作是由很多波组成的波包,但波包在媒质中要扩散、消失(和粒子性矛盾)。
“波是由粒子组成的”:认为波是大量粒子组成的;但这和单个粒子就具有波动性相矛盾。
一、波函数和概率波统计性把波和粒两个截然不同的经典概念联系了起来1 概率波德布罗意提出的波的物理意义是什么?他并没有给出明确的回答,只是说它是虚拟的和非物质的。
对光辐射(电磁波),爱因斯坦1917年引入统计性概念;波动观点:光强∝ E 2粒子观点:光强∝某处光子数∝某处发现一个光子的概率∴ E 2 ∝ 某处发现一个光子的概率当前得到公认的关于德布罗意波的实质的解释是玻恩在1926年提出的概率波的概念。
玻恩发展了爱因斯坦的思想,保留了粒子的微粒性,认为物质波描述了粒子在各处被发现的概率。
德布罗意波是概率波。
2 波函数(wave function)为了定量地描述微观粒子的状态,量子力学中引入波函数,并用ψ ( r , t ) 或 ψ (x , y , z , t )表示。
薛定谔认为具有波粒二象性的微观粒子,也可以像机械波或电磁波那样用波函数来描述它的波动性。
我们从机械波的波函数出发,写出物质波的波函数。
平面机械波的波(方程)函数将其写成复数形式前式是后式的实数部分。
按照德布罗意的物质波假设,一个不受外力作用的自由粒子,它的能量和动量都不改变,与这样的粒子相关的德布罗意波就是一个单色平面波,则有将ν=E/h 和λ=h/P 代入上式则有称上式为德布罗意波的波函数,其中为波函数的振幅,又称概率幅。
概率统计讲义
概率统计作为一门感兴趣的交叉学科,受到社会和学术界的广泛关注。
它融合了数学、统计、实验设计、金融、信息技术等等。
高校和高等教育背景下,概率统计学具有普遍的应用价值和贴近实际的功能。
概率统计在统计学中占据重要地位,它具有数据建模、假设检验等众多重要功能。
概率统计学可以帮助人们从复杂的实际数据中提取有意义的信息,从而实现科学的研究和分析的目的。
例如,在调查市场营销和经济等领域中,概率统计可以帮助研究者更好地理解和提取有用的信息。
此外,在科学研究以及商业发展和决策过程中,概率统计也起着重要作用。
为了获得有效的结论,概率统计学是重要的基础。
概率统计学还可以帮助研究者和决策者评估和预测不确定性,以便作出相应的决策。
最后,在高等教育领域,概率统计也起着重要作用。
它不但是研究和数学分析的基础,还可以用来帮助教学和研究实践。
除了运用统计学技术处理和应用现实数据外,它在今后的教育过程中将发挥更重要的作用,为教师和学生们提供有价值的辅导和指导。
总之,概率统计在高等教育领域具有重要的实用价值,它既可以满足实际的需要,也可以能给我们带来有益的学习体验。
概率统计课件每位教师都需要撰写教案课件,以便上好课。
但是,教案课件中的知识点需要设计得好。
为了适应学生反应多样性的特点,需要调整教学策略。
本文将从多个角度全面阐述并探讨“概率统计课件”,希望您能从中获得有用的信息!概率统计课件【篇1】教学目标:1、经历收集数据、整理数据、分析数据的活动,体现统计在实际生活中的应用。
2、在运用统计知识解决实际问题的过程中,发展统计观念。
教学重点和难点:发展统计观念教学准备:投影片教学过程:一、创设情境我们班要和希望小学的六(1)班建立手拉手班级。
你准备怎样向他们介绍我们班的情况呢?(1)列出几个你想调查的问题,全班交流后,选择3个问题开展调查。
(2)你需要收集哪些数据?与同伴交流收集数据的方法。
(3)实际开展调查,把数据记录下来,并进行整理。
(4)分析上面的数据,,你能够得到到哪些信息?【设计意图】教师注重在以下方面引导:第一,调查问题的提出。
教师可以引导学生调查他们在以下比较感兴趣的问题。
需要注意的是,学生提出的问题的意识是非常重要的,对于没有采纳的问题,教师可以通过多种评价方式激励学生。
第二,组织讨论需要收集那些数据以及收集数据的方法。
第三,组织小组有效的开展收集和整理数据的活动。
统计活动往往需要小组合作进行,教师应引导学生讨论小组如何分工、如何实施调查和记录数据、如何整理数据等。
第四,组织学生对数据进行比较充分的讨论。
第五,引导学生回顾统计活动,使学生体会到,在统计活动中我们一般经历提出问题收集数据整理数据分析数据做出决策的过程。
二、收集在生活中应用统计的例子,并说说这些例子中的数据报告诉人们哪些信息?例如,调查我们班级近视情况,这个统计活动既可以帮助学生建立统计观念,也可以引导学生探讨近视的原因,改善不良习惯。
也可以选择班级同学的身高、体重、姓氏、喜欢的颜色等开展统计调查。
【设计意图】重点让学生体会本次统计数据给我们带来的信息,从而引导做出相应的决策。
三、教师空间(针对班级情况适当补充)作业设计:教师可以组织一次班会活动,目的是增进同学之间的互相了解和交流。
第十二章概率与统计(理)网络体系总览考点目标定位1.离散型随机变量的分布列.离散型随机变量的期望和方差.2.抽样方法、总体分布的估计、正态分布、线性回归.复习方略指南在复习中,要注意理解变量的多样性,深化函数的思想方法在实际问题中的应用,充分注意一些概念的实际意义,理解概率中处理问题的基本思想方法,掌握所学概率知识的实际应用.1.把握基本题型应用本章知识要解决的题型主要分两大类:一类是应用随机变量的概念,特别是离散型随机变量分布列以及期望与方差的基础知识,讨论随机变量的取值范围,取相应值的概率及期望、方差的求解计算;另一类主要是如何抽取样本及如何用样本去估计总体.作为本章知识的一个综合应用,教材以实习作业作为一节给出,应给予足够的重视.2.强化双基训练主要是培养扎实的基础知识,迅捷准确的运算能力,严谨的判断推理能力.3.强化方法选择特别在教学中要掌握思维过程,引导学生发现解决问题的方法,达到举一反三的目的,还要进行题后反思,使学生在大脑记忆中构建良好的数学认知结构,形成条理化、有序化、网络化的有机体系.4.培养应用意识要挖掘知识之间的内在联系,从形式结构、数字特征、图形图表的位置特点等方面进行联想和试验,找到知识的“结点”.再有就是将实际问题转化为纯数学问题进行训练,以培养利用所学知识解决实际问题的能力.12.1 离散型随机变量的分布列巩固·夯实基础一、自主梳理1.随机变量的概念如果随机试验的结果可以用一个变量表示,那么这样的变量叫做随机变量,它常用希腊字母ξ、η等表示.