度量空间与连续映射
- 格式:pdf
- 大小:321.14 KB
- 文档页数:26
度量空间:把距离概念抽象化,对某些一般的集合引进点和点之间的距离,使之成为距离空间,这将是深入研究极限过程的一个有效步骤。
泛函分析中要处理的度量空间,是带有某些代数结构的度量空间,例如赋范线性空间,就是一种带有线性结构的度量空间。
一、度量空间的进一步例子1、度量空间设x 是一个集合,若对于x 中任意两个元素x,y ,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1° 的充要条件为x=y2° 对任意的z 都成立,则称 d(x,y) 是 x,y 之间的距离,称 d(x,y)为度量空间或距离空间。
x 中的元素称为点。
2、常见的度量空间(1)离散的度量空间 设 x 是任意的非空集合,对 x 中的任意两点 ,令 称 为离散的度量空间。
(2)序列空间S令S 表示实数列(或复数列)的全体,对S 中的任意两点令 称 为序列空间。
(3)有界函数空间B(A )设A 是一个给定的集合,令B(A)表示A 上有界实值(或复值)函数全体,对B(A)中任意两点x,y ,定义 (4)可测函数空间设M(X)为X 上实值(或复值)的勒贝格可测函数全体,m 为勒贝格测度,若 ,对任意两个可测函数 及 由于 ,所以这是X 上的可积函数。
令 (5)C[a,b]空间令C[a,b] 表示闭区间[a,b]上实值(或复值)连续函数全体,对 C[a,b]中任意两点x,y ,定义二、度量空间中的极限、稠密集、可分空间1、收敛点列设 是(X ,d )中点列,如果存在 ,使 则称点列 是(X ,d ) 中的收敛点列,x 是点列 的极限。
收敛点列性质:(1)在度量空间中,任何一个点列最多只有一个极限,即收敛点列的极限是唯一的。
(2)M 是闭集的充要条件是M 中任何收敛点列的极限都在M 中。
(,)0,(,)0d x y d x y ≥=(,)(,)(,)d x y d x z d y z ≤+,x y X ∈1,(,)0,if x y d x y if x y ≠⎧=⎨=⎩(,)X d 1212(,,...,,...),(,,...,,...),n n x y ξξξηηη==1||1(,)21||i i i i i i d x y ξηξη∞=-=+-∑(,)S d (,)sup |()()|t A d x y x t y t ∈=-()m X <∞()f t ()g t |()()|11|()()|f tg t f t g t -<+-|()()|(,)1|()()|X f t g t d f g dt f t g t -=+-⎰(,)max |()()|a t b d x y x t y t ≤≤=-{}n x x X ∈lim (,)0n n d x x →∞={}n x {}n x2、收敛点列在具体空间中的意义(1)n 维欧式空间中:为 中的点列,即: 按欧式距离收敛于x 的充要条件是 依坐标收敛于(2)序列空间S 中:为 S 中的点列,(3)C[a,b]空间设 及X 分别为C[a,b] 中的点列及点,(4)可测函数空间M(X)设 及 f 分别为可测函数空间中的点列及点,3、稠密集,可分空间(1)设X 是度量空间,E 和M 是X 中的两个子集,令 表示M 的闭包,如果 ,那么称集M 在集E 中稠密。
第二章 拓扑空间与连续映射本章是点集拓扑学基础中之基础, 从度量空间及其连续映射导入一般拓扑学中最基本的两个概念: 拓扑空间、连续映射, 分析了拓扑空间中的开集、邻域、聚点、闭集、闭包、内部、边界、基与子基的性质,各几种不同的角度生成拓扑空间,及刻画拓扑空间上的连续性.教材中先介绍度量空间概念,由于刚刚结束泛函分析课程,所以此节不讲,而补充如下内容。
§ 2-1 数学分析中对连续性的刻画由于映射的连续性是刻画拓扑变换的重要概念,所以,我们先回顾一下数学分析中函数的连续性是如何刻画的。
设11:f E E →是一个函数,10x E ∈,则f 在0x 处连续的定义有如下几种描述方法:(1)序列语言若序列1,2,{}n n x = 收敛于0x ,则序列1,2,{()}n n f x = 收敛于0()f x ;(2)εδ-语言对于0ε∀>,总可以找到0δ>,使当0x x δ-<时,有0()()f x f x ε-<(3)邻域语言若V 是包含0()f x 的邻域(开集),则存在包含0x 的邻域U ,使得()f U V ⊂。
解释:(1)和(2)中用到距离的概念,可用于度量空间映射连续性的描述; 对于没有度量的场合,可以用(3)来描述;所谓拓扑空间就是具有邻域(开集)结构的空间。
