第二章 赋范线性空间-黎永锦
- 格式:doc
- 大小:2.61 MB
- 文档页数:34
泛函分析第2章度量空间与赋范线性空间泛函分析是数学中的一个重要分支,研究函数空间上的函数和运算的性质。
在泛函分析中,度量空间和赋范线性空间是两个基本的概念。
本文将介绍这两个概念以及它们的性质。
度量空间是一个集合X,其中定义了一个度量函数d:X×X→R,满足以下条件:1.非负性:对于任意的x,y∈X,有d(x,y)≥0,且当且仅当x=y时,d(x,y)=0;2.对称性:对于任意的x,y∈X,有d(x,y)=d(y,x);3.三角不等式:对于任意的x,y,z∈X,有d(x,y)≤d(x,z)+d(z,y)。
度量函数d可以看作是度量空间X中点之间的距离,由其性质可以推导出许多重要结论。
例如,由三角不等式的性质可以得出X中点列的收敛性质,即对于度量空间X中的点列{x_n},如果存在x∈X,使得对于任意的ε>0,存在正整数N,当n≥N时,有d(x_n,x)<ε,那么称{x_n}收敛于x。
赋范线性空间是一个向量空间V,其中定义了一个范数函数∥·∥:V→R,满足以下条件:1.非负性:对于任意的x∈V,有∥x∥≥0,且当且仅当x=0时,∥x∥=0;2. 齐次性:对于任意的x∈V和实数a,有∥ax∥=,a,∥x∥;3.三角不等式:对于任意的x,y∈V,有∥x+y∥≤∥x∥+∥y∥。
范数函数∥·∥可以看作是赋范线性空间V中向量的长度或大小,具有度量空间的部分性质,如非负性和齐次性。
范数函数还满足一条重要的性质,即∥x+y∥≥,∥x∥-∥y∥,这被称为三角不等式强化定理。
度量空间和赋范线性空间都具有一些不同的性质和概念。
例如,度量空间中存在序列的收敛性质,而赋范线性空间中存在序列的收敛性质以及序列的Cauchy性质。
同时,度量空间和赋范线性空间都可以构建拓扑结构,使其成为一个拓扑空间。
在拓扑空间中,点列的收敛性质和序列的Cauchy性质是等价的。
此外,度量空间和赋范线性空间都是完备的,即满足序列的Cauchy 性质的序列都收敛于空间中的一些点。
第2章 赋范线性空间虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能 发生这样的情形:一定的虚构假设足以解释许多现象.Eurler L .(欧拉)(1707-1783,瑞士数学家)Schmidt E .在1908 年讨论由复数列组成的空间}||:){(12∞<∑∞=i i i z z 时引入记号||||z 来表示211)(∑∞=i ii z z ,||||z 后来就称为z 的范数.赋范空间的公理出现在Riesz F .在 1918 年关于],[b a C 上关于紧算子的工作中,但赋范空间的定义是在 1920到1922年间由 BanachS .(1892—1945)、H a h n H .(1879—1934)、H e l l y E .(1884—1943)和 Wiener N .(1894—1964)给出的,其中以Banach S .的工作最具影响.2.1赋范空间的基本概念线性空间是Pea n o Giu sep p e 在1888年出版的书Geometrical Calculus 中引进的.Banach S .在1922年的工作主要是建立具有范数的完备空间,以后为了纪念他称之为Banach 空间.他定义的空间满足三组公理,第一组公理定义了线性空间,第二组定义了范数,第三组给出了空间的完备性.定义K R C ,X 是数域K 上的线性空间,若||||⋅是X 到R 的映射,且满足下列条件: (1) 0||||≥x 且0||||=x 当且仅当0=x ; (2) ||||||||||x x λλ=,对任意X x ∈和任意K ∈λ ; (3) ||||||||||||y x y x +≤+,对任意X y x ∈, .则称||||⋅为X 上的范数,而||||x 称为x 的范数,这时称||)||,(⋅X 为赋范线性空间.明显地,若||)||,(⋅X 为赋范线性空间,则对任意X y x ∈,,定义||||),(y x y x d -=时,),(d X 为度量空间,但对一般的度量空间),(d X ,当X 为线性空间时,若定义)0,(||||x d x =,则||||x 不一定就是X 上的范数.例s ,则明显地,s 为线性空间,对任意的s y x ∈,, 定义 则 但取)0,,0,1(0 =x ,210=λ,则 而 因此所以,)0,(0x d 不是s 上的范数.问题X d , 它满足什么条件时,)0,(||||x d x =才能成为范数?定理X ,d 是X 上的度量,在X 上规定)0,(||||x d x =,则X 成为赋范线性空间的条件是:(1))0,(),(y x d y x d -=,对任意X y x ∈, ;(2) )0,(||)0,(x d x d λλ=,对任意X x ∈和任意K ∈λ.下面举出赋范线性空间的一些例子.例}||,|){(11∞<∈=∑∞=i ii i xK x x l ,∑∞==1||||||i i x x 是1l 的范数, 即||)||,(1⋅l 是赋范线性空间.例∞<≤p 1,}||,|){(1∞<∈=∑∞=i p ii i p xK x x l 在范数下是赋范线性空间.例}||sup ,|){(∞<∈=∞i i i x K x x l ||sup ||||i x x = 例}0lim ,|){(0=∈=∞→i i i i x K x x c ||sup ||||i x x =例2.1.7}],[)(|)({],[上的连续函数为b a t x t x b a C =,在范数|)(|sup ||||t x x =下是赋范线性空间.由于赋范线性空间在度量||||),(y x y x d -=下是度量空间,因此,在度量所引入的序列收敛,开(闭)集、稠密和紧集等概念都可以在赋范线性空间中使用.定义X X x X x n ∈⊂0,}{, 若n x 依度量||||),(y x y x d -=收敛于0x , 即0||||lim 0=-∞→x x n n ,则称n x 依范数||||⋅收敛于0x ,记为在赋范线性空间中,仍然用}|||||{),(00r x x X x r x U <-∈=记以0x 为球心,r 为半径的开球,用}|||||{),(00r x x X x r x B ≤-∈=记以0x 为球心,r 为半径的闭球.为了方便,用}1|||||{=∈=x X x S X 记以0为球心,1为半径的闭单位球面. 用}1|||||{≤∈=x X x B X 记以0为球心,1为半径的闭单位球. 用}1|||||{<∈=x X x U X 记以0为球心,1为半径的开单位球.例Euclid 2R ,对于),(21x x x =可以定义几种不同的范数: 则对1),0,0(0==r x , 闭球)1,(0x B 在不同范数下的形状为:思考题||)||,(⋅X ,问开球),(0r x U 的闭包是否一定是闭),(0r x B ? 思考题||)||,(⋅X ,问闭球),(0r x B 内部是否一定是开球),(0r x U ? 在赋范线性空间中,加法与范数都是连续的.定理||)||,(⋅X 00,y y x x n n →→,则00y x y x n n +→+.证明 由||||||||||)()(||0000y y x x y x y x n n n n -+-≤+-+可知定理成立. 定理2.1.9 若||)||,(⋅X 是赋范空间,0x x n →,则||||||||0x x n →. 证明 由||||||||||||00x x x x n n +-≤和||||||||||||00n n x x x x +-≤,可知||||||||||||||00x x x x n n -≤-,因此||||||||0x x n →.定义||)||,(⋅X ,若),(0||||,}{∞→→-⊂n m x x X x n m n 时, 必有X x ∈,使0||||→-x x n , 则称||)||,(⋅X 为完备的赋范线性空间.根据M.]1928,,,[Paris Villars Gauthier abstraits Espaces Frechet -的建议,完备的赋范线性空间称为Banach 空间.不难证明,∞∞<≤l p l c R p o n),1(,,都是Banach 空间.在数学分析中,曾讨论过数项级数,函数项级数,类似地,在赋范线性空间中,也可定义无穷级数.定义||)||,(⋅X ,若序列}{}{21n n x x x S +++= 收敛于某个X x ∈时,则称级数∑∞=1n nx收敛,记为∑∞==1n nxx .定义||)||,(⋅X ,若数列||}||||||||{||21n x x x +++ 收敛时, 则称级数∑∞=1n nx绝对收敛.在数学分析中绝对收敛的级数一定是收敛的,但在赋范空间上却不一定成立,先来看看下面一个定理.定理||)||,(⋅X ,则||)||,(⋅X 是Banach 空间的充要条件为X 的每一绝对收敛级数都收敛.证明 设||)||,(⋅X 是Banach 空间,且∑∞=1n nx绝对收敛,则由∞<∑∞=1||||n nx可知,对于n n x x x S +++= 21,有)(0||||||||||||||||11∞→→++≤++=-+++++n x x x x S S p n n p n n n p n ,因此n S 是X 的Cauchy 列,由||)||,(⋅X 的完备性可知,存在X x ∈使x S n n =∞→lim ,即x xn n=∑∞=1反之,设X 的每一个绝对收敛级数都收敛,则对于X 的Cauchy 列n x ,对k k 21=ε,有 <<<<<+121k k n n n n , 使得因而+∞<-∑∞=+1||||1n n n k k x x.由假设可知+∞<-∑∞=+1)(1n n n k k x x收敛于某个X x ∈,即}{k n x 收敛x ,所以n x 必收敛于x ,从而||)||,(⋅X 完备.事实上,在实数空间R 中,正是由于R 的完备性才保证了绝对收敛级数一定是收敛的.定义||)||,(⋅X ,若X M ⊂是X 的线性子空间,则称||)||,(⋅M 为||)||,(⋅X 的子空间,若M 还是||)||,(⋅X 的闭集, 则称||)||,(⋅M 为||)||,(⋅X 的闭子空间.明显地,若||)||,(⋅X 是Banach 空间,M 为||)||,(⋅X 的闭子空间,则||)||,(⋅M 是Banach 空间,反之亦然.定理||)||,(⋅X Banach ,M 为||)||,(⋅X 的子空间,则||)||,(⋅M 是Banach 空间当且仅当M 是X 的闭集.证明 设||)||,(⋅X 是Banach 空间,当M x n ∈,且x x n →时,则}{n x 为M 的Cauchy 列,因而}{n x 收敛于 M 上的一点,故M x ∈,即M M ∈',所以M 是闭集.反之,设M x n ⊂}{为Cauchy 列,则}{n x 为 ||)||,(⋅X 的Cauchy 列,由于||)||,(⋅X 是Banach 空间,因此}{n x 是收敛列, 即存在X x ∈使x x n →,又由于M 是||)||,(⋅X 的闭子空间,因此M x ∈,即n x 在M 中收敛于x ,所以||)||,(⋅M 是Banach 空间.定义X ,p 为X 上的一个实值函数,且满足: (1) 0)0(=p ;(2) )()()(y p x p y x p +≤+,对任意X y x ∈,; (3) )(||)(x p x p λλ=,对任意X x ∈,任意K ∈λ.则称p 为X 上的半范数.明显地,X 上的范数一定是半范数,但对X 上的半范数p ,由于0)(=x p 时不一定有0=x ,因此半范数不一定是范数.例∞l ,定义||)(11x x p =,易证)(1x p 是∞l 中的半范数,但对于),,,,0(2 n x x x =,都有0)(1=x p ,因此p 不是∞l 的范数.有什么办法能使),(p X 中的问题转化为赋范空间中来解决呢?定义X ,M 是X 的线性子空间,若M x x ∈-21,则称1x 与2x 关于M 等价,记为)(~21M x x易知,等价具有下面的三个性质(1) x x ~(反射性);(2) y x ~推出 x y ~(对称性); (3) y x ~, z y ~ 推出z x ~(传递性).明显地,若M 是线性空间X 的线性子空间,记}),(~|{~M y M x y y x ∈=, 则~x 的全体在加法~~~y x y x +=+和数乘~~x x αα=下是线性空间,称为X 对模M 的商空间,记为M X /.在商空间M X /中,对M X =∈~0,0,即0是M X /的零元,而对M X /的每一元素~x ,~x 都是唯一确定的,并且对于加法和数乘都是唯一确定的.例}||sup |){(+∞<=∞i i x x l ,取}||sup ,0|){(1+∞<==i i x x x M ,则M 为∞l 的子空间,对M l y x /,∞∈,当~~y x =时有M y x ∈-,即011=-y x , 这时R M l ~/∞当||)||,(⋅X 为赋范线性空间,M 为X 的闭线性子空间时,在M X /商空间中还可以定义范数,使M X /成为赋范线性空间.定理||)||,(⋅X ,M 为X 的闭线性子空间,在M X /上定义范数}|||inf {||||||~~x y y x ∈=,则||)||,/(⋅M X 是赋范线性空间.利用上面的技巧,不难证明,当)(x p 为X 上的一个半范数时,取}|||inf{||||||},0)(|{~~x y y x x p x M ∈===,则||)||,/(⋅M X 是一个赋范线性空间,且对任意X x ∈有,)(||||~x p x =. 当X 是空备赋范线性空间,M 为X 的闭子空间的,M X /还具有完备性. 定理X Banach ,M 为X 的闭子空间,则M X /是Banach 空间.2.2 范数的等价性与有限维赋范空间在同一线性空间上,可以定义几种不同的范数,使之成为不同的赋泛线性空间,但有时X 上的几种不同范数诱导出的拓扑空间是一样的,有时却很不相同,这主要是X 上的序列依范数收敛的不同引起的.定义X ,1||||⋅和|2||||⋅是X 上的两个不同范数,若对X 中的序列}{n x ,当0||||10→-x x n 时,必有0||||20→-x x n ,则称范数1||||⋅比范数2||||⋅强,亦称2||||⋅比1||||⋅弱.若对X 中的序列}{n x ,0||||10→-x x n 当且仅当0||||20→-x x n 则称范数1||||⋅与2||||⋅等价.定理1||||⋅2||||⋅X ,则范数1||||⋅比2||||⋅强当且仅当存在常数0>C ,使得对任意X x ∈都有12||||||||x C x ≤.