(1)离散型随机变量.如果对于随机变量可能取的值,可以按一定次序一一列出,那么这样的随机变量叫做离散型随机变量.(2)若ξ是随机变量,η=aξ+b,其中a、b是常数,则η也是随机变量.2.离散型随机变量的分布列(1)概率分布(分布列).设离散型随机变量ξ可能取的值为x1,x2,…,x i,…,ξ取每一个值x i(i=1,2,…)的概率P(ξ=x i)=p i,则称表为随机变量ξ的概率分布,简称ξ的分布列.(2)二项分布.如果在一次试验中某事件发生的概率是p,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是P(ξ=k)=C k n p k q n-k .C k n p k q n-k =b(k;n,p). 二、点击双基1.抛掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是( ) A.一颗是3点,一颗是1点 B.两颗都是2点C.两颗都是4点D.一颗是3点,一颗是1点或两颗都是2点 解析:对A 、B 中表示的随机试验的结果,随机变量均取值4,而D 是 ξ=4代表的所有试验结果.掌握随机变量的取值与它刻画的随机试验的结果的对应关系是理解随机变量概念的关键. 答案:DA.1B.1±22 C.1+22 D.1-22解析:∵0.5+1-2q+q 2=1,∴q=1±22. 当q=1+22时,1-2q<0,与分布列的性质矛盾, ∴q=1-22. 答案:D3.已知随机变量ξ的分布列为P(ξ=k)=k21,k=1,2,…,则P(2<ξ≤4)等于( ) A.163 B.41 C.161 D.51 解析:P(2<ξ≤4)=P(ξ=3)+P(ξ=4)=321+421=163.答案:A4.某批数量较大的商品的次品率为10%,从中任意地连续取出5件,其中次品数ξ的分布列为 __________________________.解析:本题中商品数量较大,故从中任意抽取5件(不放回)可以看作是独立重复试验n=5,因而次品数ξ服从二项分布, 即ξ—B(5,0.1).5.某射手有5发子弹,射击一次命中目标的概率为0.9,如果命中就停止射击,否则一直到子弹用尽,则耗用子弹数ξ的分布列为___________________________. 解析:ξ可以取1,2,3,4,5,P(ξ=1)=0.9,P(ξ=2)=0.1×0.9=0.09,P(ξ=3)=0.12×0.9=0.009,P(ξ=4)=0.13×0.9=0.000 9,P(ξ=5)=0.14=0.000 1. 诱思·实例点拨【例1】 一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以ξ表示取出的三只球中的最小号码,写出随机变量ξ的分布列.剖析:因为在编号为1,2,3,4,5的球中,同时取3只,所以小号码可能是1或2或3,即ξ可以取1,2,3.解:随机变量ξ的可能取值为1,2,3.当ξ=1时,即取出的三只球中最小号码为1,则其他两只球只能在编号为2,3,4,5的四只球中任取两只,故有P (ξ=1)=3524C C =106=53;当ξ=2时,即取出的三只球中最小号码为2,则其他两只球只能在编号为3,4,5的三只球中任取两只,故有P (ξ=2)=3523C C =103;当ξ=3时,即取出的三只球中最小号码为3,则其他两只球只能在编号为4,5的两只球中任取两只,故有P (ξ=3)=3522C C =101.讲评:求随机变量的分布列,重要的基础是概率的计算,如古典概率、互斥事件的概率、相互独立事件同时发生的概率、n 次独立重复试验有k 次发生的概率等.本题中基本事件总数,即n=C 35,取每一个球的概率都属古典概率(等可能性事件的概率).【例2】(2005北京高考,理)甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为32. (1)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望E ξ;(2)求乙至多击中目标2次的概率;(3)求甲恰好比乙多击中目标2次的概率.剖析:(1)甲射击有击中目标与击不中目标两个结果,且3次射击是3次独立重复试验.∴ξ—B(3,21).(2)“乙至多击中目标2次”的对立事件是“乙击中目标3次”.(3)“甲恰好比乙多击中目标2次”即“甲击中2次乙没击中目标或甲击中目标3次乙击中1次”.解:(1)P(ξ=0)=C 03(21)3=81; P(ξ=1)=C 13(21)3=83;P(ξ=2)=C 23(21)3=83;P(ξ=3)=C 33(21)3=81.∵ξ—B(3,2), ∴E ξ=3×21=1.5.(2)乙至多击中目标2次的概率为1-C 33(32)3=2719. (3)设甲恰好比乙多击中目标2次为事件A,甲恰好击中目标2次且乙恰好击中目标0次为事件B 1,甲恰好击中目标3次且乙恰好击中目标1次为事件B 2,则A=B 1+B 2,B 1、B 2为互斥事件,∴P(A)=P(B 1)+P(B 2)=83×271+81×92=241. ∴甲恰好比乙多击中目标2次的概率为241.讲评:求离散型随机变量的概率分布的步骤为:(1)找出随机变量ξ的所有可能的值x i (i=1,2,…);(2)求出各值的概率P(ξ=x i )=p i ;(3)列成表格.【例3】(2005广东高考)箱中装有大小相同的黄、白两种颜色的乒乓球,黄、白乒乓球的数量比为s ∶t.现从箱中每次任意取出一个球,若取出的是黄球则结束,若取出的是白球,则将其放回箱中,并继续从箱中任意取出一个球,但取球的次数最多不超过n 次.以ξ表示取球结束时已取到白球的次数. (1)求ξ的分布列; (2)求ξ的数学期望.解:(1)ξ的可能取值为0,1,2,…,n.(2)ξ的数学期望为E ξ=0×t s s ++1×2)(t s st++2×32)(t s st ++…+(n-1)×n n t s st )(1+-+n ×n n t s t )(+. ① t s t +E ξ=3)(t s st ++42)(2t s st ++…+n n t s st n )()2(1+--+1)()1(++-n n t s st n +11)(+++n n t s nt . ②①-②,得E ξ=s t +1)()1(-+-n n t s s t n -n n t s t n )()1(+--nn t s s nt )(1++. 讲评:本题是几何分布问题,其中用到数列的错位相减法求和,注意运算的严谨性.。