§ 2-2 拓扑空间的定义一、 拓扑的定义注:这是关于拓扑结构性的定义定义1 设X 是一非空集,X 的一个子集族2Xτ⊆称为X 的一个拓扑,若它满足(1),X τ∅∈;(2)τ中任意多个元素(即X 的子集)的并仍属于τ;(3) τ中有限多个元素的交仍属于τ。
集合X 和它的一个拓扑τ一起称为一个拓扑空间,记(,)X τ。
τ中的元素称为这个拓扑空间的一个开集。
下面我们解释三个问题:(1)拓扑公理定义的理由; (2) 为什么τ中的元素称为开集;(3) 开集定义的完备性。
● 先解释拓扑定义的理由:① 从εδ-语言看:0x x δ-<和0()()f x f x ε-<分别为1E 上的开区间;② 从邻域语言看:,U V 是邻域,而()f U 是0()f x 的邻域,连续的条件是()f U V ⊂,即一个邻域包含了另一个邻域,也就是说,0()f x 是V 的内点,有内点构成的集合为开集。
定理:定义在度量空间的开子集上的函数,连续⇔开集的逆象是开集。
证明:设X 、Y 是度量空间,A 是X 的开子集,设有映射:f A Y →。
(1)充分性:设映射:f A Y →连续,需证开集的逆象是开集。
设S 是Y 的任一开子集,并设S 的逆象是()1R f S -=。
任取x R ∈,那么()f x S ∈。
因为A 是开集,所以存在正数x σ使得(),x U x A σ⊆。
因为S 是开集,所以存在正数x ε使得()(),x U f x S ε⊆。
因为:f A Y →是连续映射,故存在正数x τ使得()()()(),,x x f U x A U f x S τε⋂⊆⊆。
设{}min ,x x x δστ=,那么()(),,x x U x U x A δσ⊆⊆且()(),,x x U x U x δτ⊆,所以()()()()()()()(),,,,x x x x f U x f U x A f U x A U f x S δδτε=⋂⊆⋂⊆⊆,那么(),x U x R δ⊆。
所以S 的逆象()1R f S -=是开集。
(2)必要性:设开集的逆象是开集,需证映射:f A Y →连续。
任取x A ∈。
任取正数x ε,设()(),x S U f x ε=,显然S 是Y 的开子集。
设S 的逆象是()1R f S -=,那么R 是开集,所以存在正数x δ使得(),x U x R δ⊆ 。
因为()1R f S -= ,所以 ()()(),x f R S U f x ε⊆= 。
又因为(),x U x R δ⊆,所以()()()()(),,x x f U x f R S U f x δε⊆⊆= 。
所以映射:f A Y →连续。
附录:1.利用以上定理可得到判定集合开闭的一种方法。
主要针对x:f(x)<c 和x:f(x)≦c 这类。
其中f 是连续的。
2.象与逆象的概念:设X 、Y 是非空集合,:f X Y →是X 到Y 的映射。
第2章 度量空间与赋范线性空间度量空间在泛函分析中是最基本的概念。
事实上,它是n 维欧几里得空间n R 的推广,它为统一处理分析学各分支的重要问题提供了一个共同的基础。
它研究的范围非常广泛,包括了在工程技术、物理学、数学中遇到的许多很有用的函数空间。
因而,度量空间理论已成为从事科学研究所不可缺少的知识。
2.1 度量空间的基本概念 2.1.1 距离(度量)空间的概念在微积分中,我们研究了定义在实数空间R 上的函数,在研究函数的分析性质,如连续性,可微性及可积性中,我们利用了R 上现有的距离函数d ,即对y x y x d R y x -=∈),(,,。
度量是上述距离的一般化:用抽象集合X 代替实数集,并在X 上引入距离函数,满足距离函数所具备的几条基本性质。
【定义2.1】 设X 是一个非空集合,),(∙∙ρ:[)∞→⨯,0X X 是一个定义在直积X X ⨯上的二元函数,如果满足如下性质:(1) 非负性 y x y x y x X y x =⇔=≥∈0,(,0),(,,ρρ; (2) 对称性 ),(),(,,x y y x X y x ρρ=∈(3) 三角不等式 ),(),(),(,,,y z z x y x X z y x ρρρ+≤∈;则称),(y x ρ是X 中两个元素x 与y 的距离(或度量)。
此时,称X 按),(∙∙ρ成为一个度量空间(或距离空间),记为),(ρX 。
注:X 中的非空子集A ,按照X 中的距离),(∙∙ρ显然也构成一个度量空间,称为X 的子空间。
当不致引起混淆时,),(ρX 可简记为X ,并且常称X 中的元素为点。
例2.1 离散的距离空间设X 是任意非空集合,对X 中任意两点,,x y X ∈令1 (,)0 x yx y x y ρ≠⎧=⎨=⎩显然,这样定义的),(∙∙ρ满足距离的全部条件,我们称(,)X ρ是离散的距离空间。
这种距离是最粗的。
它只能区分X 中任意两个元素是否相同,不能区分元素间的远近程度。