证明 若存在0>C ,使12||||||||x C x ≤,则明显地0||||1→-x x n 时,有0||||||||12→-≤-x x C x x n n ,因而1||||⋅比2||||⋅强.反过来,若范数1||||⋅比2||||⋅强,则必有0>C ,使12||||||||x C x ≤.若不然,则对任意自然数n ,存在X x n ∈,使12||||||||n n x n x >. 令2||||n nn x x y =,则故0||0||1→-n y ,因而0||0||2→-n y ,但这与1||||||||||0||222==-n n n x x y 矛盾,所以必存在0>C ,使12||||||||x C x ≤,对任意X x ∈成立.推论1||||⋅2||||⋅X ,则范数1||||⋅与2||||⋅等价当且仅当存在常数0,021>>C C ,使得对任意X x ∈,有推论1||||⋅2||||⋅X ,则)||||,(1⋅X 是Banach 空间当且仅当)||||,(2⋅X 是Banach 空间. 思考题1||||⋅2||||⋅X ,且)||||,(1⋅X 和)||||,(2⋅X 都是Banach 空间,是否就一定有1||||⋅与2||||⋅等价呢?定义X n ,||||⋅是X 上的范数,则称||)||,(⋅X 为n 维赋范线性空间.有限维赋范线性空间是Minkowski 在1896年引入的,因此有限维赋范线性空间也称为Minkowski 空间.若||)||,(⋅X 为n 维线性空间,n e e e ,,,21 为X 的一组线性无关组,则称n e e e ,,,21 为||)||,(⋅X 的Hamel 基,此时对任意X x ∈,x 都可以唯一地表示成∑==nn i i e x 1α定理||)||,(⋅X n n e e e ,,,21 X Hamel ,则存在常数1C 及02>C 使得 对任意∑==nn i i e x 1α都成立.证明 对于任意ni K ∈=)(αα,定义函数 则对任意ni K ∈=)(αα,ni K ∈=)(ββ,有 这里2121)||||(∑==nn ieM ,因此f 是n K 到R 的连续函数.由于n K 的单位球面}1)||(|){(2112=∈=∑=ni ini K S αα是紧集,因此f 在S 上达到上下确界,即存在S i i ∈==)(),()0(0)0(0ββαα,使得 因此对任n i K ∈=)(αα,有 故 即下面证明01>C ,容易知道02>C 的证法是类似的.假设01=C ,则有0||||)(1)0(0==∑=nn i i e f αα,故 由}{i e 是X 的Hamel 基可知,0)0(=i α,从而00=α,但这与S ∈0α矛盾.定理X ,1||||⋅与2||||⋅是X 上的两个范数,则存在常数01>C ,02>C 使得 定理Banach证明 若}{m x 为n 维赋范线性空间||)||,(⋅X 的Cauchy 列,则对于X 的Hamel 基n e e e ,,,21 有i ni m im e x ∑==1)(α,由可知}{)(m i α亦为Cauchy 列,故存在R i ∈α,使得i m iαα→)(,因而有)(i αα=,使得令i ni ie x ∑==1α,则0||||→-x x m ,因此}{m x 是收敛序列,所以X 是完备的.在nR 中,M 是列紧的当且仅当M 是有界闭集,在有限维赋范空间中是否成立呢?下面就来讨论有限维赋范线性空间||)||,(⋅X 中紧集与有界闭集的关系.定理||)||,(⋅X ,则X M ⊂是紧的当且仅当M 是有界闭集.证明 设n e e e ,,,21 为||)||,(⋅X 的Hamel 基,则对任意X x ∈,有i ni ie x ∑==1α定义nK 到X 的算子T : 则存在0,021>>C C ,使得从而T 是nK 到X 的连续算子,且是一一对应的.由||)(||)||(21121ααT C ni i≤∑=可知1-T 是X 到n K 的连续算子, 因此T 是n K 到X 的拓扑同构.所以M 的紧集当且仅当)(1M T -为nK 的紧集,从而M 是X 的紧集当且仅当M 是有界闭集.问题||)||,(⋅X ,则X 是否一定为有限维的赋范线性空间?为了回答上面的问题,先来讨论Riesz 引理,这是Riesz F .在1918年得到的一个很漂亮的结果.引理Riesz M ||)||,(⋅X ,则对任意 10<<ε,存在1,=∈εεx X x ,使得 对任意M x ∈成立.证明 由于M 是X 的闭真子空间,因此≠M X \φ,故存在M X y \0∈,令}|||inf{||),(00M x x y M y d d ∈-==,则0>d .对任意10<<ε,由d 的定义可知,存在M x ∈0,使得令||||0000x y x y x --=ε,则1||||=εx ,且对任意M x ∈,有由M x ∈0,M x ∈和M 是线性子空间,可知 因此 故由Riesz 引理,容易得到有限维赋范线性空间特征的刻画.定理||)||,(⋅X X }1|||||{≤=x x B X证明 明显地,只须证明X B 是紧的时候,X 一定是有限维的.反证法,假设X B 是紧的,但X 不是有限维赋范线性空间,对于任意固定的,1X x ∈1||||1=x ,令}|{}{111K x x spanM ∈==λλ,则1M 是一维闭真子空间,取21=ε,由Riesz 引理可知,存在1||||,22=∈x X x 且21||||2≥-x x 对任意1M x ∈成立,从而21||||12≥-x x . 同样地,令},{212x x span M =,则2M 是二维闭真空子空间,因而存在1||||,33=∈x X x ,使21||||3≥-x x 对任意2M x ∈成立,从而21||||13≥-x x 且21||||23≥-x x . 利用归纳法,可得一个序列X n B x ⊂}{,对任意n m ≠,有因而}{n x 不存在任何收敛子序列,但这与X B 是紧集矛盾,由反证法原理可知X 是有限维赋范线性空间.推论X X对于无穷维赋范线性空间X 的紧集的刻画,就比较困难.在]1,0[C 中,容易看出]1,0[}1|)(||)({C x f x f A ⊂≤=是]1,0[C 的有界闭集,但不是紧集.为了讨论]1,0[C 子集的紧性,需要等度连续的概念,它是由Ascoli 和Arzelà同时引入的.定义]1,0[C A ⊂,若对任意的0>ε,都存在0>δ,使得对任意的A f ∈,任意的]1,0[,∈y x ,δ<-||y x 时,一定有ε<-|)()(|y f x f ,则称A 是等度连续的.Ascoli 给出了]1,0[C A ⊂是紧的充分条件,Arzelà在1895年给出了]1,0[C A ⊂是紧的必要条件,并给出了清楚的表达.定理 (Arzel à-Ascoli 定理) 设]1,0[C A ⊂,则是紧的当且仅当A 是有界闭集,且A 是等度连续的.2.3 Schauder 基与可分性一个Banach 空间,如果想把它看作序列空间来处理,最好的办法是引入坐标系,常用的方法是引入基的概念,Schauder 基是-Fun in stetiger Theorie Zur SchauderJ [. .]6547.)1927(26,,-pp t Zeitschrif che Mathematis men ktionalrau 引入的.定义Banach ||)||,(⋅X }{n x X Schauder ,若存在对于任意X x ∈,都存在唯一数列K a n ⊂}{,使得容易看到,有限维赋范线性空间一定具有Schauder 基.例1l ),0,1,0,,0( =n e ,则}{n e 为1l 的Schauder 基,明显地,在)01(,,0∞<<p l c c 中,}{n e 都是Schauder 基.Schauder J .在1928年还在]1,0[C 中构造一组基,因而]1,0[C 也具有Schauder 基.具有Schauder 基的Banach 空间具有许多较好的性质,它与Banach 空间的可分性有着密切联系.定义||)||,(⋅X ,若存在可数集X M ⊂,使得X M =,即可数集在X 中稠密,则称X 是可分的.若||)||,(⋅X 可分,则存在可数集X x n ⊂}{,使得对任意X x ∈及任意0>ε,都有某个}{n n x x ∈ε,满足εε<-||||x x n .例Q ,且R =,因此R 是可分的.类似地,nR 也是可分的赋范空间. 例p l p ,1+∞<≤,因为取时,使得存在N i N x M i >=,|){(},,0都是有理数时并且i i x N i x <=,则M 是可数集,并且p l M =.实际上,对任意p l x ∈,由+∞<∑∞=pi pi x 11)||(可知,对任意0>ε,存在N ,使得2||1pN i pix ε<∑∞+=, 取有理数N q q q ,,21,使2||1pNi pi i x q ε<-∑=,则M q q q x N ∈=)00,,,(21 ε,且εε<+-≤-∑∑∞+==pN i p iNi p i i xx q x x 111)||||(,因此p l M =,所以p l 是可分的.例],[b a C x ∈,必有多项式0→-x p n ,取M 为],[b a 上有理系数的多项式全体,则M 是可数集,且],[b a C M =,因而],[b a C 是可分的赋范线性空间.定理||)||,(⋅X Schauder ,则X 一定可分的. 证明 为了简明些,这里只证明||)||,(⋅X 为实的情形.设}{i e 为X 的Schauder 基,则任意X x ∈有∑∞==1i ii ea x ,这里R a i ∈.令},|{1Q q N n eq M i ni ii ∈∈=∑=,则M 是可数集,且对任意X x ∈及任意0>ε,存在M x ∈ε,使得εε<-x x ,因此X M =,所以M 为可分的赋范空间.对于复赋范空间||)||,(⋅X ,可令},,|)({1Q pq N n e ip q M iini iii∈∈+=∑=,证明是类似的.问题Schauder例∞l Schauder由于∞l 不可分,因而一定没有S c h a u d e r 基.事实上,假设∞l 可分,则存在∞∈=l x x m im )()(,使得}{m x X =.令则211||sup )0(=+≤i x ,即∞∈=l x x i)()0(0,并且所以}{m x 不存在任何收敛子列收敛于0x ,故}{0m x x ∉,从而}{m x X ≠,但这与假设}{m x l =∞矛盾,因此∞l 不可分.另外,还再进一考虑下面的问题:问题Schauder上面问题自从S. Banach 在1932年提出后,很多数学家为解决这一问题做了很多的努力,由于常见的可分Banach 空间,如10,l c 等都具有Schauder 基,因此大家都以为问题的答案是肯定的,但所有的努力都失败了,大家才倾向于问题的答案是否定的.Enflo P .在1972年举出了一个例子,它是可分的赋范空间,但不具有Schauder 基[A counterexample to the approximation problem in Banach spaces. Acta Math. 130(1973),309-317.]2.4线性连续泛函与Banach Hahn -定理Banach S .1929年引进共轭空间这一重要概念,这也就是赋范线性空间上的全体有界线性泛函组成的线性空间,在这个线性空间上取泛函在单位球面的上界为范数,则共轭空间是完备的赋范线性空间.Banach S .还证明了每一连续线性泛函是有界的,但最重要的是Banach S .和Hahn H .各自独立得到的一个定理,这就是泛函分析中最著名的基本定理,即Banach Hahn -定理,它保证了赋范线性空间上一定有足够多的连续线性泛函.泛函这名称属于Hadamard ,他是由于变分问题上的原因研究泛函.定义||)||,(⋅X ,f 为X 到K 的映射,且对于任意X y x ∈,及K ∈βα,,有 则称f 为X 的线性泛函.例∞l ,若定义1)(x x f =,则f 为∞l 上的线性泛函.由于线性泛函具有可加性,因此,线性泛函的连续性比较容易刻画.定理f ||)||,(⋅X ,且f 在某一点X x ∈0上连续,则f 在X 上每一点都连续.证明 对于任意X x ∈,若x x n →,则由f 在0x 点的连续性,因此所以)()(x f x f n →,即f 在x 点连续.这个定理说明,要验证泛函f 的连续性,只须验证f 在X 上某一点(例如零点)的连续性就行了.问题X ,X 上任意线性泛函都连续?例n R事实上令)0,0,1,0,0( =i e ,则任意nR x ∈,有∑==ni i i e x x 1,设0,→∈m nm x R x ,则∑==ni i m im e x x 1)(,且0)(→m ix 对任意i 都成立.因此)0(0)()()(1)(1)(f e f x e x f x f ni i m ini i m i m =→==∑∑==,所以f 在0点连续,从而f 在n R 上任意点都连续.定义X X K ,则称f 为有界线性泛函,否则f 为无界线性泛函.定理f ||)||,(⋅X ,则f 是有界的当且仅当存在0>M ,使|||||)(|x M x f ≤.证明 若存在0>M ,使得对任意|||||)(|,x M x f X x ≤∈,则对于X 中的任意有界集F ,有0>r ,使得对任意F x ∈,有r x ≤||||,因此,Mr x M x f ≤≤|||||)(|对所有F x ∈成立,所以)(F f 为K 的有界集,即f 为有界线性泛函.反之,若f 为有界线性泛函,则f 把X 的单位球面}1|||||{)(==x x X S 映为K 的有界集,因此存在0>M ,使得对一切1||||=x ,有 故对任意X x ∈,有 所以例)(|){(i i x x c =,范数||sup ||||i x x =,若定义f 为i i x x f ∞→=lim )(,则f 为c 上的线性泛函,由于||sup ||||i x x =,因此 所以f 为c 上的有界线性泛函.对于赋范线性空间的线性泛函而言,有界性与连续性是等价的,Banach S .在1929年证明了每一个连续可加泛函(线性连续泛函)都是有界的.定理X ,则X 上的线性泛函是连续的当且仅当f 是有界的.证明 若f 是有界的,则由上面定理可知存在0>M ,使得|||||)(|x M x f ≤,因此当x x n →时,有)()(x f x f n →,即f 为连续的.反之,假设f 为连续线性泛函,但f 是无界的,则对任意自然数n ,存在X x n ∈,使得 令0,||||0==y x n x y n nn ,则01||||0→=-ny y n ,由f 的连续性可知)()(0y f y f n →,但1||||)()(>=n n n x n x f y f ,0)(0=y f ,从而 1|)()(|0>-y f y f n ,但这与)()(0y f y f n →矛盾.