第十二讲 用频率估计概率 概率的简单应用2.3-2.4 用频率估计概率 概率的简单应用【学习目标】1.理解频率与概率的区别与联系;2.会通过重复试验,估计事件发生的概率;3.学会运用概率知识来解决一些简单的实际问题.【基础知识】一、频率与概率 1.定义频率:在相同条件下重复n 次实验,事件A 发生的次数m 与实验总次数n 的比值.概率:事件A 的频率nm接近与某个常数,这时就把这个常数叫做事件A 的概率,记作P (A ). 2.频率与概率的关系在相同条件下,当重复试验的次数大量增加时,事件发生的频率就稳定在相应的概率附近.因此我们可以通过大量重复试验,用一个事件发生的频率来估计这一事件发生的概率. 要点:(1)事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.可见,概率是频率的稳定值,而频率是概率的近似值;(2)频率和概率在试验中可以非常接近,但不一定相等;(3)概率是事件在大量重复实验中频率逐渐稳定到的值,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的. 三、利用频率估计概率当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率. 要点:用试验去估计随机事件发生的概率应尽可能多地增加试验次数,当试验次数很大时,结果将较为精确.【考点剖析】例1.某鱼塘里养了1600条鲤鱼,若干条草鱼和800条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,则该鱼塘捞到鲢鱼的概率约为( ) A .23B .12C .13D .16【答案】D 【解析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率. 解:∵捕捞到草鱼的频率稳定在0.5左右 设草鱼的条数为x ,可得:0.51600800xx=++,∴x =2400,经检验:2400x =是原方程的根,且符合题意, ∴捞到鲢鱼的概率为:8001160080024006=++,故选:D . 【点睛】本题考察了概率、分式方程的知识,解题的关键是熟练掌握概率的定义,通过求解方程,从而得到答案.例2.一个不透明的袋子里装有50个黑球,2个白球,这些球除颜色外其余都完全相同.小明同学做摸球试验,将球搅匀后,从中随机摸出一个球,记下它的颜色后放回袋中,然后再重复进行下一次试验,当摸球次数很大时,摸到白球的频率接近于( ) A .150B .126C .125D .12【答案】B 【解析】根据概率的求法,在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P(A)=mn,列式求解即可. ∵一个不透明的袋子里装有50个黑球,2个白球,∴摸到白球的概率为215226=, ∴摸到白球的频率为:126.故选:B . 【点睛】本题主要考查了概率的求法,熟悉掌握概率的计算方法是解题的关键.例3.太原市林业部门要考察某种幼苗的移植成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况: 移植总数n 400 1500 3500 7000 9000 14000 成活数m 3691335 3203 6335 8073 12628 成活的频率m n0.9230.8900.9150.9050.8970.902根据以上数据,估计这种幼苗移植成活的概率是( ) A .0.80 B .0.85C .0.90D .0.95【答案】C 【详解】 略例4.如图是一副宣传节约用水的海报,海报长1.2m ,宽0.6m .小明为了测量海报上“节约用水从我做起”八个字所占的面积,在长方形海报上随机撒豆子(假设豆子落在海报内每一点都是等可能的).经过大量试验,发现豆子落在“节约用水从我做起”八个字上的频率稳定在0.2左右.由此可估计海报上“节约用水从我做起”八个字所占的面积约为( )A .20.35mB .20.7mC .20.144mD .20.2m【答案】C 【解析】长方形宣传海报的面积为()21.20.60.72m⨯=.∵豆子落在“节约用水 从我做起”八个字上的频率稳定在0.2左右,∴“节约用水 从我做起”八个字图案占长方形宣传海报的20%.∴海报上“节约用水 从我做起”八个字的面积约为()21.20.60.72m⨯=.例5.一个不透明的盒子里装有若干个同一型号的白色乒乓球,小明想通过摸球实验估计盒子里有白色乒乓球的个数,于是又另外拿了9个黄色乒乓球(与白色乒乓球的型号相同)放进盒子里.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回去,通过大量重复摸球实验后发现,摸到黄色乒乓球的频率稳定在30%,估计原来盒子中白色乒乓球的个数为()A.21 B.24 C.27 D.30【答案】A【解析】设原来盒子中白色乒乓球的个数为x,根据摸到黄色乒乓球的频率稳定在30%得99x+=30%,解方程即可求解.【详解】设原来盒子中白色乒乓球的个数为x,根据题意,得:99x+=30%,解得:x=21,经检验:x=21是分式方程的解,∴原来盒子中白色乒乓球的个数为21个,故选A.【点睛】本题考查了频率与频数的关系,熟知频率=频数数据总和是解决问题的关键.例6.一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有4个,若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱,通过大量重复摸球实验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a大约是()A.25 B.20 C.15 D.10【答案】B【解析】由在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,即可知其概率,再利用概率公式即可推算出a的大小.