单纯形法求最优解问题及一些知识点整理
- 格式:doc
- 大小:97.00 KB
- 文档页数:3
线性规划问题的单纯形法求解步骤线性规划是一种优化问题,它的解决方法有很多种,在这里我们来介绍其中一种常用的方法——单纯形法。
我们将介绍单纯形法的求解步骤,以帮助读者更好地理解和掌握这种求解方法。
1. 建立数学模型任何一个线性规划问题的解决都需要先进行建模。
我们将问题转换成数学模型,然后使用数学方法进行求解。
线性规划问题的一般形式为:max cxs.t.Ax ≤ bx ≥ 0其中,c、x、b、A都是向量或矩阵,x≥0表示各变量都是非负数。
其中c表示目标函数,A和b表示约束条件。
2. 计算初始基可行解我们需要从初始点开始,逐步优化目标函数。
但是,在开始优化前我们需要先找到一个基可行解。
基可行解的定义是:如果所有非基变量的取值都是0,并且所有基变量的取值都是非负的,则该解被称为基可行解。
当基可行解找到后,我们就可以开始进行优化。
3. 确定进入变量在单纯形法中,每次迭代中我们都需要找到进入变量。
进入变量是指,通过操作非基变量可以使得目标函数增加的变量。
我们需要找到一个使得目标函数增加最多的非基变量,将其称为进入变量。
4. 确定离开变量在确定进入变量后,我们需要确定一个离开变量。
离开变量是指,通过操作基变量可以使得目标函数增加的变量。
我们需要找到一个离开变量,使得当进入变量增加到某个值时,该离开变量的值为0。
这样,我们就找到了一个最小的正根比率,使得通过基本变量出基到进入变量变为零而得到的新解是可行的。
5. 交换变量接下来,我们需要将已选定的进入变量和离开变量进行交换。
此时,我们将进入变量转变为基变量,离开变量转变为非基变量。
通过这种交换,我们还需要调整我们的基向量。
由于这个交换,我们将得到一个新的基可行解,并且它可以比之前的解更好。
6. 重复迭代我们需要重复上述步骤,直到我们找到最优解。
重复迭代意味着我们将不断查找新的进入变量和离开变量,并进行变量交换。
这种找到最优解的过程可能非常复杂,但是单纯形法的效率很高,通常可以在很短的时间内找到最优解。
单纯形法多重最优解
嗨,亲爱的小伙伴们!今天咱们来聊聊单纯形法多重最优解这个有趣的话题。
你们知道吗?单纯形法就像是一个神奇的魔法,能帮我们在复杂的数学世界里找到最优的答案。
可有时候呀,它会给我们带来一个惊喜——多重最优解!
想象一下,你在一个大迷宫里找出口,结果发现居然有好几个出口都能让你最快走出去,这是不是很神奇?这就像单纯形法里的多重最优解。
那为什么会有多重最优解呢?这是因为在问题的条件和限制下,有多种组合方式都能达到最优的效果。
比如说,做一个生产计划,可能用不同的设备组合,都能以最低的成本生产出同样多的产品。
多重最优解可不是随便就出现的哦。
这需要问题本身有一些特殊的结构和条件。
就好像是拼图,只有特定的拼图块才能拼出多个完美的图案。
当我们遇到多重最优解的时候,可别慌!这其实是个好事儿。
它给了我们更多的选择,让我们可以根据实际情况来挑一个最合适的方案。
呢,单纯形法的多重最优解就像是一个藏着宝贝的百宝箱,只要我们善于发现和利用,就能找到最适合我们的那个宝贝!怎么样,小伙伴们,是不是觉得单纯形法更有趣啦?好啦,今天就聊到这儿,咱们下次再见哟!。
单纯形法原理及例题
单纯形法原理:
单纯形法是求解线性规划问题的一种数学方法,它是由美国数学家卢克·单纯形于1947年发明的。
用单纯形法求解线性规划的过程,往往利用线性规划的对偶形式,将原问题变换为无约束极大化问题,逐步把极大化问题转换为标准型问题,最后利用单纯形法的搜索方法求解满足所有约束条件的最优解。
例题:
问题:求解最小化目标函数z=2x1+x2的线性规划问题,约束条件如下:
x1+2x2≥3
3x1+x2≥6
x1,x2≥0
解:将上述线性规划问题转换为无约束极大化问题,可得:
极大化问题:
Max z=-2x1-x2
s.t. x1+2x2≤3
3x1+x2≤6
x1,x2≥0
将极大化问题转换为标准型问题,可得:
Max z=-2x1-x2
s.t. x1+2x2+s1=3
3x1+x2+s2=6
x1,x2,s1,s2≥0
运用单纯形法的搜索方法求解:
令x1=0,x2=0,则可得s1=3,s2=6,即(0,0,3,6)是单纯形的初始解;
令z=-2x1-x2=0,代入约束条件,可得x1=3,x2=3,则可得s1=0,s2=0,即(3,3,0,0)是新的单纯形解。
由于s1=s2=0,说明x1=3,x2=3是线性规划问题的最优解,且最小值为z=2*3+3=9。
•单纯形计算过程特别说明
1. 如何从单纯形表判断最优解
1)唯一最优解判别:最优表中所有非基变量的检验数大于零,则线性规划具有唯一最优解.