所以f 为连续线性泛函时,f 一定是有界的.线性泛函的连续性还可以利用f 的零空间是闭集来刻画.定理X ,则X 上的线性泛函是连续的当且仅当}0)(|{)(==x f x f N 为X 的闭线性子空间.证明 明显地)(f N 为线性子空间,因此只须证)(f N 是闭的.若f 是连续线性泛函,则当x x f N x n n →∈),(时,必有)()(x f x f n →,因而0)(=x f ,即)(f N x ∈,所以)(f N 是闭子空间.反之,若)(f N 是闭的,但f 不是有界的,则对于任意正整数n ,有X x n ∈,使 令||||n nn x x y =,则1||||=n y ,且n y f n >|)(|. 取)(,)()(11011y f yz y f y y f y z n n n -=-=, 由于因而0z z n →,且0))()(()(11=-=y f yy f y f z f n n n ,即)(f N z n ∈,从而由)(f N 是闭集可知)(0f N z ∈,但这与1)(0-=z f 矛盾,因此当)(f N 是闭子空间时,f 一定是连续的. 从上面的讨论容易看出,X 上的全体连续线性泛函是一个线性空间,在这个线性空间上还可以定义其范数.定义f X ,则称 为f 的范数.明显地,若记X 上的全体线性连续泛函为*X ,则在范数||||f 下是一赋范空间,称之为X 的共轭空间.虽然Hahn H .在1927年就引起了共轭空间的概念,但Banach S .在1929年的工作更为完全些.容易看出,对于任意X f ∈,还有|)(|sup |)(|sup ||||1||||1||||x f x f f x x ≤===.但对于具体的赋范空间X ,要求出X 上的连续线性泛函的范数,有时是比较困难.例f 1l ,若取}{i e 为1l 上的S ch a u d er 基,则对任意)(i x x =,有∑∞==1i ii ex x , 故∑∞==1)()(i i i e f x x f ,因而从而|)(|sup ||||i e f f ≤.取1)0,0,1,0,0(l e i ∈= , 则1||||=i e , 且|)(|||||||||||||i i e f e f f ≥=, 故|)(|sup ||||i e f f ≥,所以|)(|sup ||||i e f f =.设M 是赋范线性空间X 的子空间,f 为M 上的连续线性泛函,且存在0>C ,使得|||||)(|x C x f ≤对任意M x ∈成立,则f 是否可以延拓到整个范空间X 上?这一问题起源于n 维欧氏空间nR 上的矩量问题.Banach S . 在1920年提交的博士论文中,用几何语言将它推广到无限维空间.1922年,Hahn H .发表的论文也独立地得出类似结果.Hahn H . 在1927年将结果更一般化,在完备的赋范线性空间研究了这一问题,并证明了在X 上f 存在连续延拓F ,使得|||||)(|x C x F ≤对一切M x ∈成立,且对一切M x ∈,有)()(x f x F =. 1929年,Banach S .独立地发表了与Hahn H .相近的定理和证明,并把一定理推广为一般的情形,这就是下面的Banach Hahn -延拓定理.定理M X ,f 为M 上的实线性泛函,且存在X 上的半范数)(x p 使得)(|)(|x p x f ≤, 对任意M x ∈成立则存在f 在X 上的延拓F ,使得(1) )(|)(|x p x F ≤, 对任意X x ∈成立; (2) )()(x f x F =, 对任意M x ∈成立.Bohnehbius F H ..与Sobczyk A . 在 1938 年还把Banach Hahn -定理推广到复线性空间.定理M X ,f 为M 上的线性泛函,p 是X 上半范数且满足)(|)(|x p x f ≤, 对任意M x ∈成立则存在f 在X 上的延拓F ,使得(1) )(|)(|x p x F ≤, 对任意X x ∈成立; (2) )()(x f x F =, 对任意M x ∈成立.利用线性空间的Banach Hahn -延拓定理,可以建立赋范线性空间上的保范延拓定理,它是Banach 空间理论的基本定理.定理M X ,f 为M 上的连续线性泛函,则存在X 上线性连续泛函F ,使得 (1)**=M X f F ||||||||;(2) )()(x f x F =, 对任意M x ∈成立.这里*X F ||||表示F 在*X 的范数,*M f ||||表示f 在*M 的范数.证明 由于f 为M 上的连续线性泛函,因此对任意M x ∈,有|||||||||)(|x f x f M *≤. 定义半范数||||||||)(x f x p M *=,则有)(|)(|x p x f ≤,对任意M x ∈.由线性空间的Banach Hahn -定理可知存在F ,使得)()(x f x F =,对任意M x ∈且)(|)(|x p x F ≤, 对任意X x ∈因此对于任意X x ∈,有|||||||||)(|x f x F M *≤,故F 为X 上的连续线性泛函,且**≤M X f F ||||||||.反过来,由可知**=M X f F ||||||||,且)()(x f x F =对任意M x ∈成立.在上面定理中,若X 是复赋范线性空间,则M 必须是复线性子空间.很有意思的是Bohnehbius F H ..和Sobczyk A .在1938年证明在任意无穷维复Banach 空间X 中,一定存在实线性子空间M ,在M 上有一复连续线性泛函不能保范延拓到X 上.问题Banach Hahn -,什么条件下保范延拓是唯一的?例},|),{(2121R x x x x X ∈=,定义范数||||||),(||||||2121x x x x x +==.令}|)0,{(11R x x M ∈=, 明显地,M 是赋线性空间X 的线性子空间,对M x y ∈=)0,(1,定义1)(x y f =,则故1||||≤*M f ,且对)0,1(0=x ,有1|)(|,1||||00==x f x ,因而1||||=*M f ,但对X 上的线性泛函这里X x x x ∈=),(21 在M 上,都有对任意的M x y ∈=)0,(1成立.在M 上有f F f F ==21,,且***==M X X f F F ||||||||||||21,因此21,F F 是f 的两个不同的保范延拓.定理||)||,(⋅X ,M 是X 的子空间,X x ∈0,),(0M x d d =0}|||inf{||0>∈-=M y y x ,则存在*∈X f ,使得(1)对任意0)(,=∈x f M x ; (2)d x f =)(0; (3)1||||=f .证明 令}}{{0x M span E ⋃=∆,则对任意E x ∈,x 有唯一的表达式0'tx x x +=,这里M x K t ∈∈',.在E 上定义泛函g : 则g 为E 上的线性泛函,且 (1)d x g =)(0;(2)对任意0)(,=∈x g M x . 对0'tx x x +=,不妨假设0≠t .由 可知||||||'||||'||||||'|||||||)(|000x tx x x tx t x t x t d t x g =+=+=--≤=. 因此g 是E 上的线性连续泛函,且1||||≤*M g .根据Banach Hahn -定理,有连续线性泛函*∈X f ,使得 (1)对任意)()(,x g x f E x =∈; (2)||||||||g f =.由0}|||inf{||0>∈-=M y y x d ,可知存在M x n ∈,使得d x x n →-||||0. 故因此1||||≥f ,所以1||||=f ,且对所有M x ∈,有0)(=x f .特别地,当}0{=M 时,对任意00≠x ,有||||),(00x M x d =,因此由上面定理可知下面推论成立.推论X ,则对任意0,00≠∈x X x ,有*∈X f ,使得||||)(00x x f =,且1||||=f .该结论的重要意义在于它指出了任意赋范线性空间X 上都存在足够多的线性连续泛函.由下面推论还可知道X 中两个元素y x ,,若对所有*∈X f ,都有)()(y f x f =,则一定有y x =.推论X ,X y x ∈,则y x ≠当且仅当对存在*∈X f 使得)()(y f x f ≠.证明 假设y x ≠,则对y x z -=,有0||||≠z ,因此Banach Hahn -定理的推论可知存在1||||=f ,使得0||||)(≠=z z f ,从而)()(y f x f ≠.例题X ,试证明对任意X x ∈0,有证明 对任意*∈X f ,1||||=f ,有因此另外, 但对0,00≠∈x X x ,存在*∈X f ,1||||=f ,使得 ||||)(00x x f =,故|)(|sup||||0,1||||0x f x Xf f *∈=≤, 所以|)(|sup||||0,1||||0x f x Xf f *∈==.例题||)||,(⋅X ,若对于任意1||||,1||||,,==∈y x X y x 且y x ≠都有2||||<+y x ,试证明对于任意)1,0(∈α,有1||)1(||<-+y x αα.证明 反证法. 假设存在1||||||||00==y x 和)1,0(0∈α,使得 由Banach Hahn -定理的推论,可知存在*∈X f ,1||||=f ,使得 即这时一定有1)()(00==y f x f . 否则的话,若1)(0<x f 或1)(0<y f ,则1)1()()1()(000000=-+<-+ααααy f x f ,矛盾.因此2)(|)(|sup||||0000,1||||00=+≥+=+*∈=y x f y x f y x Xf f ,又由可知2||||00=+y x ,但这与2||||00<+y x 的题设矛盾,因此由反证法原理可知对于任意)1,0(∈α,有1||)1(||<-+y x αα.2.5 严格凸空间Clarkson A J ..在1936年引入了一致凸的Banach 空间的概念,证明了取值一致凸的Banach 空间的向量测度Nikodym Radon -的定理成立,从而开创了从单位球的几何结构来研究Banach 空间性质的方法.Clarkson A J ..和Gkrein M . 独立地引进了严格凸空间,严格凸空间在最佳逼近和不动点理论上有着广泛的应用.定义X ,若对任意1||||,1||||,,==∈y x X y x ,y x ≠,都有 严格凸的几何意义是指单位球面X S 上任意两点y x ,的中点2yx +一定在开单位球}1|||||{<=x x U X 内.例Banach 0c000),0,0,1,0(),,0,1,1(c y x ∈== ,则1||||||||00==y x ,且对),0,0,1,21(200 =+y x ,明显地有1||2||00=+y x . 类似地,易验证,Banach 空间 ∞l l c ,,1都不是严格凸空间.例1||||,1||||,,2==∈y x l y x y x ≠,则 从而4||||4||||22<--=+y x y x ,即1||2||<+yx . 所以2l 是严格凸的.类似地,容易证明Banach 空间)1(∞<<p l p 是严格凸的.定理X ,则对任意非零线性泛函*∈X f ,f 最多只能在X S 上的一点达到它的范数||||f .证明 反证法.假设存在1||||||||,0000==≠y x y x ,使得 由于 因此 从而 明显地,12||||||||||2||0000=+≤+y x y x .因此1||2||00=+y x ,但这与X 的严格凸假设矛盾,所以由反证法原理可知定理成立.设X 是赋范空间,M 是X 的子空间,对*∈X f , f 在X 上可能有不同的保范延拓,不过,*X 的严格凸性能保证保范延拓的唯一性.Taylor A .在1939年证明了以下结果-function linear of extension The Taylor A ,.[ ].547538),1959(5..,-J Math Duke als .定理*X ,M 是X 的子空间,则对任意*∈M f ,f 在X 上有唯一的保范延拓. 证明 反证法. 假设对*∈M f ,f 在X 上有两个不同的保范延拓1F 及2F ,即对任意M x ∈,都有)()()(21x F x F x f ==,且||||||||21F F =,则由于 因此1||2/)||||||||(||21=+f Ff F ,但这与*X 是严格凸矛盾. 所以f 在X 上只有唯一的保范延拓.思考题X M ,任意的*∈M f ,f 在X 上都只有唯一的保范延拓,则*X 是否一定为严格凸的?严格凸性还保证了最佳逼近元的唯一性.定义X X x X M ∈⊂,,若存在M y ∈0,使得则称0y 为M 中对x 的最佳逼近元.定理M ,则对任意X x ∈,存在M y ∈0,使得证明 令||||inf y x d My -=∈,由下确界的定义,存在M y n ∈,使得 因而}{n y 是有界序列,即存在0>C ,使得C y n ≤||||,对任意n 成立.事实上,若}{n y 不是有界序列,则对任意N k ∈有}{n n y y k ∈,使得k y k n >||||,故)(||||||||||||||||∞→∞→-≥-≥-k x k x y y x k k n n .但这与d y x k n →-||||矛盾,所以}{n y 为有界序列.由于M 是有限维,且}{n y 为M 中有界序列,因此}{n y 存在收敛子列0y y k n →,且M y ∈0.故d y x y x k n k =-=-∞→||||lim ||||0,所以存在M y ∈0.且||||inf ||||0y x y x My -=-∈. 问题例2R ,取范数|}||,max{|||||21x x x =,}|)0,{(11R x x M ∈=,则M 为2R 的一维子空间,取20)1,0(R x ∈=,对于任意M x x ∈=)0,(1,有故对于)0,1(0=w ,有1||||00=-w x .因此1}|||inf {||),(00=∈-=M x x x M x d .但对于)0,0(=u 及)0,1(-=v ,都有1||||||||00=-=-v x u x ,因此0x 在M 的最佳逼 元不唯一.既然上述定理中的最佳逼近元不唯一,那么什么时候才能保证唯一呢?定理X ,M 为X 的有限维子空间,X x ∈,则在M 中存在唯一的最佳逼近元,即存在M y ∈0,使得证明 令||||inf y x d My -=∈,假设存在M y y ∈21,, 使得 则由M y y ∈+221,可知d y y x ≥+-||2||21. 