【详解】由题意可得4100%20% a⨯=,解得20a=.经检验:a=20是原方程的根且符合题意故选B.【点睛】本题考查用频率估计概率,熟记概率公式是解本题的关键例7.笼子里关着一只小松鼠(如图),笼子的主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先经过第一道门(A,B,或C),再经过第二道门(D或E)才能出去.问松鼠走出笼子的路线(经过的两道门)有()种不同的可能?A.12 B.6 C.5 D.2【答案】B【解析】解决本题的关键是分析两道门各自的可能性情况,然后再进行组合得到打开两道门的方法,这类题要读懂题意,从中找出组合的规律进行求解,本题不同的是首先分析每道门的情况数,然后整体进行组合即可得解.【详解】解:因为第一道门有A、B、C三个出口,所以出第一道门有三种选择;又因第二道门有两个出口,故出第二道门有D、E两种选择,因此小松鼠走出笼子的路线有6种选择,分别为AD、AE、BD、BE、CD、CE.故选:B.【点睛】本题考查了概率、所有可能性统计,通过列举法可以举出所有可能性的路径.例8.如图,小明在操场上做游戏,他在沙地上画了一个面积为15的矩形,并在四个角画上面积不等的扇形,在不远处的固定位置向矩形内部投石子,记录如下(石子不会落在矩形外面和各区域边缘):投石子的总次数50次150次300次600次石子落在空白区域内的次数14次85次199次400次石子落在空白区域内的频率725173019930023依此估计空白比分的面积是()A.6B.8.5C.9.95D.10【答案】D【解析】根据投在空白区域内的频率得到概率的大小,由此计算空白区域的面积. 【详解】由表格可知:当投石子的次数越来越多时,石子落在空白区域的频率越接近23,即空白区域的面积占总面积的23,∴空白部分的面积=215103⨯=,故选D.【点睛】此题主要是利用频率估计概率,当实验次数越多时,某事件的频率越接近于该事件的概率,这是利用频率计算概率在实际生活中的运用.【过关检测】一、单选题1.在一个不透明的袋子里装有红球、黄球共40个,这些球除颜色外都相同,小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中黄球的个数最有可能是( ) A .10 B .15C .20D .30【答案】D 【解析】设袋子中红球有x 个,根据摸出红球的频率稳定在0.25左右列出关于x 的方程,求出x 的值,从而得出答案.解:设袋子中红球有x 个,根据题意,得:40x=0.25, 解得x=10,∴袋子中红球的个数最有可能是10个,黄球有40-10=30(个) 故选:D . 【点睛】本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.2.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同.从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有( ) A .6个 B .10个C .15个D .30个【答案】C 【解析】根据题目试验可求出白球所占的频率,设盒子中的白球大约有x 个,列出等式求解即可. 【详解】∵共试验400次,其中有240次摸到白球, ∴白球所占的频率为240400=0.6, 设盒子中的白球大约有x 个,则0.610xx =+, 解得:x=15,∴盒子中的白球大约有15个, 故选:C . 【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率,关键是根据白球的频率得到相应的等量关系.3.某科研小组,为了考查某河野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河中野生鱼有( ) A .8000条 B .4000条C .2000条D .1000条【答案】B 【解析】试题解析:∵300条鱼中发现有标记的鱼有15条, ∴有标记的占到15300, ∵有200条鱼有标记, ∴该河流中有野生鱼200÷15300=4000(条); 故选B .4.为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下. 身高/cm x 160x <160170x ≤<170180x ≤<180x ≥人数60260550130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm 的概率是( ) A .0.32 B .0.55C .0.68D .0.87【答案】C 【解析】先计算出样本中身高不低于170cm 的频率,然后根据利用频率估计概率求解. 【详解】解:样本中身高不低于170cm的频率5501300.681000+==,所以估计抽查该地区一名九年级男生的身高不低于170cm的概率是0.68.故选:C.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.5.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在0.15.和0.45,则该袋子中的白色球可能有()A.6个B.16个C.18个D.24个【答案】B【解析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【详解】解:∵摸到红色球、黑色球的频率稳定在0.15和0.45,∴摸到白球的频率为1-0.15-0.45=0.4,故口袋中白色球的个数可能是40×0.4=16个.故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.6.某射击运动员在同一条件下的射击成绩记录如下:则该运动员“射中9环以上”的概率约为(结果保留一位小数)()A.0.7 B.0.75 C.0.8 D.0.9【答案】C【解析】用频率估计概率解答即可.