2)多重最优解判别:最优表中存在非基变量的检验数为零,则线性规划具有多重最优解(或无穷多最优解).
<0且a ik≤0(i=1,…,m)则线性规划具有无界解.
3)无界解判别:某个σ
k
4)无可行解的判别:当用大M单纯形法计算得到最优解并且存在Ri>0时,则表明原线性规划无可行解.
5)退化解的判别:
a)存在某个基变量为零的基本可行解;
[此时可能出现循环迭代而永远找不到最优解.该情况是由比值相同造成的.可以证明:当出现比值相同时,按下标最小的基变量作为换出变量可避免出现循环,具体可参阅有关文献];
b)人工变量在最优表的基中,但人工变量的取值为零.
[此种情况是由于存在多余约束(A不行满秩)造成的,可通过消去多余约束加以解决]
3. 计算过程需要特别注意的问题:
在确定了进基变量和出基变量,即确定主元后,单纯形变换的计算方法:
1)主元所在的行所有元素除以主元值,将主元变换成1;
2)用主元行的合适倍数加至其它各行(此时,改变的是其它各行,而主元行不发生变化!),以将主元列除主元外的其它元素变换成零。
注:采用以上变换方法(而不是任意初等变换)是为了保证:原来在基中并为发生改变的基变量,在变换计算后其对应的基向量不能发生改变。
也就是说:在任何时候,单纯形表中的所有基向量构成的矩阵均为单位矩阵!。
单纯形法解的四种情况单纯形法是运筹学中求解线性规划问题的一种常用方法。
它的基本思想是利用线性规划问题的几何性质,通过不断优化目标函数值,使得问题的最优解逐渐逼近。
在运用单纯形法求解线性规划问题时,存在四种不同的情况,下面一一进行详细介绍。
一、唯一最优解当线性规划问题满足严格的可行性条件和凸性条件时,求解出的最优解就是唯一的。
在这种情况下,单纯形法通过一系列计算步骤,得出的就是该问题的最优解。
此时,算法的收敛速度也是最快的,因为每次迭代都会使得目标函数值有所改善,确定下一次迭代的方向也较为明确。
二、无解当线性规划问题没有可行解时,单纯形法会失败。
这通常是因为约束条件之间存在冲突,导致问题无法求解。
例如,如果一个约束条件要求变量的值大于等于某个数,而另一个约束条件要求该变量的值小于该数,那么就会导致问题无法求解。
这种情况下,单纯形法会一直进行迭代,直到达到指定的迭代次数或者发现无法得到更好的解为止。
三、无界当线性规划问题的目标函数可以无限地取得更小的值时,就被称为无界问题。
这种情况通常是由于约束条件中某个变量的值可以无限大或者无限小,导致目标函数的值可以无限地下降。
在这种情况下,单纯形法会一直迭代下去,但却无法得到最优解。
此时,需要对约束条件进行适当的调整,添加额外的限制条件以消除无界情况。
四、多解当线性规划问题可以有多个最优解时,就称为多解问题。
例如,当目标函数有多个极小值点,每个极小值点都是最优解。
在这种情况下,单纯形法只能找到其中一个最优解,而无法确定其他最优解的位置。
在实际应用中,多解问题较为常见,在解决此类问题时,需要进一步确定目标函数的相关参数,以便正确地找到所有的最优解。
综上所述,单纯形法在求解线性规划问题时,会出现四种不同的情况,即唯一最优解、无解、无界和多解。
对于每种不同的情况,需要采取不同的策略来进行处理。
因此,在运用单纯形法求解线性规划问题时,需要对这些情况进行充分的考虑,以便正确地解决问题。
单纯形法求解题技巧单纯形法是一种基于线性规划的求解方法,通过迭代的方式不断优化目标函数的值,从而找到最优解。
在使用单纯形法求解问题时,可以遵循以下一些技巧和步骤:1. 设置初始基可行解:初始基可行解是指满足所有约束条件的解,可以通过等式约束的方式获得。
初始基可行解对于单纯形法的收敛性和运算次数有重要影响。
2. 检查目标函数:在进行单纯形表的构造前,需要对目标函数进行检查。
对于最小化问题,目标函数的系数一般需要取负号。
3. 构造单纯形表:单纯形表是单纯形法的核心工具,通过将约束条件和目标函数表达成矩阵形式,构造单纯形表可方便进行单纯形法的迭代计算。