由于d y x y x y y x =-+-≤+-||2||||2||||2||2121,从而d y y x =+-||2||21. 因此1||||,1||||21=-=-d y x d y x ,且1||2/)(||21=-+-dy x d y x .但这与X 的严格凸性矛盾,所以由反证法原理可知x 在M 中存在唯一的最佳逼近元.最后,值得注意的是,严格凸性不是拓扑性质,它与范数的选取有关.例2R ,如果取范数212221)|||(|||||x x x +=,则||)||,(2⋅R 是严格凸的,但对于另一个范数||||||||211x x x +=,)||||,(12⋅R 不是严格凸的,并且范数1||||⋅和||||⋅等价.Istratescu V .还将严格凸性推广到复严格凸性,复严格凸性在取值于复Banach 空间的解析函数理论中有着重要应用convex strictly complex On Istratescu I Istratescu V ,.,.[习题二2.1 在n R ,对任意n n R x x x ∈=},,{1 ,定义上n R 的几个实值函数,使得它们都是nR 范数.2.2 设X 为赋范线性空间,||||⋅为X 上的范数,定义试证明),(d X 为度量空间,且不存在X 上的范数1||||⋅,使得1||||),(y x y x d -=.2.3在]1,0[C 中,定义p p p dt t x x /110)|)(|(||||⎰=)1(∞<≤p ,试证明||||⋅是]1,0[C 的范数. 2.4设M 是赋范空间X 的线性子空间,若M 是X 的开集,证明M X =.2.5试证明0c 是∞l 的闭线性子空间.2.6设X 是赋范线性空间,若λλλλ→∈∈n n n X x x K ,,,,且x x n →,试证明x x n n λλ→.2.7设X 是赋范线性空间,若y y x x n n →→,,试证明y x y x n n +→+.2.8 试证明n e 为)1(∞<<p l p 的Schauder 基.2.9 设)1,,1,1(0⋅⋅⋅=e ,试证明},,,,,{210⋅⋅⋅⋅⋅n e e e e 为c 的Schauder 基.2.10 在∞l 中,若M 是∞l 中只有有限个坐标不为零的数列全体,试证明M 是∞l 的线性子空间,但M 不是闭的.2.11 设1||||⋅和2||||⋅为线性空间X 上的两个等价范数,试证明)||||,(1⋅X 可分当且仅当 )||||,(2⋅X 可分.2.12 设R R f →:,满足)()()(y f x f y x f +=+对任意X y x ∈,成立,若f 在R 上连续,试证明f 是线性的.2.13设f 和g 为线性空间X 上的两个非零的线性泛函,试证明它们有相同的零空间当且仅当存在k ,使得kg f =.2.14设X 是有限维Banach 空间,n i i x 1}{=为X 的Schauder 基,试证明存在*∈X f i ,使得1)(=i i x f ,且0)(=j i x f ,对j i ≠成立.2.15设f 为赋范线性空间X 上的非零的线性泛函,试证明}1)(|{=∈=x f X x M 是X 的非空闭凸集.2.16设X 是赋范空间,M 为X 的闭线性子空间,M X x \0∈,试证明存在*∈X f ,使得),(1||||,1)(00M x d f x f ==,且0)(=x f ,对所有M x ∈成立. 2.17设X 是有限维空间,ni i x 1}{=为X 的Schauder 基,对任意∑==∈ni i i x x X x 1,α, 定义泛函i i x f α=)(,试证明*∈X f i .2.18设X 是严格凸空间,试证明对任意,0,0,,≠≠∈y x X y x 且||||||||||||y x y x +=+时,有0>λ 使得x y λ=.2.19试在1l 构造一个新范数1||||⋅,使得)||||,(11⋅l 是严格凸空间.2.20试证明1l 和∞l 都不是严格凸的赋范线性空间.2.21设*X 是严格凸的,试证明对于任意1||||,=∈x X x ,有且仅有唯一的1||||,=∈*x x f X f ,使得1)(=x f x .2.22举例说明在赋范线性空间中,绝对收敛的级数不一定是收敛级数.2.23设X F =,试证明对任意x X x ,∈都可以写成一个收敛级数∑∞=1i i x 的和,且每一项i x 都属于F .2.24 设是X 赋范线性空间,,,X x x n ∈x x n →,试证明对任意*∈X f ,有)||||()||||(x x f x x f n n →. 2.25 试证明赋范线性空间X 是完备的当且仅当度量空间),(d S 是完备的,这里单位球面}1|||||{=∈=x X x S ,度量||||),(y x y x d -=.2.26在]1,0[C 中,]},[),()(|)({b a C x b x a x t x M ∈==,试证明M 是]1,0[C 的完备线性子空间.2.27在]1,0[C 中,试证明]1,0[}1|)(||)({C t x t x A ⊂≤=是]1,0[C 的有界闭集,但不是等度连续的.2.28 在2R 中,取范数||||||||21x x x +=,}|)0,{(11R x x M ∈=,则M 为2R 的线性子空间,对20)1,0(R x ∈=,试求出M y ∈0,使得),(||||000M x d y x =-.巴拿赫Banach S .1892年3月30日生于波兰的一个叫Ostrowsko的小村庄,出身贫寒.Banach S .1916年结识SteinhausH .后,Steinhaus H .告诉Banach S .一个研究很久尚未解决的问题.几天后,Banach S .找到了答案,Banach S .就和S t e i n h a H .一起写了论文,联名发表在Kraków 科学院会报上.Stefan Banach (1892-1945)1920年, Lomnicki 教授破格将B a n a ch S .安排到Lvov 技术学院当他的助教.同年,Banach 提交了他的博士论文“关于抽象集合上的运算及其在积分方程上的应用”(Sur les opérations dans les ensembles abstraits etleur applicationaux équtions int égrales),并取得博士学位.该论文发表在1923年的《数学基础》)(ae Mathematic Fundamenta第3卷上,大家都将它看为泛函分析学科形成的标志之一.1922年,Banach S .通过讲师资格考核,1924年任该大学教授.1929年,Banach S .和Steinhaus H .创办了泛函分析的刊物a MathematicStudia . 1932 年,Banach S .出版了《线性算子理论》Théorie des óperations linéaires,这本书汇集了Banach S .的研究成果,对推动泛函分析的发展起了重要作用.1936年,在Oslo 召开的国际数学家大会邀请Banach S .在全体大会上作报告.在波兰国内,Banach 被授予多种科学奖金,1939年被选任波兰数学Banach S .会主席.Banach S .的主要工作是引进线性赋范空间概念,证明了很多赋范空间基本定理,很多重要的定理现在都以他的名字命名,他证明的三个基本定理(Banach Hahn -线性泛函延拓定理,Steinhaus Banach -定理和闭图像定理)概括了许多经典的分析结果,在理论上和应用上。
第二章 线性赋范空间与内积空间Normed Linear Spaces and Inner Product Spaces前面介绍了度量空间及其性质,在那里通过定义距离的概念,引入了点列的极限,这种点列极限是微积分中数列极限在抽象空间的推广.然而只有距离结构,没有代数结构的空间在应用上受到许多限制.本章通过在线性空间中定义范数来赋予线性空间上的一种特殊距离,从而将收敛的概念引入到线性空间,由此导出线性赋范空间的概念,如果这种空间的两个向量再赋予类似欧氏空间的“内积”或“点积”的概念后,便是内积空间.因此本章的主要内容就是线性赋范空间与内积空间.2.1 线性赋范空间的定义与极限在学习高等代数时,我们已了解到线性空间的概念,线性赋范空间,简单地说,就是给线性空间赋予范数.定义2.1.1 线性空间设X 为一非空集合,R 表示实数域(或为复数域C ).在X 中定义了元素的加法运算以及实数(或复数)与X 中元素的乘法运算,且满足下列条件:1. 关于加法“+”:,xy X ∀∈,u X ∃∈与之对应,记为u x y =+,称u 为x 与y 的和,且具有,,x y z X ∀∈,(1) x y y x +=+ (交换律);(2) ()()x y z x y z ++=++ (结合律);(3) 在X 中存在唯一元素θ,使得x X ∀∈,有x x θ+=,则称θ为X 中零元素; (4) x X ∀∈,存在唯一元素x '∈X ,使得x +x '=θ,称x '为x 的负元素,记为x -. 2. 对X 中每个元素x 及任何实数(或复数)a ,存在元素u ∈X 与之对应,记为u =a x ,称u 为a 与x 的数乘,且满足,x y X ∀∈,,λμ∀∈R (或C )(1) ()x x x λμλμ+=+ (分配律);(2) ()x y x y λλλ+=+ (数因子的分配律); (3) ()()x x λμλμ= (结合律); (4) 1x x = (单位1).则称X 按上述加法和数乘运算成为线性空间或向量空间,X 中的元素称为向量.如果数乘运算只对实数(或只对复数)有意义,则称X 是实(或复)线性空间. 满足上述加法和数承运算的性质,统称为线性运算.我们知道,n 维欧式空间n R 是线性空间;[,]C a b 在通常加法和数乘意义下构成线性空间;n 阶实矩阵在矩阵的加法和数乘意义下构成线性空间.2.1.1 线性赋范空间的定义与举例定义 2.1.2 线性赋范空间Normed Linear Spaces设X 是数域K 上的线性空间,其中K 表示R 或者C .若对每个x ∈X ,有一个确定的实数,记之为x ,与之对应,并且,x y X ∀∈,α∈K 满足:(1) ||||0x ≥,||||0x =0x ⇔= (正定性or 非负性);Positive definiteness or Nonnegativity (2) ||||||||||x x αα=⋅ (齐次性);Multiplicativity(3) ||||||||||||x y x y +≤+ (三角不等式). Triangle inequality则称||||x 为向量x 的范数(norm ),称(,|| ||)X 为线性赋范空间.简记为X .通常称定义中的(1)、 (2) 、(3)为范数公理.注1:线性赋范空间诱导的度量空间在线性赋范空间X 中可定义距离:,x y X ∀∈,定义(,)||||d x y x y =-容易验证非负性、对称性和三角不等式(,)X d 为度量(距离)空间,并称d 为由范数||||⋅导出的距离,X 按导出的距离成为一个度量空间.从而在线性赋范空间X 中,关于点的邻域、开集、闭集、点列的收敛、极限点、列紧、可分性以及完备性等概念都有了确定的含义.定义 2.1.3 巴拿赫空间Banach space设X 为一线性赋范空间,如果X 按照距离(,)||||d x y x y =-是完备的,则称X 为巴拿赫(Banach)空间.即完备的线性赋范空间称为Banach 空间.例 2.1.1 在n 维欧式空间n R 上,12(,,,)n n x x x x R ∀=∈ ,定义范数||||⋅1221||||(||)ni i x x ==∑. 记d 为由范数||||⋅导出的距离(,)||||d x y x y =-,证明(,)n R d 为Banach 空间.证明 容易验证正定性和齐次性成立,由于第二章已经证明n R 上距离1221(,)||||(||)ni i i d x y x y x y ==-=-∑满足三角不等式,所以有||||(,)(,0)(0,)||||||||x y d x y d x d y x y +=-≤+-=+.同时第二章已经证明n R 是完备的度量空间,故n R 为Banach 空间.□例 2.1.2 在[,]C a b 在通常加法和数乘意义下构成线性空间,定义范数[,]||||max |()|t a b x x t ∈=,此范数导出的距离为[,](,)||||max |()()|t a b d x y x y x t y t ∈=-=-,证明在此距离下[,]C a b 是完备的,即在此范数下[,]C a b 为Banach 空间.证明 容易验证正定性和齐次性成立,又[,]||||max |()()|t a b x y x t y t ∈+=+[,][,]max |()|max |()|t a b t a b x t y t ∈∈≤+||||||||x y =+即满足三角不等式.第二章已证明[,]C a b 在此范数诱导的距离意义下是完备的度量空间,故[,]C a b 为Banach 空间.□也可证明线性空间l ∞,p l ,[,]p L a b (1p ≤<+∞)为Banach 空间,加之前两个例题的结果知在下列定义的范数意义下,均为Banach 空间:n 维欧式空间nR1221||||(||)ni i x x ==∑12(,,,)nn x x x x R =∈有界数列空间l ∞1||||sup ||i i x x ==12(,,,,)n x x x x l ∞=∈p 次幂可和的数列空间p l11||||(||)ppi i x x ∞==∑12(,,,,)pn x x x x l =∈连续函数空间[,]C a b [,]||||max |()|t a b x x t ∈=[,]x C a b ∈p 次幂可积函数空间[,]pL a b1[,]||||(|()|)ppa b x x t dt =⎰[,]p x L a b ∈例 1.3 在[,]C a b 上定义范数1|||||()|ba x x t dt =⎰,其导出的距离为11(,)|||||()()|ba d x y x y x t y t dt =-=-⎰,那么在范数1||||⋅下[,]C a b 不是Banach 空间.证明 仿照前章证明[0,1]C 在1d 下不是完备的度量空间,可知1([,],)C a b d 不是完备的度量空间,又因1|||||()()||()||()|bbba a a x y x t y t dt x t dt y t dt +=+≤+⎰⎰⎰11|||||||||x y =+,可知1||||⋅符合范数的三条公理.故在范数1||||⋅下[,]C ab 不是Banach 空间.