【详解】解:∵从频率的波动情况可以发现频率稳定在0.8附近,∴这名运动员射击一次时“射中9环以上”的概率大约是0.8.故选:C.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.7.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③【答案】B【解析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【详解】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误.故选:B.【点睛】本题考查了利用频率估计概率,明确概率的定义是解题的关键.8.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.从一副扑克牌中任意抽取一张,这张牌是“红色的”B.掷一枚质地均匀的硬币,落地时结果是“正面朝上”C.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6【答案】D【解析】根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.16者即为正确答案.【详解】解:A、从一副扑克牌中任意抽取一张,这张牌是“红色的”的概率是12>0.17,故此选项不符合要求;B、掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率=12=0.5>0.17,故此选项不符合要求;C、从一装有2个白球和1个红球的袋子中任取一球,取到白球的概率是23≈0.67>0.17,故此选项不符合要求;D、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率=16≈0.17,故此选项符合要求.故选:D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.9.2019年8月上旬某市空气质量指数(AQI)(单位:μg/m3)如下表所示,空气质量指数不大于100表示空气质量优良小王8月上旬到该市度假一次,那么他在该市度假3天空气质量都是优良的概率是().A.58B.35C.25D.23【答案】A【解析】根据表格中的数据和题意可以求得3天空气质量都是优良的概率.【详解】解:由表格可得,所有的可能性是:(1,2,3),(2,3,4),(3,4,5),(4,5,6),(5,6,7),(6,7,8),(7,8,9),(8,9,10),∴小王在该市度假3天空气质量都是优良的概率是58;故答案为:A【点睛】本题主要考查了用列举法求概率.解答本题的关键是明确题意,求出相应的概率.10.在大力发展现代化农业的形势下,现有A、B两种新玉米种子,为了了解它们的出芽情况,在推广前做了五次出芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:下面有三个推断:①当实验种子数量为100时,两种种子的出芽率均为0.99,所以A、B两种新玉米种子出芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是()A.①②③B.①②C.①③D.②③【答案】D【解析】大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,据此解答可得.【详解】①在大量重复试验时,随着试验次数的增加,可以用一个事件出现的概率估计它的概率,实验种子数量为100,数量太少,不可用于估计概率,故①推断不合理;②随着实验种子数量的增加,A种子出芽率在0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97,故(②推断合理;③在同样的地质环境下播种,A 种子的出芽率约为0.97,B种子的出芽率约为0.96,A种子的出芽率可能会高于B种子,故正确,故选:D.【点睛】此题考查利用频率估计概率,理解随机事件发生的频率与概率之间的关系是解题的关键.二、填空题11.在一个不透明的盒子中装有n个小球,他们只有颜色上的区别,其中有3个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是________.【答案】15【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,根据概率公式即可得解.【详解】解:由题意,得:3n=0.2,解得:n=15.故答案为15.【点睛】本题考查了利用频率求概率及简单的概率计算.解题的关键是根据红球的频率得到相应的等量关系.12.一个不透明的袋子中装有24个黄球和若干个白球,它们除颜色外其他完全相同,小东为估计袋子中白球的个数,经过多次摸球试验后发现摸到黄球的频率稳定在0.2附近,则袋子中大约有________个白球.【答案】96【详解】∵经过多次摸球试验后,摸到黄球的频率稳定在0.2附近,∴袋子中所有小球的总数约为240.2120÷=(个),∴白球的个数约为1202496-=(个).13.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有6个黑球,从袋中随机摸出一球,记下其颜色,称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出n的值是____.【答案】12【解析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.【详解】解∵通过大量重复试验后发现,摸到黑球的频率稳定于0.5,∴6n=0.5,解得:n=12.故答案为:12.【点睛】本题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黑球的频率得到相应的等量关系.14.一个不透明的口袋里有13个黑球和若干个黄球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验500次,其中有240次摸到黄球,由此估计袋中的黄球有________个.