4. 选择合适的入基变量:入基变量是表中一列,表示在当前解时需要调整的变量。
选择一个最优的入基变量可以减少迭代次数。
可以通过最小比率法、最大系数法等方法选择入基变量。
5. 选择合适的出基变量:出基变量是表中一行,表示需要退出基变量的数值。
选择一个最优的出基变量可以使目标函数值增加最大。
可以通过最小比率法、Bland法则等方法选择出基变量。
6. 更新单纯形表:通过入基、出基变量的转换,更新单纯形表。
更新表的目的是获得一个新的基可行解,并计算相应的目标函数值。
7. 判断终止条件:在迭代运算中,需要判断是否满足终止条件。
终止条件可以是当目标函数无法继续改善时停止迭代,或者受到约束条件的限制达到最优解时停止。
8. 迭代求解:根据上述步骤进行迭代求解,直到满足终止条件。
9. 检查最优解:在得到最优解后,需要对最优解进行检查。
检查包括检查约束条件是否满足、检查是否有多个最优解等。
10. 整理结果:根据求解结果,整理并表示出最优解的含义。
通常需要将最优解转化为实际问题中的意义,并进行解释和解读。
在实际应用中,还有一些常用的技巧可以进一步提高单纯形法的求解效率:1. 初始基可行解的选择:初始基可行解的选择对于迭代次数和运算效率有重要影响。
可以使用人工算法确定一个初始基可行解,或者利用其他启发式算法辅助选择初始基可行解。
例1 用单纯形法解下列问题:解:将原问题化成标准形:x 4与添加的松弛变量x 5,x 6在约束方程组中其系数列正好构成一个3阶单位阵,它们可以作为初始基变量,初始基可行解为X =(0, 0, 0,10, 8, 4)T列出初始单纯形表,见表1。
22x 2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量作为换出的基变量。
242)24,110(m in ===θ 因此确定2为主元素(表1中以防括号[]括起),意味着将以非基变量x 2去置换基变量x 6,采取的做法是对约束方程组的系数增广矩阵实施初等行变换,将x 2的系数列(1, -1, 2)T 变换成x 6的系数列(0, 0, 1)T ,变换之后重新计算检验数。
变换结果见表2。
1231234123123min 2..210,248,244,0,1,,4.j x x x s t x x x x x x x x x x x j -++-+=-+≤-+-≤≥=123123412351236max 2..210,248,244,0,1,,6.j x x x s t x x x x x x x x x x x x x j -+-+-+=-++=-+-+=≥=检验数σ3=3>0,当前基可行解仍然不是最优解。
继续“换基”,确定2为主元素,即以非基变量x 3置换基变量x 5。
变换结果见表3。
此时,3个非基变量的检验数都小于0,σ1= -9/4,σ5= -3/2,σ5= -7/4,表明已求得最优解:T)0,0,8,5,12,0(=*X 。
去除添加的松弛变量,原问题的最优解为:T )8,5,12,0(=*X ,最小值为-19例2 用大M 法求解下列问题:12312312313min 3..211,243,21,0,1,,3.j x x x s t x x x x x x x x x j +--+≤+-≥-=≥=解 引进松弛变量x 4、、剩余变量x 5和人工变量x 6、x 7,解下列问题:1234567123412356137min 300()..211243210,1,2,,7j x x x x x M x x s t x x x x x x x x x x x x x j +-++++-++=+--+=-+=≥=用单纯形法计算如下:由于σ1<σ2< 0,说明表中基可行解不是最优解,所以确定x 1为换入非基变量;以x 1的系数列的正分量对应去除常数列,最小比值所在行对应的基变量作为换出的基变量。