□如果在线性空间X 上具有定义好的距离函数(,)d x y ,那么(,)X d 就为一度量空间,试问是否在存在X 上的某范数||||⋅,使得d 是由这个范数||||⋅导出的距离,即满足(,)||||d x y x y =-.答案是否定的.例 2.1.4 设X 为线性赋范空间,令(,)||||1x y d x y x y x y=⎧=⎨-+≠⎩证明(,)X d 为度量(距离)空间,但d 不是由某范数||||⋅导出的距离.证明 显然距离(,)d x y 定义中的非负性和对称性成立,,,x y z X ∀∈,下证三角不等式成立 当x y =时,则(,)0(,)(,)d x y d x z d z y =≤+; 当x y ≠时分为三种情况:(1)x z ≠和y z ≠.(,)||||1d x y x y =-+||||1x z z y =-+-+||||||||1x z z y ≤-+-+(,)(,)d x z d z y <+.(2)x z =和y z ≠.注意到||||0x z -=和(,)0d x z =,所以有(,)||||1d x y x y =-+||||||||1x z z y ≤-+-+(,)(,)d x z d z y =+.(3)x z ≠和y z =.注意到||||0z y -=和(,)0d z y =,所以有(,)||||1d x y x y =-+||||1||||x z z y ≤-++-(,)(,)d x z d z y =+.因此(,)X d 是度量空间.假设d 是由某范数1||||⋅导出的距离,即1(,)||||d x y x y =-,于是当x θ≠及x αθ≠时有1||||(,)||||1x d x x θ==+; 1||||(,)||||||1x d x x ααθα==+;可见1||||||||(,)||(||||1)x d x x ααθα==+显然11||||||||||x x αα≠产生矛盾,故d 不是由某范数导出的距离.□问题:对于实数集R 上定义的离散度量空间0(,)d d R ,是否存在某范数使得离散度量0d 是由该范数诱导的度量?定义 2.1.4 线性赋范空间的子空间设X 为一线性赋范空间,如果1X 是X 的线性子空间,并且1X 上的范数是X 上的范数在1X 上的限制,则称1X 是线性赋范空间X 的子空间.如果1X 在X 中是闭的,则称1X 为X 的闭子空间.复习:完备度量空间X 的子空间M 是完备的充要条件M 是X 的闭子空间.2.1.2 线性赋范空间的极限根据范数导出的距离(,)||||d x y x y =-可以得到有关极限的概念,并且可讨论线性赋范空间中点列的收敛性.定义 2.1.5 依范数收敛设X 为线性赋范空间,{}n x 是X 中的点列,x X ∈,如果lim 0n n x x →∞-=,则称{}n x 依范数收敛于x (简称{}n x 收敛于x ),记为lim n n x x →∞=或()n x x n →→∞.显然依范数收敛就是按范数导出的距离收敛.关于点列的极限有以下性质. 定理 2.1.1 设X 为线性赋范空间,{}n x X ⊂,(1)范数的连续性:范数x 是x 的连续函数(即若n x x →,则有n x x →). (2)有界性:若{}n x 收敛于x ,则{}n x 有界.(3)线性运算的连续性:若n x x →,n y y →()n →∞,则n n x y x y +→+,n x x αα→()n →∞,其中α为常数.证明 (1) 设()f x x =,则f :X R →,若n x x →,即(,)0n n x x d x x -=→,又因为n n x x x x ≤-+,n n x x x x ≤-+,所以()()0n n n f x f x x x x x -=-≤-→,因此x 是x 的连续函数.(2) 根据n n x x x x ≤-+易得结论. (3) 根据范数、极限的定义易证结论.□在线性赋范空间中,由于范数刻画了向量的长度,因此,赋范空间中的概念具有更强的几何直观性.定理 2.1.2 设X 为线性赋范空间,d 是由范数导出的距离,则0,,x y z X ∀∈,α∈K (数域) 有:(1)平移不变性:00(,)(,)d x z y z d x y ++=. (2)绝对齐次性:(,)(,)d x y d x y ααα=.证明 (1) 0000(,)()()(,)d x z y z x z y z x y d x y ++=+-+=-=. (2) (,)()(,)d x y x y x y x y d x y ααααααα=-=-=-=.2.1.3 线性赋范空间上的级数在线性赋范空间中,既有代数运算,又有极限运算,因此可以引进无穷级数的概念. 定义 2.1.6 级数 Progression设X 为线性赋范空间,点列{}n x X ⊂,称表达式121n n n x x x x ∞=++++=∑ 为X 中的级数.若部分和点列12n n S x x x =+++ 依范数收敛于s X ∈,则称级数1n n x ∞=∑收敛于s ,称s 为级数的和,记为1n n s x ∞==∑.如果数项级数1n n x ∞=∑收敛,则称级数1n n x ∞=∑绝对收敛.例 2.1.5 证明在Banach 空间中,绝对收敛的级数必收敛.(习题)证明 设级数1k k x ∞=∑绝对收敛,令1nn k k S x ==∑,下面证明{}n S 是X 中的柯西列,当m n >时,有12m n n n m S S x x x ++-=+++12n n m x x x ++≤+++1110nk k k k n k k x x x ∞∞=+==≤=-→∑∑∑,因此{}n S 是完备空间X 中的柯西列,从而是收敛列,即级数的部分和点列收敛.例 2.1.6 如果在线性赋范空间X 中,任何级数的绝对收敛总蕴含级数收敛,那么X 是完备的(即为Banach 空间).(习题课)由上例子可知,当且仅当在Banach 空间中有级数的绝对收敛蕴含着收敛. 定义2.1.6 绍德尔(Schauder)基设X 为线性赋范空间,{}n e 是X 中的一个点列,如果对于每一个x X ∈,存在唯一的数列{}n α,使得1122()0()n n x e e e n ααα-+++→→∞则称{}n e 是空间X 中的一组绍德尔基,称1n n n x e α∞==∑为x 的展开式.例如,p 次幂可和的数列空间p l 有一个绍德尔基{}n e ,其中(0,,0,1,0,,0,)n e = ,n e 的第n 个坐标等于1,其余坐标为0.可以证明,若线性赋范空间X 有一组绍德尔基,则X 是可分的线性赋范空间,反之不真.2.1.4 线性赋范空间的完备化由例 2.1.3及 2.1.4可知[,]C a b 在范数[,]||||m a x |()|t a b x x t ∈=下是Banach 空间,在范数1222||||(|()|)bax x t dt =⎰下不是Banach 空间,同时知2([,],)C a b ⋅2[,]L a b ⊂,而2[,]L a b 是完备的空间,即为Banach 空间.定义 2.1.7 线性等距同构设11(,)X ⋅,22(,)X ⋅是同一数域K 上的两个线性赋范空间,如果存在一一映射T :12X X →,满足:(1) 线性:1,x y X ∀∈,,αβ∈K ,()()()T x y T x T y αβαβ+=+. (2) 等距:1x X ∀∈,21Tx x =.则称1X 和2X 线性等距同构,并称映射T 是线性等距同构映射.在线性等距同构意义下,两个空间可看成“同”一个空间 定理 2.1.3 完备化定理设X 为线性赋范空间,那么存在Banach 空间Y ,使X 和Y 的一个稠密子空间1Y 线性等距同构,且在线性等距同构意义下,Y 是唯一的.数学家简介斯特凡·巴拿赫(Stefan Banach ,1892年3月30日-1945年8月31日),波兰数学家1892年3月30日生于克拉科夫,1945年8月31日卒于利沃夫曾在克拉科夫的贾吉洛尼亚大学和利沃夫工业大学短期学习,但他主要靠自学1916 年结识H.斯坦豪斯后,开始科学研究,1920年获博士学位,1922年任利沃夫大学讲师,1927年为教授.成为泛函分析的开创者之一.不久在他和斯坦豪斯周围集中了一批年轻学者,发展成为利沃夫学派,并在1929年创办了第一个泛函分析杂志《数学研究》.1932年出版了他的名著《线性算子理论》.他在1936年的国际数学家大会上做了全会报告,这表明数学界重视波兰学者对泛函分析的研究.1939年被选为波兰数学会主席.第二次世界大战中,波兰被德国占领,他在一所医学研究所做喂养昆虫的工作.苏联军队攻克利沃夫后,他才回到大学工作,不过这时他已患肺癌.巴拿赫的主要工作是引进线性赋范空间概念,建立其上的线性算子理论,他证明的三个基本定理(哈恩—巴拿赫线性泛函延拓定理,巴拿赫-斯坦豪斯定理即共鸣定理,闭图像定理)概括了许多经典的分析结果,在理论上和应用上都有重要的价值.人们把完备的线性赋范空间称为巴拿赫空间.此外,在实变函数论方面,他在1929年同K.库拉托夫斯基合作解决了一般测度问题.在集合论方面,他于1924年同A.塔尔斯基合作提出巴拿赫-塔尔斯基悖论.1945年8月31日巴拿赫因肺癌在乌克兰的利沃夫逝世,逝世后在当地被葬.1946年波兰数学协会为纪念他颁发巴拿赫奖.线性与非线性泛函◇。
第2章 度量空间与赋范线性空间度量空间在泛函分析中是最基本的概念。
事实上,它是n 维欧几里得空间n R 的推广,它为统一处理分析学各分支的重要问题提供了一个共同的基础。
它研究的范围非常广泛,包括了在工程技术、物理学、数学中遇到的许多很有用的函数空间。
因而,度量空间理论已成为从事科学研究所不可缺少的知识。
2.1 度量空间的基本概念 2.1.1 距离(度量)空间的概念在微积分中,我们研究了定义在实数空间R 上的函数,在研究函数的分析性质,如连续性,可微性及可积性中,我们利用了R 上现有的距离函数d ,即对y x y x d R y x -=∈),(,,。
度量是上述距离的一般化:用抽象集合X 代替实数集,并在X 上引入距离函数,满足距离函数所具备的几条基本性质。
【定义2.1】 设X 是一个非空集合,),(∙∙ρ:[)∞→⨯,0X X 是一个定义在直积X X ⨯上的二元函数,如果满足如下性质:(1) 非负性 y x y x y x X y x =⇔=≥∈0,(,0),(,,ρρ; (2) 对称性 ),(),(,,x y y x X y x ρρ=∈(3) 三角不等式 ),(),(),(,,,y z z x y x X z y x ρρρ+≤∈;则称),(y x ρ是X 中两个元素x 与y 的距离(或度量)。
此时,称X 按),(∙∙ρ成为一个度量空间(或距离空间),记为),(ρX 。
注:X 中的非空子集A ,按照X 中的距离),(∙∙ρ显然也构成一个度量空间,称为X 的子空间。
当不致引起混淆时,),(ρX 可简记为X ,并且常称X 中的元素为点。
例2.1 离散的距离空间设X 是任意非空集合,对X 中任意两点,,x y X ∈令1 (,)0 x yx y x y ρ≠⎧=⎨=⎩显然,这样定义的),(∙∙ρ满足距离的全部条件,我们称(,)X ρ是离散的距离空间。
这种距离是最粗的。
它只能区分X 中任意两个元素是否相同,不能区分元素间的远近程度。
第二章赋范线性空间一赋范空间的基本概念1赋范空间的定义定义设X是域K上的线性空间,函数||』:X R满足条件:1)对任意x X , 0 ;且||x|卜0,当且仅当x = 0 ;2)对任意x X及K , x|卜| | ||x|| (齐次性);3)对任意x, y X , x y|卜|| x|| || y||(三角形不等式)称1111 是X 上的一个范数,X上定义了范数|| ||称为赋范(线性)空间,记为(X,|「||),有时简记为X。
在一个赋范线性空间(X ,|| • II)中,通过范数可以自然地定义一个距离,d(x,y)=||x- y||, x,^ X (1)称赋范空间这个距离是由范数诱导的距离,这个赋范空间是一个距离空间。
2赋范空间的基本性定理1.1设(X,|| II)是赋范空间,则1) 范数是一个连续函数,即当时x 、nx (n 、)时, llXnir ||x||(n …);2) 线性运算是连续的,即当x Tn x及y n >y时,Xn % X y ;当a n‘ a及x n x时,d x n ax (n )定理1.2 设(X,|| ||)是赋范空间,如果是完备的且级数:」|X k IF ||X i II +|| X2 ||+…+||X2 ||+…⑷收敛,则级数7 X n收敛,且|「X n |^ V||X n ||。
反之,如果在n -1 n 4n -1 1一人赋范空间中,任意无穷级数(4)收敛有级数二x n收敛,则空n 二间是Banach空间3凸集凸集是线性空间中一个重要的几何概念,它在泛函分析中有着十分广泛应用。
定义设X是线性空间,A是X子集,如果对任意X,y A,及满足0疳〉<1的数〉,x (1 )y A称A是X中的凸集。
从定义不难看出,任意个凸集的交集还是凸集。
设A是空间X 中任意子集,所有包含集A的凸集交集是凸集,称这个凸集是集A生成的凸集或集A的凸包,记为Co(A)。
4赋范空间的例例1空间R n。
第2章赋范线性空间与凸集2.1 赋范线性空间2.2 凸集2.3 一些重要例子2.4 保持凸性的运算2.5 分离超平面和支撑超平面12.1 赋范线性空间2.1.1 赋范线性空间2.1.2 开集和闭集2.1.3 上确界和下确界2.1.4 序列收敛和完备性2.1.5 紧性2.1.6 Banach 空间232.1.1 赋范线性空间● 线性空间(linear space)/向量空间(vector space)⏹ 指定义加法和标量乘法的非空集合X➢ 加法(addition)⇔∀,X ∈x y ,X +∈x y➢ 标量乘法 ⇔∀X ∈x ,α∈,X α∈x⏹ ,,X ∀∈x y z ,,αβ∈,满足:1. +=+x y y x (交换律)2. ()()++=++x y z x y z (结合律)3. ()ααα+=+x y x y4. ()a αββ+=+x x x5. ()()αβαβ=x x (结合律)46.X ∃∈0,+=x 0x7.对X ∀∈x ,X ∃∈y ,+=x y 08.1=x x● 线性空间在加法和标量乘法下是闭的(closed)。
● 线性空间的元素称为向量(vector)。
5例2.1 一些线性空间• N 维实向量空间或N 维欧氏空间:所有N 维实向量的集合N• 所有实数序列的集合{}12,,...,,n x x x ,n x ∀∈ • 所有多项式2012N N x a a t a t a t =++++的集合。
●消费集(例1.1)和生产可能性集(例1.2)本身不是线性空间。
●但它们都是线性空间N的子集,并且都从其母空间中继续了许多线性特征。