【答案】12【解析】先计算出黄球频率,频率的值接近于概率,再计算黄球的概率.【详解】解:黄球的概率近似为24012 50025=,设袋中有x个黄球,则12 1325xx=+,解得x=12,经检验:x=12是原方程的解,答:估计袋中的黄球有12个,故答案为:12.【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.要理解用频率估计概率的思想.用到的知识点为:频率=所求情况数与总情况数之比.15.一个不透明的箱子中装有大小形状完全相同的2个红球和3个黄球,从箱子中随机摸出一球,记下颜色并放回,大量重复该试验,则摸到黄球的频率会趋向稳定为_________.【答案】3 5【解析】求出摸到黄球的概率,根据“大量重复试验中事件发生的频率逐渐稳定到的常数可以估计概率”直接写出答案即可.【详解】解:∵一共5个球,2个红球,3个黄球,∴摸到黄球的概率为35,∴大量重复实验后,摸到黄球频率趋向稳定为35,故答案为35. 【点睛】本题考查了利用频率估计概率的知识,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率. 16.已知事件A 发生的概率为110,大量重复做这种试验,事件A 平均每100次发生的次数约为_______次.【答案】10 【解析】根据概率的意义解答即可. 【详解】事件A 发生的概率为110,大量重复做这种试验,则事件A 平均每100次发生的次数为: 100×110=10 故答案为:10 【点睛】本题考查了概率的意义,熟记概念是解题的关键17.下面是某小区随机抽取的100户家庭的月用电量情况统计表: 240x240300x350x 350400xx 5223115从中任意抽出一个家庭进行用电情况调查,则抽到的家庭月用电量为第二档(用电量大于240小于等于400为第二档)的概率为__________. 【答案】0.8. 【解析】根据用电量大于240小于等于400为第二档,即可得出结论. 【详解】由表格可知这100户中,有22273180++=户为第二档人, ∴800.8100P ==, 故答案为:0.8.【点睛】本题考查了概率问题,正确读懂表格是解题的关键.18.小明参加了一个抽奖游戏:一个不透明的布袋里装有1个红球,2个蓝球,4个黄球,8个白球,这些小球除颜色外完全相同.从布袋里摸出1球,摸到红球、蓝球、黄球、白球可分别得到奖金30元、20元、5元和0元,则小明摸一次球得到的平均收益是________元.【答案】6【解析】求出任摸一球,摸到红球、黄球、绿球和白球的概率,那么获奖的平均收益可以用加权平均数的方法求得.【详解】解:1248 30+20+5+015151515⨯⨯⨯⨯=2+4=6(元)故答案为6【点睛】此题主要考查了考查概率的计算和加权平均数的计算方法,理解获奖平均收益实际就是求各种奖项的加权平均数.19.如图,用两个可自由转动的转盘做“配紫色”游戏:分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配出紫色,那么可配成紫色的概率是___________________.【答案】1 3【解析】根据题意画出树状图得出所有等可能的情况数和能配成紫色的情况数,然后根据概率公式即可得出答案.【详解】解:根据题意画树状图如下:共有6种等可能的情况数,其中配成紫色的有2种, 则配成紫色的概率是2163=. 故答案为:13. 【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.20.现有张正面分别标有数字0,1,2,3,4,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使得关于x 的一元二次方程2202a x x -+=有实数根,且关于x 的分式方程11222ax x x -+=--有解的概率为______. 【答案】16【解析】根据一元二次方程有实数根,求出a 的取值范围,再根据分式方程有解,求出a 的取值范围,综合两个结果即可得出答案. 【详解】一元二次方程2202ax x -+=有实数根, ∴4402a-⨯≥. ∴2a ≤, ∴0a =,1,2, 关于x 的分式方程11222ax x x -+=--的解为:22x a=-, 且20a -≠且2x ≠,解得:2a ≠且1a ≠, ∴0a =,∴使得关于x 的一元二次方程,2202a x x -+=有实数根,且关于x 的分式方程11222ax x x -+=--有解的概率为:16. 故答案为:16【点睛】本题考查一元二次方程有实数根、分式方程有解和概率的计算公式,掌握一元二次方程有实数根和分式方程有解是解题的关键.21.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个对角线为AC 和BD 的菱形,使不规则区域落在菱形内,其中AC=8m ,BD=4m ,现向菱形内随机投掷小石子(假设小石子落在菱形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数25%,由此可估计不规则区域的面积是_____m 2.【答案】4. 【解析】首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可. 【详解】∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数25%附近, ∴小石子落在不规则区域的概率为0.25, ∵AC=8m ,BD=4m , ∴面积为12×8×4=16m 2, 设不规则部分的面积为s , 则16s=0.25, 解得:s=4, 故答案为4.。