运筹学
问老师后总结的
第一章
1、单纯形法的计算方法(书本20-37里面的大M法也要掌握)
2、对于各类不同问题,掌握它的设决策变量、目标函数及约束条件(36-43但我个人认为这里可以不看书去看老师这节的PPT,个类题型都总结了。
大家看自己喜欢那种就选哪种)
第二章
1、掌握写某些问题的对偶问题(求最大值、最小值都看53-59)
2、影子价格了解下(60)
3、灵敏度不是重点,大家稍微看下(64-69)不懂也没事
第三章
1、表上作业法中的最小元素法和伏格尔法(比最小元素法重要点)知道应用(79-83)
2、最优解的判别(闭回路法和位势法,位势法重要点)(83-86)
3、产销不平衡的调节方法(89-91)
第五章
1、分支定界法(115-118)
2、割平面法(118-121)
3、0-1型整数规划(122-126)
4、指派问题(126-131)
第八章
1、掌握整数规划的基本概念(193-195)
2、求最优解(如最短路线等)的方法(196-200)
第九章
1、资源分配问题的解法(213-220)
2、生产与存储问题的解法(224-233)
3、背包问题的解法(233-236)
第十章
1、了解基本概念(254-268)
2、网络最大流问题的解法(268-274)
3、最小费用最大流的问题解法(274-276)
4、中国邮递员问题的解法(276-280)
第十一章
重点掌握
第十三章
第十五章
询问以前考过同学的意见,其中的第一、二、五、十、十一章是出大题的章节,大家注意下
仅个人观点,大家就参考下吧。
有什么问题都可以找我。
单纯形算法原理与计算步骤详解单纯形算法是一种常用于线性规划问题求解的优化算法,其基本思想是通过不断迭代改变可行解,使目标函数值逐渐趋近最优解。
本文将详细介绍单纯形算法的原理和计算步骤。
一、单纯形算法原理单纯形算法基于以下原理:假设存在一个线性规划问题,其中目标函数需要最小化,约束条件为一组线性等式和不等式。
算法通过在可行域内循环改变基变量,以求得最优解。
算法的基本思想是从初始可行解出发,不断迭代地转移到更优的解,直到找到最优解。
单纯形算法的迭代过程中,每一次迭代都会选择一个非基变量进行转移,使目标函数值逐步减小。
二、单纯形算法的计算步骤下面将详细介绍单纯形算法的计算步骤,以帮助读者更好地理解该算法。
1. 初始化阶段在初始化阶段,需要将线性规划问题转化为标准型,并找到初始可行解。
标准型的要求是:目标函数为最小化,约束条件为等式和非负约束。
2. 检验阶段在检验阶段,需要进行基变量的选择和检验是否达到最优解。
首先选择一个入基变量,该变量的选择通常基于某些准则,如最大增量准则、最小比率准则等。
3. 转换阶段在转换阶段,需要进行基变量的转换,使目标函数值不断减小。
通过将选定的入基变量与已有的基变量组成一个新的基,进而得到新的可行解。
在转换过程中,还需要进行非基变量的选择和计算。
选择一个出基变量,使得目标函数值减小的幅度最大。
然后,通过高斯消元法计算出相应的新基。
4. 终止判断阶段在每次迭代后,都需要判断是否已达到最优解或存在无界解。
如果目标函数不能减小或者无界,则算法终止。
否则,返回检验阶段继续迭代。
5. 结果输出阶段当算法终止时,需要输出最优解以及最优解对应的目标函数值。
三、单纯形算法的优化尽管单纯形算法是一种常用的线性规划求解方法,但在某些情况下,其迭代次数可能会非常大。
为了优化算法效率,可以采用以下方法:1. 人工变量法当初始可行解需要引入人工变量时,可以通过人工变量法来优化算法。
该方法通过对目标函数引入人工变量,并对目标函数进行最小化,从而减少迭代次数。
运筹学单纯形法讲解一、单纯形法基本概念在运筹学中,单纯形法是一种在给定点搜索可行解集合的一种技术。
设有m个点x、 y、 z分布在两点P、 Q,它们是相互独立的,这样的点组成了单纯形。