67例2.2 (总需求和总供给)● M 个消费者,每个消费者m 购买消费组合m x● 总需求(aggregate demand )M x⏹ 其中对每种商品n ,对它的总需求1M n n n x x x =++ ⏹ 其中m n x 是消费者m 对商品n 的需求。
泛函分析讲义-黎永锦134部分习题解答意义深刻的数学问题从来不是一找出解答就完事了,好象遵循着的格言,每一代的数学家都重新思考并重新改造他们前辈所发现的解答,并把这 解答纳入当代流行的概念和符号体系之中L. Bers (贝尔斯)(1914-1993,美国数学家)习题一1.2 设∑=∞≤∈=n i ii i x R x x l 11}||,|){(,对任意1)(),(l y y x x i i ∈==,∑∞=-=1||),(i iiy x y x d ,||sup ),(i i y x y x -=ρ, 试证明d 和ρ为X 上的两个度量,且存在序列1}{l x n ⊂,1l x o ∈,使得0),(0→x x n ρ,但),(0x x d n 不收敛于0.1.2证明:(1)只须按度量定义验证即可知道为上的两个度量(,)d x y 和(,)x y ρ为 1l 上的两个度量.(2)取111(,,,,0,)n x n n n= 当i n ≤时,()1n i n x = , 当i n >时()0n ix =,则1n x l ∈且()1(,0)sup |0|0n n inx xρ=-=→,但()111(,0)|0|1nn n in i i d x x∞===-==∑∑.因此(,0)0n x ρ→,但),(0x x d n 不收敛于0.黎永锦-部分习题解答1351.4 试找出一个度量空间),(d X ,在X 中有两点y x ,,但不存在X z ∈,使得=),(z x d ),(21),(y x d z y d =. 1.4 证明:在2R 上取离散度量(,)d x y =0, 1,.x y x y ⎧=⎨≠⎩当时当时,则对于x y ≠,有(,)1d x y =,但不存在2z R ∉,使得12(,)(,)(,)d x z d y z d x y ==.1.6 在∞l 中,设F 为的非空子集,G 为开集,试证明G F +为开集.1.6证明:由(,)sup ||i i d x y x y =-可知,对任意,x y l ∞∈,有(,)(,0)d x y d x y =-,若G 是开集,则对于任意,x F y G ∈∈,有开球(,)U y r G ⊂.故(,)x U y r x G +⊂+,因而G x r y x U +⊂+),(,从而对任意,x F x G ∈+是开集,由()x FF G x G ∈+=+ 可知F G +是开集.1.8 在∞l 中,设|){(i x M =只有限个i x 不为0},试证明M 不是紧集. 1.8证明:取()()n n i x x =,当i n >时,()0n ix =当i n ≤时,()1n i i x = ,则n x M ∈,且lim n n x x →= ,这里112(1,,,,)n x = ,但x M ∉,因此M 不是闭集,所以M 不是紧集.1.10 设),(d X 为度量空间,X F ⊂,试证明CC F F )(0=.1.10证明:对于任意0x F ∈,有0(,)U x r F ⊂,故φ=C F r x U ),(,因而C C F x )(∈,从而C C F F )(0⊂.对于任意C C F x )(∈,有()Cx F ∉,因而存在φ=C F r x U ),(,故(,)U x r F ⊂,从而0x F ∈,故0)(F F C C ⊂.所以,0()C CF F ⊂.1.12 设),(d X 为度量空间,X F ⊂,试证明}|),(inf{),(F y y x d F x d ∈=为X 到 ),0[+∞的连续算子.泛函分析讲义-黎永锦1361.12 证明:对于任意,x z X ∈,有.(,)inf{(,)|}inf{(,)(,)|}(,)inf{(,)|}(,)(,)d x F d x y y F d x z d y z y F d x z d y z y F d x z d z F =∈≤+∈=+∈=+故(,)(,)(,)d x F d z F d x z -≤类似地,有(,)(,)(,)d z F d x F d z x -≤因此|(,)(,)|(,)d x F d z F d x z -≤所以,0n x x →时,必有0(,)(,)n d x F d x F →,即(,)d x F 是连续函数. 1.14 设),(d X 为度量空间,F 为闭集,试证明存在可列个开集n G ,使n G F =.1.14 证明:由于F 是闭集,因此{|(,)0}F x d x F ==,又因为(,)d x F 是连续的,所以对任意1,{|(,)}n n x d x F <是开集,从而对于开集1{|(,)}n n G x d x F =<,有1{|(,)0}{|(,)1/}n F x d x F x d x F n ∞====< ,所以1n n F G ∞== .1.16 试证明∞l 是完备的度量空间.1.16证明:设{}n x 为 ∞l 的Cauchy 列,则对于任意0ε>,存在 N,使得n N >时有()()(,)sup ||n p n n p n i i d x x x x ε++=-<.故对每个固定的i,有()()||(,1)n p n i i x x n N p ε+-<>>.因此(){}n i x 是Cauchy 列.因而存在i x ,使得()lim n ii n x x →∞=,令()i x x =,则由可知(1)||N i i x x ε+-≤故黎永锦-部分习题解答137(1)||||N i i x x ε+≤+由于(1)1()N N ix x l ++∞=∈,因此存在常数1N M +使得11sup ||N i N x M ++≤<+∞.又由()()||n p n ii x x ε+-<可知||n i i x x ε-<对任意i 及n N ∈成立.故()(,)sup ||n n i i d x x x x ε=-<所以,n x x →,即l ∞是完备的度量空间. 1.18 证明0c 中的有界闭集不一定是紧集.1.18 证明:令{()|||1}i i M x x =≤,则M 是0c 的有界闭集,但M 是不紧集.1.20 设),,1[+∞=X |/1/1|),(y x y x d -=,试证明),(d X 为度量空间,但不是完备的. 1.20证明:容易验证|/1/1|),(y x y x d -=是),(d X 的度量.取X x n ∈,),1[+∞∈=n x n ,则}{n x 为X 的Cauchy 列,但}{n x 没有极限点,因此}{n x 不是收敛列,所以不是完备的.1.22 试证明度量空间),(d X 上的实值函数f 是连续的当且仅当对于任意R ∈ε,})(|{ε≤x f x 和})(|{ε≥x f x 都是),(d X 的闭集.1.22证明: 若度量空间),(d X 上的函数f 是连续的,则明显地,对于任意R ∈ε,})(|{ε≤x f x 和})(|{ε≥x f x 都是),(d X 的闭集.如果对于任意R ∈ε,})(|{ε≤x f x 和})(|{ε≥x f x 都是),(d X 的闭集,则于任意R ∈21,εε,容易知道})(|{})(|{\})(|{2121εεεε≥≤=<<x f x x f x X x f x 是开集,对于R 上的开集G ,有G 的构成区间),(n n βα,使得),(n n G βα =,因而)(1G f -是开集,所以f 是连续的.1.24 设R 为实数全体,试在R 上构造算子T ,使得对任意R y x ∈,,y x ≠,都有||||y x Ty Tx -<-,但T 没有不动点.泛函分析讲义-黎永锦1381.24证明:(1) 设R 为实数全体,12:,tan T R R Tx x x π-→=+- 则对任意,,x y R x y ∈≠,由'()()()()f x f y f x y ξ-=-可知22|()()|||||1f x f y x y x y ξξ-=-<-+ 但f(x)没有不动点.实际上,若()x f x = ,则1tan 2x π-=,因而矛盾.(2) 设),,1[+∞=X 11:,x T X X Tx x +→=+ 则对任意,,x y R x y ∈≠,由'()()()()f x f y f x y ξ-=-可知21|()()|[1]||||(1)f x f y x y x y ξ-=--<-+但f(x)没有不动点.实际上,若()x f x =,则110x +=,矛盾,所以f(x)没有不动点.1.25 设函数),(y x f 在)},(],,[|),{(+∞-∞∈∈=y b a x y x H 上连续,处处都有偏导数),('y x f y ,且满足+∞<≤≤<M y x f m y ),('0试证明0),(=y x f 在],[b a 上有唯一的连续解)(x y ϕ=. 提示:定义:],[],[:b a C b a C T →为),(1ϕϕϕx f MT -= 证明T 为压缩算子,然后利用S. Banach 不动点定理.1.26 设),(d X 为度量空间,T 为X 到X 的算子,若对任意X y x ∈,,y x ≠,都有 ),(),(y x d Ty Tx d <,且T 有不动点,试证明T 的不点是唯一的.1.26证明:反证法,假设A 有两个不动点12,x x ,使得1122,A x x A x x ==,则121212(,)(,)(,)d x x d Ax Ax d x x =<但这与12x x ≠矛盾,所以A 只有唯一的不动点.黎永锦-部分习题解答1391.27 设),(d X 为度量空间,且X 为紧集,T 为X 到X 的算子,且y x ≠时,有),(),(y x d Ty Tx d <,试证明T 一定有唯一的不动点.证明思路:构造X 上的连续泛函),(),(y x d Ty Tx d <,利用紧集上的连续泛函都可以达到它的下确界,证明存在X x ∈0,使得}|)({inf )(0X x x f x f ∈=,0x 就是T 的不动点. 1.28 试构造一个算子22:R R T →,使得T 不是压缩算子,但2T 是压缩算子.1.28证明:定义)0,(),(:221x x x T →,则T 不是压缩算子,但2T )0,0(),(:21→x x 是压缩算子.1.30 设||),(),,1[y x y x d X -=+∞=,x x Tx X X T /13/,:+=→,试证明T 是压缩算子. 1.30证明:由 x x Tx /13/+=,可知|/13//13/|||y y x x Ty Tx +--=-),(32|||131|2y x d y x ≤--=ξ,所以T 是压缩算子.习题二2.2 设X 为赋范线性空间,||||⋅为X 上的范数,定义⎩⎨⎧≠+-==.y x 1||||;y x ,0),(时当时当,y x y x d试证明),(d X 为度量空间,且不存在X 上的范数1||||⋅,使得1||||),(y x y x d -=. 2.2证明:由度量的定义可知是X 上的度量.假设存在X 上的范数1||||⋅,使得1(,)||||d x y x y =-,则对于,K x X λ∈∈,一定有11||||||||||x x λλ=⋅.泛函分析讲义-黎永锦140如果取001,,||||12x X x λ=∈=,则 001000013||||||||1||||||1122x x x λλλ=+=⋅+=+= , 但是1)11(21)1||(||||||||||00100=+=+=x x λλ,因此11||||||||||x x λλ=⋅不成立,所以一定不存在X 上的范数1||||⋅,使得1(,)||||d x y x y =-.2.4设M 是赋范空间X 的线性子空间,若M 是X 的开集,证明M X =.2.4证明:由于M 是线性子空间,因此0M ∈.由M 是开集可知存在(0,){|||||}U x x M εε=<⊂.因而对于任意,0x M x ∈≠,有),0(2εεU x∈,从而M x∈2ε,因为M 是线性子空间,所以x M ∈,即M X =.2.6设X 是赋范线性空间,若λλλλ→∈∈n n n X x x K ,,,,且x x n →,试证明x x n n λλ→.2.6证明:由n x x →可知存在0M >,使得||||x M ≤,故||||||||||||||||||||||||||||||||0n n n n n n n n n n n x x x x x x x x x M x x λλλλλλλλλλλλ-≤-+-≤-⋅+⋅-≤-+⋅-→所以,n n x x λλ→.2.10 在∞l 中,若M 是∞l 中只有有限个坐标不为零的数列全体,试证明M 是∞l 的线性子空间,但M 不是闭的.2.10证明:明显地M 是线性子空间,取112(1,,,,0,0)n n x = ,则n x M ∈ 且0n x x →,但1102(1,,,,0,0)n x M =∉ ,所以M 不是闭的子空间.2.12 设R R f →:,满足)()()(y f x f y x f +=+对任意X y x ∈,成立,若f 在R 上连续,试证明f 是线性的.黎永锦-部分习题解答1412.12证明:由)()()(y f x f y x f +=+可知,)()(x nf nx f =对所有正整数N n ∈都成立.并且)()()(m x mf m x m x m x f x f =+⋅⋅⋅++=,故)(1)(x f mm x f =对所有正整数N m ∈都成立.因此所有正有理数Q q ∈都有)()(x qf qx f =成立,由)()())((x f x f x x f -+=-+和)0()0()0(f f f +=可知0)0(=f 并且)()(x f x f -=-,因而)()(x qf qx f =对所有有理数Q q ∈都有成立.由于f 在R 上连续,因此,对于任意R ∈α,有Q q n ∈,使得α→n q ,从而)()(lim )(lim )(x f x f q x q f x f n n n n αα===∞→∞→,所以f 是线性的.2.14设X 是有限维Banach 空间,n i i x 1}{=为X 的Schauder 基,试证明存在*∈X f i ,使得1)(=i i x f ,且0)(=j i x f ,对j i ≠成立.2.14证明:令{|}i j M span x i j =≠,则M 是 n-1维的闭子空间,且i i x M ∉,由Hahn Banach -定理可知存在*,||||1i g X x ∈=,使得()(,)i i i i g x d x M =,且()0g x =对任意i x M ∈成立,令(,)ii i g i d x M f = ,则*i f X ∈,且()1,()0i i i j f x f x ==,对任意i j≠成立.2.16设X 是赋范空间,M 为X 的闭线性子空间,M X x \0∈,试证明存在*∈X f ,使得),(1||||,1)(00M x d f x f ==,且0)(=x f ,对所有M x ∈成立.2.16证明: 由M 是闭线性子空间,M X x \0∈因此,因此0(,)0d x M >存在*,||||1g X g ∈=,使得00()(,)g x d x M =,且()0g x =对于任意x M ∈成立.