高考数学概率知识点总结及解题思路方法测试内容:随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.测试要求:(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义,会用排列组合的根本公式计算一些等可能性事件的概率.(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在n次独立重复试验中恰好发生6次的概率.§11.概率知识要点1.概率:随机事件A的概率是频率的稳定值,反之,频率是概率的近似值.2.等可能事件的概率:如果一次试验中可能出现的结果有年n个,且所有结果出现的可能性都相等, 那么,每一个根本领件的概率都是工,如果某个事件A包含的结果有m个,那么事件A的概率P(A)=m. n n 3.①互斥事件:不可能同时发生的两个事件叫互斥事件.如果事件A、B互斥,那么事件A+B发生(即A、B中有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B),推广:P(A i A2*-F A n) =P(A i) P(A2)+-F P(A n).②对立事件:两个事件必有一个发生的互斥事件叫对立事件.例如:从1〜52张扑克牌中任取一张抽到红桃〞与抽到黑璘:耳为互斥事旦不件,由于其中一个不可能同时发生,但又不能保证其中一个必仁故不是对立事件.而抽到红色牌〞与抽到黑色牌互为对立事件,由于其中一个必发生.注意:i.对立事件的概率和等于1:P(A)+P(A)=P(A+M=1.ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.③相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件.如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A B)=P(A) P(B).由此,当两个事件同时发生的概率P (AB)等于这两个事件发生概率之和,这时我们也可称这两个事件为独立事件.例如:从一副扑克牌(52张)中任抽一张设A:抽到老K" ;B:抽到红牌〞那么A应与B互为独立事件[看上去A与B有关系很有可能不是独立事件,但P(A)=&=」P(B)=26 J,P(A) P(B)=」.又事件AB表示既52 13 52 2 26抽到老K对抽到红牌〞即抽到红桃老K或方块老K〞有P(A B)=Z=」, 52 26因止匕有P(A) P(B) =P(A B).推广:假设事件A I,A2,…,A n相互独立,那么P(A i A2…A n)=P(A i) P(A2)…P(A n). 注意:i. 一般地,如果事件A与B相互独立,那么A与B,A与B, A 与B也都相互独立.ii.必然事件与任何事件都是相互独立的iii.独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件.④独立重复试验:假设n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,那么称这n次试验是独立的.如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k次的概率:P n(k) Cp k(1—P)n£4.对任何两个事件都有P(A +B) =P(A) +P(B) -P(A B)第十二章-概率与统计测试内容:抽样方法.总体分布的估计.总体期望值和方差的估计.测试要求:(1) 了解随机抽样了解分层抽样的意义,会用它们对简单实际问题进行抽样.(2)会用样本频率分布估计总体分布.(3)会用样本估计总体期望值和方差.国2.概率与统计知识要点一、随机变量.1.随机试验的结构应该是不确定的.试验如果满足下述条件:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个, 但在一次试验之前却不能肯定这次试验会出现哪一个结果.它就被称为一个随机试验.2.离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 .假设E是一个随机变量,a, b是常数.那么n=a2+b也是一个随机变量.一般地,假设已是随机变量,f(x)是连续函数或单调函数,那么f©也是随机变量也就是说, 随机变量的某些函数也是随机变量.设离散型随机变量已可能取的值为:X1,X2,…,X i,…E取每一个值X i(i=l,2,…)的概率P( j)=P i,那么表称为随机变量E的概率分布,简称E 的分布列.有性质①PiM=1,2,…;②P1+P2什+Pi l =1 .注意:假设随机变量可以取某一区间内的一切值, 这样的变量叫做连续型随机变量.例如:3[0,5]即E可以取0〜5之间的一切数,包括整数、小数、无理数.3.⑴二项分布:如果在一次试验中某事件发生的概率是巳那么在n 次独立重复试验中这个事件恰好发生k次的概率是:P(E =k) =c n P k q n〞[其中k =0,1,…,n, q =1 — P]于是得到随机变量2的概率分布如下:我们称这样的随机变量已服从二项分布,记作七~B (np),其中n, P为参数,并记Ckp k q n*=b(k;n P). ⑵二项分布的判断与应用.①二项分布,实际是对n次独立重复试验.关键是看某一事件是否是进行n次独立重复,且每次试验只有两种结果,如果不满足此两条件, 随机变量就不服从二项分布.②当随机变量的总体很大且抽取的样本容量相对于总体来说又比拟小,而每次抽取时又只有两种试验结果, 此时可以把它看作独立重复试验,利用二项分布求其分布列.4.几何分布:2=k 〞表示在第k次独立重复试验时,事件第一次发生, 如果把k 次试验时事件A发生记为A k ,事A不发生记为A k,P(A k)=q , 那么P(\k) =P(8?…A;1AJ .根据相互独立事件的概率乘法分式:P(甘)=P(A I)P(A2)…P(A k^P(A k)才与(k =1,2,3,…)于是得到随机变量已的概率分布列.5.⑴超几何分布:一批产品共有N件,其中有M (M<N)件次品,今抽取n(1 WnEN)件,那么其中的次品数已是一离散型随机变量,分布列k n -k为P k) =£里1 (04MM,0 Mn _k MN _M).〔分子是从M件次品中取k件, C N从N-M件正品中取n-k件的取法数,如果规定m<r时C m r=0,那么k的范围可以写为k=0, 1,…,n.〕⑵超几何分布的另一种形式:一批产品由a件次品、b件正品组成,k n _k今抽取n件(1WnWa+b那么次品数E的分布列为P&=k)=c a c b k=0,1,…,n.. C a b⑶超几何分布与二项分布的关系.