单纯形是可以用于求解最优化问题的一种简单的对象,因而又称为对象或对象群。
由单纯形求出的最优解就叫做单纯形的最优解。
在实际应用中,一般用来求最优解的都是单纯形。
二、单纯形法适用条件和范围在运筹学中,单纯形法常用于求解线性规划、非线性规划和整数规划等,还可以求解网络的流量、质量等。
但当运输问题用单纯形法求解时,解不存在,无最优解,也无单纯形。
非线性规划只能得到对象最优解。
三、单纯形法具体步骤和算法介绍1、明确问题的目标。
2、计算出所有解,按确定的先后顺序排列。
3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。
四、单纯形法的误差和精度1、明确问题的目标。
一般在最优化问题中,用最小值对准目标是最理想的,但是在实际工程应用中,人们往往要求越多越好,甚至有时只要求几个较小的值。
但要注意所得结果的可靠性和正确性,也要尽可能减少计算过程中的误差。
2、计算出所有解,按确定的先后顺序排列。
首先,找出最优解,再在这个最优解附近寻找另外的比最优解更好的最优解,直到所有点都达到满意的精度。
这种方法称为“穷举法”。
穷举法通常用于没有更好的方法时,常用于工程实际中。
3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。
4、单纯形法的误差:由于人们认识上的错误或操作不当造成的,如排除法的计算次数与数据采集次数之比,以及采样值的平均数与真值之比,与取值的个数有关,与取值的精度也有关,必须合理确定取值范围。
5、单纯形法的精度:根据问题的规模,计算数据量和计算次数,反复调整取值点,改进计算方法,从而得到尽可能高的精度。
单纯形法的精度可达0.01或0.05。
单纯形法求最优解问题题目(老师布置的那道作业题):2153max x x f +=,其中⎪⎪⎩⎪⎪⎨⎧=≥=++=+=+5,4,3,2,1,0182312245214231j x x x x x x x x j ,求2153max x x f +=的最大值。
这张表是根据题目画的,Cj (行向量)为5432100053max x x x x x f ++++=中各个变量的系数,Ci (列向量)为与X B (列向量)相对应的各项的系数,X B 称为基变量(3列,由题目中的方程个数决定),起初的基变量由构造的变量x3、x4、x5组成,b 为对应三个方程等式右边的常数,z j 为Ci 各列与xj 各列乘积的和,如z1=0*1+0*0+0*3=0。
i θ为判别将哪个基变量换出的依据,根据c j -z j 为正,要先将x2换入XB 中,关键是判断x3、x4、x5哪个跟x2换,这就要根据各列各列除以2x B i X =θ,与所得的最小的i θ对应的XB 换,如上表可知x2跟x4换,换完之后注意原来x4所对应的列向量为[0 1 0]T ,故要将x2所对应的列向量变换为为[0 1 0]T ,注意b 也要跟着变化,于是得下表.由上表知c 1-z 1=3>0,故仍需将x1换入XB 中,用各列各列除以2x B i X =θ,与所得的最小的i θ对应的XB 换,结合i θ可知,x1跟x5换,于是得下表。
由上表可知c j -z j 均非正,故5432100053max x x x x x f ++++=取最大值时,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=00662x ,对应的最大值36max =f .系统工程导论知识点整理:系统是由相互作用和相互依赖的若干组成部分(要素)结合的具有特定功能的有机整体。
系统的特征:整体性、相关性、目的性、环境适应性。
系统的功能是指系统与外部环境相互作用所反映的能力。
结构是功能的内在根据,功能是结构的外在表现。
单纯形法求最优解问题
题目(老师布置的那道作业题):2153m ax x x f +=,其中