令0(,)gd x M f =,则00||||10(,)(,)()1,||||g d x M d x M f x f ===,且()0f x =对任意x M ∈成立.2.18设X 是严格凸空间,试证明对任意,0,0,,≠≠∈y x X y x 且||||||||||||y x y x +=+时,有0>λ 使得x y λ=.2.18证明:假设存在00,x y ,使得0000||||||||||||x y x y +=+,但00x y λ≠,对任意0λ>成泛函分析讲义-黎永锦142立,则0000||||||||xy x y ≠,故有0000000000||||||||||||||||||||||||||||||||||||||||1x x y yx y x x y y ++⋅+⋅<因而0000||||||||||||1x yx y ++< 但这与0000||||||||||||x y x y +=+矛盾,所以||||||||||||y x y x +=+时,有x y λ=对某个0λ>成立.2.20试证明1l 和∞l 都不是严格凸的赋范线性空间. 2.20证明:在1l 中,取1111(,0,,0,0,,0),(0,,0,,0,,0)2222x y == ,则||||1,||||1x y ==,且x y ≠,但||||2x y +=,因而1l 不是严格凸的.类似的,在∞l 中,取(1,0,1,0,0,,0),(1,1,0,,0)x y == ,则 ||||1,||||1x y ==,且x y ≠,但 ||||2x y +=,所以l ∞不是严格凸的.2.22举例说明在赋范线性空间中,绝对收敛的级数不一定是收敛级数.2.22证明:令{()|N 0}i i i X x x R i N x =∈>=存在某个,使得时,有,定义1||||||()||||i i i x x x ∞===∑,则(,||||)X ⋅是赋范空间,取12(0,0,,0,,0,0,,0)n n x = ,则1211||||nni i x∞∞===∑∑,因此1ni x∞=∑绝对收敛,但级数1ni x∞=∑不收敛.2.24 设是X 赋范线性空间,,,X x x n ∈x x n →,试证明对任意*∈X f ,有)||||()||||(x xf x x f n n →. 2.24证明:由x x n →可知, ||||||||x x n →,因而,||||||||x xx x n n →,所以, ≤-|)||||()||||(|x x f x x f n n 0||||||||||||||||→-x xx x f n n . 2.26在]1,0[C 中,]},[),()(|)({b a C x b x a x t x M ∈==,试证明M 是]1,0[C 的完备线性子空间.黎永锦-部分习题解答1432.26证明:容易验证M 是]1,0[C 的线性子空间.由于]1,0[C 是完备赋范线性空间,M 是]1,0[C 的闭子空间,因此M 是]1,0[C 的完备线性子空间.2.28 在2R 中,取范数||||||||21x x x +=,}|)0,{(11R x x M ∈=,则M 为2R 的线性子空间,对20)1,0(R x ∈=,试求出M y ∈0,使得),(||||000M x d y x =-.2.28证明:由于1||})1,(inf{||}|||inf{||),(100≥=∈-=x M y y x M x d ,并对于M y ∈=)0,0(0,有1||)1,0(||||||00==-y x ,所以1),(0=M x d ,且),(||||000M x d y x =-.习题三3.2 设1)(l x i ∈,算子11:l l T →, 1)(),3(l x x x Tx i i i∈==任意,试证明T 是线性有界算子,并求||||T .3.2证明: 由T 的定义可知T 是线性算子,且||||31||31||)3(||||||1x x x Tx i i i =≤=∑∞=, 因此13||||T ≤,从而T 是线性有界算子.取0(1,0,,0)x = ,则01x l ∈,且0||||1x =,故01||||||||3T Tx ≥=,所以1||||3T =. 3.4 设),(Y X L T ∈,试证明||||sup ||||1||||Tx T x <=.3.4证明:由于||||||||sup ||||supsup 111T x Txx Tx Tx x x x =≤≤≠<<,因此Tx T x 1||||sup ||||<≥.对于任意10n >,由||||sup ||||||||sup ||||||||sup||||1||||0||||0||||Tx x xT x Tx T x x x =≠≠===可知,有||||1n x =,使得1||||||||n n Tx T ≥-,故111||(1)||(1)(||||)n n n n T x T -≥--,因而111||||1sup ||||||(1)||(1)(||||)n n n n x Tx T x T <≥-≥--对任意n 成立泛函分析讲义-黎永锦144从而||||1||||sup ||||x T Tx <≤,所以||||sup ||||1||||Tx T x <=3.6 设X 是赋范空间,X x ∈α,若对任意*f X ∈,有+∞<|)(|sup ααx f ,试证明+∞<||||sup ααx .3.6 证明:定义*:,()()T X K T f f x ααα→=,则T α是*X 到K 的线性有界算子,且对于任意*f X ∈,有sup |()|sup |()|T f f x ααα=<+∞因为任意赋范空间X 的共轭空间 *X 都是完备的,因此由一致有界原理,有sup ||||T α<+∞.由αT 的定义可知||)(||sup |)(||sup ||||1||||1||||αααx f f T T f f ====故||||||||T x αα=,所以,sup ||||x α<+∞.3.7 设X ,Y 是赋范空间,}0{≠X , 试证明Y 是Banach 空间当且仅当),(Y X L 是Banach 空间.证明思路:明显地,只需证明),(Y X L 是Banach 空间时,Y 是Banach 空间.由于}0{≠X ,因此有1||||,00=∈x X x ,故由Hahn-Banach 定理存在1||||=f ,使得1||||)(00==x x f .若Y y n ∈}{是Cauchy 列,定义算子列),(Y X L T n ∈为n n y x f x T )(=,则),(Y X L T n ∈,并且||||||||n m n m y y T T -=-,因而}{n T 为),(Y X L 的Cauchy 列,所以存在),(Y X L T ∈,使得T T n →.不难证明0Tx y n →,从而Y 是Banach 空间.3.8 设X 是Banach 空间,*X f n ∈且对任意)()(lim ,x f x f X x n n =∈∞→,试证明*∈X f .3.8证明: 由于lim ()()n n f x f x →∞=,因此sup{|()|}n f x <∞对任意x 成立,由X 是Banach黎永锦-部分习题解答145空间可知sup{||||}n f M <<∞因而|()|||||||||||||n n f x f x M x ≤⋅<,所以|()|||||f x M x ≤,即f 是X 的线性连续泛函. 3.10 设X ,Y 是赋范空间,Y X T →:是线性算子,且T 是满射,若存在0>M ,使得||||||||x M Tx ≥对任意X x ∈成立,试证明1-T 是线性连续算子,且MT1||||1≤-. 3.10 证明:由||||||||Tx M x ≥可知T 是单射,因而1T -存在,且对于任意y Y ∈,由T 满射可知存在x X ∈,使得y Tx =,容易验证T 是线性算子,故1111||||||||||||||||||||T y T Tx x Tx y --==≤=,所以,1T -连续,且11||||MT-≤.3.12 设X 是Banach 空间,f 是X 上的非零线性泛函,试证明f 一定是开映射. 3.12证明:由0f ≠可知存在00x ≠,使得0()1f x =,故对于X 的开集G 及任意()f G α∈,必有x G ∈,使得()f x α=,由于是G 开集,故有0ε>,使(,)U x G ε⊂,因此对00,||||||x x x λλε+<,有0x x G λ+∈,因而0()f x x G λ+∈,但00()()()f x x f x f x λλαλ+=+=+,故(,)()f G αεαε-+⊂ ,即α为G 的内点,所以()f G 为开集,即f 一定开映射.3.13 设X 是赋范空间,T 是从X 到X 的线性算子,X T D =)(,S 是从*X 到*X 的线性算子,*=X S D )(若对任意*∈∈X f X x ,,有)())((Tx f x Sf =,试证明T 和S 都是线性连续算子.证明思路:先证S 为闭算子,从而S 是线性连续算子,然后利用Hahn-Banach 定理的推论可泛函分析讲义-黎永锦146知, 当0≠Sx 时,存在1||||,*=∈f X f ,使得||||)(Sx Sx f =,不难进一步证明T 为是线性连续算子.3.14 设X ,Y 是赋范空间,T 为X 到Y 的闭线性算子,F 为X 的紧集,试证明)(F T 为Y 的闭集.3.14证明:若()n y T F ∈,且0n y y →,则存在n x F ∈使得()n n y f x =,由于F 是紧集,因此存在k n x ,使得0k n x x →,且0x F ∈.由0y Tx k n →及T 是闭线性算子可知0y Tx =,所以0()y T F ∈,即)(F T 是闭集.3.15 设X 为Banach 空间,T 为X 到X 的线性算子,若T T =2,且)(T N 和)(T R 都是闭的,试证明),(X X L T ∈.证明思路:由于T 的定义域为X ,因此明显地,只需证明T 为闭线性算子.设有点列X x n ∈}{,X y x ∈,,当∞→n 时,x x n →,y Tx n →.由)(T R 是闭的,)(T R Tx n ∈可知必有X x ∈0,使得0Tx y =.由于T T=2,因此0)(2=-=-n n n n Tx x T x Tx T ,即)(T N x Tx n n ∈-.由)(T N 是闭的,可得)()(lim T N x Tx x y n n n ∈-=-∞→,从而0)(=-x y T .因此y Tx Tx T Ty Tx ====00)(,所以T 为闭线性算子.由闭图像定理可知),(X X L T ∈3.16 设X ,Y 赋范空间,),(,Y X L T T n ∈,若n T 强收敛于T ,试证明n T 弱收敛于T . 3.16证明:由于n T 强收敛于,因此T 对任意x X ∈,有||||0n T x Tx -→,故对于任意*f Y ∈,有|()()||()|||||||||0n n n f T x f Tx f T x Tx f T x Tx -=-≤⋅-→,所以n T 弱收敛于T .黎永锦-部分习题解答147习题四4.2 试证明∞=l l *1.4.2证明:对于任意1x l ∈,有11lim ni ii i n i i x x ex e ∞→∞====∑∑,故对于任意*1f l ∈,有11()lim ()lim ()nni i i i n n i i f x f x e x f e →∞→∞====∑∑由于1111|()||||()|||||||||||||||||n n n niiiiiiii i i i x f e x f e x f e x f ====≤≤⋅⋅=⋅∑∑∑∑因此由1()i x x l =∈可知1||n ii x =∑收敛,从而1()niii x f e =∑绝对收敛,且11|()||()|sup |()|sup |()|||||i i i i i i i f x x f e f e x f e x ∞∞===≤=⋅∑∑令()(())i i y f e α==,则y l ∞∈,且对于任意,都1()i x x l =∈,有1()i i i f x x α∞==∑ 且||||||||f y =.反过来,对于任意 ()i y l α∞=∈,则定义f 为11(),()i iii f x x x x l α∞==∀=∈∑则f 是上的线性连续泛函,且||||sup ||||||i f y α==,所以 ∞=l l *1 4.4 试证明1*l l ≠∞.4.4证明: 用反证法,假设 *1l l ∞=,则由于1l 是可分的,因此是l ∞可分的,但这与1l 不可分矛盾,所以1*l l ≠∞泛函分析讲义-黎永锦1484.6 试证明在2l 中强收敛比按坐标收敛强.4.6证明:若()(0)202(),()n n i i x x l x x l =∈=∈,且0n x x →,则()(0)21/21(||)0n i i i x x ∞=-→∑因此,对于任意i 有()(0)()(0)21/21||(||)n n iii i i xxx x ∞=-≤-∑从而()(0)n ii x x →,所以强收敛比按坐标收敛强.4.7 设X 是无穷维的赋范空间,试证明*X 一定也是无穷维的赋范空间.证明思路:对于任意的自然数n ,由于X 是无穷维的赋范空间,因此存在n 个线性无关的的X e e e n ∈⋅⋅⋅,,,21,由Hahn-Banach 定理,不难证明存在*21,,,X f f f n ∈⋅⋅⋅,使得都成立对任意并且j i e f e f j i i i ≠==,0)(,1)(,从而只需证明n f f f ,,,21⋅⋅⋅是线性无关的,则n X >)dim(*,所以*X 一定也是无穷维的赋范空间.4.8设X 是赋范空间,X x x n ∈,,x x wn −→−,若}{n x 是相对紧的,试证明x x n −→−. 4.8证明:由于{}n x 是相对紧的,因此存在子列{}k n x 收敛于y ,但n x 弱收敛于x ,因此对于任意*f X ∈,有()()k n f x f x →.由{}k n x 收敛于y 可知|()()|||||k kn n f x f y f x y -≤⋅-→,从而()()f x f y =,对任意成*f X ∈立.因而x y =.故k n x x →,所以x x n −→−. 