设一批产品由a件次品、b件正品组成,不放回抽取n件时,其中次品数.艮从超几何分布.假设放回式抽取,那么其中次品数〞的分布列可如下求得:把a 他个产品编号,那么抽取n次共有(a+b)n个可能结果,等可能:W=k) 含c n a k b n」个结果, 故k k. n k i -PS =k 〕 =Cna b n- Hk 〔W 〕k 〔1—W 〕n ,k =0,12 …,n,即〞~ B 〔n,a 〕.[我们先为 k 〔a,b 〕a b a- b a b个次品选定位置,共c k 种选法;然后每个次品位置有a 种选法,每个 正品位置有b 种选法]可以证实:当产品总数很大而抽取个数不多时, p 〔、k 〕5t pW=k 〕,因此二项分布可作为超几何分布的近似,无放回抽样 可近似看作放回抽样. 二、数学期望与方差.1.期望的含义:一般地,假设离散型随机变量E 的概率分布为那么称MWP 1%2P 2+…以n P nA 为的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平 2 .⑴随机变量〞=a U+b 的数学期望:E 〞 =E 〔a :+b 〕 =aE 巴+b ①当a=0时,E 〔b 〕 =b ,即常数的数学期望就是这个常数本身. ②当a=1时,E ^+b 〕=E C+b ,即随机变量已与常数之和的期望等于已的期望与这个常数的和.③当b=0时,E 〔a 与=aEj 即常数与随机变量乘积的期望等于这个常数 与随机变量期望的乘积为:(p + q = 1)⑷二项分布:E F.就/飞〞二印其分布列为'~B 〔n ,P 〕.〔P 为发⑵单点分布:P 〔 =1〕 =c .⑶两点分布: Et=c M1 =c其分布列为:E £=0M q +1M p =p ,其分布列生之的概率)⑸几何分布:E』1其分布列为一q(k,p). (P为发生E的概率) P3.方差、标准差的定义:当随机变量E的分布列为P(£=X k) =P k(k =1,2,…)时,那么称2小1上自、1十X2-EE)2P2平-十X n_E〞Pn +•为E的方差. 显然D U之0,故也=乒.v为E的根方差或标准差.随机变量E的方差与标准差都反映了随机变量E取值的稳定与波动,集中与离散的程度.D?越小,稳定性越高,波动越小.4.方差的性质.⑴随机变量〞=a£+b的方差D(n)=D(aE+b) =a2Dj (a、b均为常数) ⑵单点分布:D^=0其分布列为Array P( =1)=P⑶两点分布:D t = Pq其分布列为:(P+ q = 1)⑷二项分布:D ?';=nPq⑸几何分布:D = q2 P5.期望与方差的关系.⑴如果E U和E"者B存在,贝u E(t±n)=E t±E n⑵设已和“是互相独立的两个随机变量, 那么E(5)=E J E B D代+") = D t + D"⑶期望与方差的转化:D U E&(4)E(t-E it)=E(t)-E(E^)(由于E^为一常数)=E -E =0.三、正态分布.(根本不列入测试范围)1.密度曲线与密度函数:对于连续型随机变量总位于X轴上方,S落在任一区间[a,b)内的概率等于它与X轴.直线x=a与直线x=b所围成的曲边梯形的面积图像的函数f(x)叫做E 的密度函数,由于X"芭q ,+a c )b是必然事件,故密度曲线与x 轴所夹局部面积等于1. 2 .⑴正态分布与正态曲线:如果随机变量 S 的概率密度为:(X十)2f(x) = ^― e 24.(x w R, R ,o ■为常数,且仃为0),称E 服从参数为R ,o '的■. 2 二二正态分布,用0〜N(%r 2)表示.f(x)的表达式可简记为N(R Q 2),它的密度 曲线简称为正态曲线.⑵正态分布的期望与方差:假设七〜N(N/),那么已的期望与方差分别为: E -」,D -:,-2. ⑶正态曲线的性质.①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线x "对称.③当x =N 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降 低,呈现出 中间高、两边低〞的钟形曲线.④当x <N 时,曲线上升;当x>N 时,曲线下降,并且当曲线向左、 向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近.⑤当N 一定时,曲线的形状由.确定,.越大,曲线越 矮胖〞表示总 体的分布越分散;灯越小,曲线越 瘦高〞,表示总体的分布越集中. 3 .⑴标准正态分布:如果随机变量 s 的概率函数为x 2平(x)Jr Y x y 妁,那么称 已服从标准正态分布.即.〜N(0,i)有2 二y=f(x)(如图阴影局部)的曲线叫E 的密度曲线,力么其僦 xy邛(x)=p(£wx),中(x)=i_%»)求出,而 P (a< ^Wb)的计算那么是P(a Mb) =④(b) _^(a).注意:当标准正态分布的6(x)的X 取0时,有①(x)=0.5当①(x)的X 取大 于 0 的数时,有二(x) A0.5.比方曲0.5-N ) =0.0793Y0.5 贝U 0.5-. 如图.⑵正态分布与标准正态分布间的关系:假设 之〜用乩仃2)那么E 的分布通ISgg =0.5 Sa=0.5+S常用 F(x)表示,且有 p(?x) =F(x)=5(x -〃).(T4.⑴“金〞原那么.假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布 N(N Q 2).②确定一次试 验中的取值a 是否落入范围串-3G T , N+3m .③做出判断:如果 a W (N —3仃,N+3⑴,接受统计假设.如果a a (2—3仃,r+刘,由于这是小概率 事件,就拒绝统计假设.⑵“女〞原那么的应用:假设随机变量 已服从正态分布N (依2)那么已落在 (N-3Q ,N+3⑴内的概率为 99.7% 亦即落在(良-3G出+即之外的概率为 0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合 格(即E 不服从正态分布).▲必然小于0妗x线。