⎪⎪⎩
⎪⎪⎨
⎧=≥=++=+=+5,4,3,2,1,0182312245214
231j x x x x x x x x j ,求2153m ax x x f +=的最大值。
这张表是根据题目画的,Cj (行向量)为5432100053m ax x x x x x f ++++=中各个变量的系数,Ci (列向量)为与X B (列向量)相对应的各项的系数,X B 称为基变量(3列,由题目中的方程个数决定),起初的基变量由构造的变量x3、x4、x5组成,b 为对应三个方程等式右边的常数,z j 为Ci 各列与xj 各列乘积的和,如z1=0*1+0*0+0*3=0。
i θ为判别将哪个基变量换出的依据,根据c j -z j 为正,要先将x2换入XB 中,关键是判断x3、x4、x5哪个跟x2换,这就要根据各列各列除以2x B i X =θ,与所得的最小的i θ对应的XB 换,如上表可知x2跟x4换,换完之后注意原来x4所对应的列向量为[0 1 0]T ,故要将x2所对应的列向量变换为为[0 1 0]T ,注意b 也要跟着变化,于是得下表.
由上表知c 1-z 1=3>0,故仍需将x1换入XB 中,用各列各列除以2x B i X =θ,与所得的最小的i θ对应的XB 换,结合i θ可知,x1跟x5换,于是得下表。
由上表可知c j -z j 均非正,故5432100053m ax x x x x x f ++++=取最大值时,⎥⎥⎥⎥⎥
⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎣⎡=00662x ,
对应的最大值36max =f .
系统工程导论知识点整理:
系统是由相互作用和相互依赖的若干组成部分(要素)结合的具有特定功能的有机整体。
系统的特征:整体性、相关性、目的性、环境适应性。
系统的功能是指系统与外部环境相互作用所反映的能力。
结构是功能的内在根据,功能是结构的外在表现。
系统功能的特性:易变性、相关性。
系统工程就是用科学的方法规划和组织人力、物力、财力,通过最优途径的选择,使人们的工作在一定期限内收到最合理、最经济、最有效的效果。
科学的方法:从整体观念出发,通盘筹划,合理安排整体中的每一个局部,以求得整体的最优规划、最优管理和最优控制,使每个局部都服从一个整体目标,力求避免资源的损失和浪费。
系统工程方法论的基本原则:整体性、有序相关、目标优化、动态性、分解综合、创造思维。
系统工程三维结构:时间维、逻辑维和知识维。
系统预测的分类:定性、定量、组合预测。
回归分析法包括:一元线性回归法、多元线性回归和非线性回归法。
非线性回归模型:
(1)多项式曲线回归模型
2cx bx a y ++=,令x x =1,22x x =,原式变为21cx bx a y ++=;
(2)双曲线模型 ①b x a x bx a y +=+=,令x
z 1
=,则b az y += ②bx
a x
y +=
,则b x a x bx a y +=+=
1,b x a y +=ˆˆ (3)幂函数模型
b ax y =,则x b a ax y b ln ln ln ln +==,令y y
ln ˆ=,x x ln ˆ=
线性规划三要素:决策变量、目标函数、约束条件
网络图的基本要素有工作、事项、工时和目标,其中工作需要消耗一定的资源,事项既不消耗资源,也不占用时间。
在网络图的所有线路中,路长最大的线路称为关键线路(也称临界线路、主要矛盾线路)。
网络图的编绘需要经过三个步骤:任务的分解分析、画网络图和事项编号。
系统评价的评价原则: 要保证评价具有一定的客观性;要保证方案的可比性;评价指标要成体系。
常用的系统评价方法:单项评价法、经济评价方法。
大题目我估计有以下几个题目必考: 线性规划模型转化为标准型问题 单纯形表问题
根据网络分析明细表画网络图。