4.10设Y X ,为赋范空间,),(Y X L T ∈,若x x w n −→−,试证明Tx Tx wn −→− 4.10证明:对于任意*g Y∈,定义X 上的泛函()()f x g T x =,则由|()||()||||||f x g T x g T x =≤⋅⋅,可知f 是X 上的线性连续泛函,由于n x 弱收敛x ,因黎永锦-部分习题解答149此()()n f x f x →,因而()()n g Tx g Tx →,所以n Tx 弱收敛Tx .4.12 设X 为Banach 空间,*,,,X f f X x x n n ∈∈n x 弱收敛于x ,且n f 收敛于f ,试证明)()(x f x f n n →.4.12证明:由于n x 弱收敛于x 时,有0M >,使得||||n x M ≤<∞,因此|()()||()()||()()||||||||||()()||||||()()|n n n n n n n n n n n f x f x f x f x f x f x f f x f x f x M f f f x f x -≤-+-≤-⋅+-≤-+-所以,当n x 弱收敛于x ,且n f 收敛于f 时,有()()n n f x f x →.4.14设Y X ,是Banach 空间,),(Y X L T ∈,且1-T 存在且有界,试证明*T 的逆存在且*11*)()(--=T T .4.14证明:由 **11*()()T T T T I --==及 1**1*()()T T TT I --==可知*1()T -存在,并且*11*)()(--=T T .4.16设X 是赋范空间,}{,0n w n x span M x x =−→−,试证明M x ∈0. 4.16证明:反证法,假设0x M ∉,则由于M 是闭子空间,因此0(,)0d x M >,故由Hahn Banach-定理可知存在*f X ∈,使得00()(,)f x d x M =且对于任意 ,()0x M f x ∈=,所以00()0,()(,)0n f x f x d x M ==>,但这与n x 弱收敛于0x 矛盾,因而n x 弱收敛0x 时,一定有0x M ∈.习题五泛函分析讲义-黎永锦1505.2设X 是内积空间,X y ∈,试证明),()(y x x f =是X 上的线性连续泛函,且||||||||y f =.5.2证明: 由()(,)f x x y =可知f 线性泛函,且|()||(,)|||||||||f x x y x y =≤⋅,因此f 是X 上的连续线性泛函,并且||||||||f y ≤,取||||y y x =,则||||||||1,|()||(,)|(,)||||y y x f x x y y y ====,所以,||||||||f y =.5.4 设X 是内积空间,X e e n ∈,,1 ,若=),(j i e e ⎩⎨⎧=≠.1j,0j i ,i试证明n e e ,,1 线性无关.5.4证明:若12,,,n e e e X ∈ ,且=),(j i e e ⎩⎨⎧=≠.1j ,0j i ,i则对于i K α∈,当10ni ii eα==∑时,有1(,)0ni i i i i e e αα===∑.因此120n ααα==== ,所以12,,,n e e e 线性无关.5.6 设M 是Hilbert 空间X 的闭真子空间,试证明⊥M 含有非零元素.5.6 证明: 由M 是X 的真子空间,因而对\x X M ∈,存在0x M ⊥∈,使得 00x x y =+,由x M ∉及0x M ∈可知00x x -≠所以0y ≠,且y M ⊥∈,即M ⊥含有非零元.5.8 设M 是Hilbert 空间X 的闭真子空间,试证明⊥⊥=M M .5.8证明:由于M M⊥⊥⊂,因此只须证MM ⊥⊥⊂.对于任意x M ⊥⊥∈有y M ⊥∈使得0x x y =+,由M M ⊥⊥⊂可知0x M ⊥⊥∈,故0x x M ⊥⊥-∈,因此0y x x M ⊥⊥=-∈,所以y y ⊥,因而0y =,从而MM ⊥⊥⊂.黎永锦-部分习题解答1515.9 设f 是实内积空间3R 上的线性连续泛函,若32132)(x x x x f ++=,试求X y ∈,使得),()(y x x f =.5.9 解答:取)3,2,1(,3=∈y R y ,则一定有32132)(x x x x f ++=. 5.10 设M 是内积空间X 的非空子集,试证明⊥⊥⊥⊥=M M . 5.10 证明:由()MM ⊥⊥⊥⊥⊥⊥=可知, M M ⊥⊥⊥⊥⊂.反过来,对任意x M ⊥⊥⊥∈,及y M M⊥⊥∈⊂,可知(,)0x y =,因而x y ⊥对于任意y M ∈成立,故x M ⊥∈因此M M ⊥⊥⊥⊥⊂,所以M M ⊥⊥⊥⊥=.5.12 设X 是Hilbert 空间,M 、N 是X 的闭真空间,N M ⊥,试证明N M +是X 的闭子空间.5.12证明:明显地N M +是X 的线性子空间,因此只须证N M +在X 中是闭的,若,,n n n n x y M N x M y N +∈+∈∈,且n n x y z +→,则由于X 是Hilbert 空间,M 是闭子空间,因此,,z x y x M y M ⊥=+∈∈,故,n n x x M y y M ⊥-∈-∈.因而22222||||||||||||||()||||||0n n n n n n n n x x y y x x y y x y x y x y z -+-=-+-=+-+=+-→,所以,n n x x y y →→,故,,z x y x M y N =+∈∈,即N M +是的X 闭子空间. 5.14 设X 是内积空间,X y x ∈,,试证明y x ⊥的充要条件为对任意K ∈α,有||||||||y x y x αα-=+.5.14 证明:若x y ⊥,则对任意K α∈,有2222||||(,)(,)(,)(,)(,)||||||||||x y x y x y x x x y y x y y x y αααααααα+=++=+++=+ 且2222||||||||||||||x y x y αα+=+ 因此||||||||y x y x αα-=+.泛函分析讲义-黎永锦152反过来,若K α∈,有||||||||y x y x αα-=+,则由(,)(,)(,)(,)(,)x y x y x x x y y x y y αααααα++=+++和(,)(,)(,)(,)(,)x y x y x x x y y x y y αααααα--=--+可知2(,)2(,)0x y y x αα+=令(,)x y α= ,则22|(,)||(,)|0x y x y += 因而(,)0x y =,所以x y ⊥.5.16设X 是内积空间,X y x ∈,,试证明y x ⊥当且仅当对任意K∈α,有||||||||x y x ≥+α.5.16证明:若x y ⊥,则对任意K α∈,有x y α⊥,因此 22222||||||||||||||||||x y x y x αα+=+≥,所以||||||||x y x ≥+α.反过来,若对任意K α∈,有||||||||x y x ≥+α,则 令2(,)||||x y y α=-,由22||||||||0x y x α+-≥及|||||),(|),(|||||),(||||||),(||||||),(|),(||),(),(),(),(),(),(),(),(),(224222222≥-=+--=++=-+++=-++y y x y y y y x y y x y y x y y x y y x x x y y x y y x x x x x y x y x αααααααα因此(,)0x y =,所以,x y ⊥.5.17 设}|{N i e i ∈是内积空间X 的正交规范集,试证明黎永锦-部分习题解答153|||||||||),)(,(|1y x e y e x i ii⋅≤∑∞=对任意X y x ∈,成立.5.17证明:由于{|}i e i N ∈是X 的正交规范集,因此对任意,x y X ∈,有222211|(,)|||||,|(,)|||||ii i i x e x y e y ∞∞==≤≤∑∑故21/221/2111|(,)(,)|[|(,)|][|(,)|]||||||||iiiii i i x e y e x e x e x y ∞∞∞===≤=⋅∑∑∑5.18设}|{N i e i ∈为Hilbert 空间的正交规范集,}{i e span M =,试证明M x ∈时,有i i i e e x x ∑∞==1),(.5.18证明:若x M ∈,则由于{}i e 是正交规范集,因此221|(,)|||||ii x e x ∞=≤∑.因为X 是完备的,所以由22||(,)|||(,)|0n p n p iiii ni nx e e x e ++===→∑∑ 可知1(,)i ii x e e ∞=∑是收敛级数,记1(,)iii y x e e ∞==∑,则1(,)((,),)(,)(,)0j i i j j j i x y e x x e e e x e x e ∞=-=-=-=∑故x y M -⊥,由,x y M ∈,可知x y M -∈,因而x y x y -⊥-,所以,0x y -=,即ii iee x x ∑∞==1),(.泛函分析讲义-黎永锦1545.19设}{n x 是Hilbert 空间X 的正交集,试证明1{}ii x ∞=∑弱收敛当且仅当21||||ii x ∞=<∞∑.5.19证明:若1ii x ∞=∑弱收敛,则存在0M >,使得M x ni i≤∑=||||1对任意n 成立,故由{}ix 是正交集可知22211||||||||ii i i x x M ∞∞===≤∑∑,所以21||||i i x ∞=<∞∑.反之,若21||||ii x ∞=<∞∑,则由0||||||||2121→=∑∑++=++=pn n i ipn n i ix x 可知1{}i i x ∞=∑是X 的Cauchy 列,所以1i i x ∞=∑在Hilbert 空间X 中收敛,因而1i i x ∞=∑弱收敛.5.20设}|{∧∈=ααe S 是内积空间X 的正交规范集,则对于任意}|),{(,∧∈∈ααe x X x 中最多只有可列个不为零,且22|||||),(|x e x i ≤∑∧∈α.5.20证明:若Λ是有限集,则明显地,有22|||||),(|x e x i≤∑∧∈α若Λ不是有限集,则对于任意}1),(|{,me x e S N m m ≥=∈αα,只能是有限集,因而'1m m S S ∞== 是可数集,且对任意'\e S S α∈,有(,)0x e α=,故22|||||),(|x e x i ≤∑∧∈α5.21 设X 是Hilbert 空间,),(X X L T ∈,若1-T 存在,且),(1X X L T∈-,试证明1*)(-T 存在且*11*)()(--=T T .5.21 证明:由于X 是Hilbert 空间,且),(1X X L T∈-,因此1*()T -存在.对于任意,x y X ∈,有11**1*(,)(,)(,())(,())x y T Tx y Tx T y x T T y ---===黎永锦-部分习题解答155又因为11*1**(,)(,)(,)(,())x y TT x y T x T y x T T y ---===,所以,*1*1**()()T T T T --=,因而*11*)()(--=T T .5.22 设X 是Hilbert 空间,),(,X X L T T n ∈,若T T n →,试证明**T T n →.5.22证明:由***()n n T T T T -=-及*||()||||||n n T T T T -=-,可知n T T →时,有**||||||||0n n T T T T -=-→,因此**T T n →.5.24 若X 是Hilbert 空间,),(,X X L T S ∈是自伴算子,R ∈βα,,试证明T S βα+是自伴算子.5.24证明:由于,S T 是自伴算子,因此*S S = ,且*T T =,所以对于***,,()R S T S T S T αβαβαβαβ∈+=+=+.5.25 设X 是Hilbert 空间,),(X X L T ∈,若T 是自伴算子,N n ∈,试证明n T 是自伴算子.5.25证明:由于*T T =,因此***()()()n nnT T T T T T =⋅⋅⋅== ,所以n T 是自伴的.5.26 设X 是复H i l b e r t 空间,),(X X L T ∈若试证明存在唯一的自伴算子),(,21X X L T T ∈,使得21iT T T +=,且21*iT T T -=.5.26 证明:令**111222(),()iT T T T T T =+=-,则),(,21X X L T T ∈,且*1212,T T iT T T iT =+=-由于***1111*******11122222()(),[()]()()iii T T T T T T T T T T T T T T =+=+==-=--=-=因此1T 和2T 都是自伴算子.假设存在自伴算子12,(,)S S L X X ∈,使得12T S iS =+,则1212S iS T iT +=+且**12121212()()S iS S iS T iT T iT -=+=+=-,因此1122,S T S T ==.泛函分析讲义-黎永锦156所以,存在唯一的自伴算子),(,21X X L T T ∈,使得*1212,T T iT T T iT =+=-. 5.27 设X 是Hilbert 空间,T T X X L T T n n →∈),,(,,若n T 是正规算子,试证明T 是正规算子.5.27 证明:由于n T 是正规,因此**n n n T T T T =故************************||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||n n n n n n n n n n n n n n n nn n n nn n n n n T T TT TT T T T T T T TT T T TT T T TT T T TT TT TT T T T T T T T T T T T T T T T T T T T T T -≤-+-+-≤-+-≤-+-⋅-+-≤⋅-+⋅-+⋅-+⋅**||n T -由n T T →可知**n T T →,所以**||||0T T TT -=即T 是正规算子.5.28 设X 是复H i l b e r t 空间,),(X X L T ∈,试证明T 是正规算子当且仅当||||||||*Tx x T =对于任意X x ∈成立.5.28 证明:若T 是正规算子,则**T T TT =,因此对于任意x X ∈,有**((),)0T T TT x x -=,故**(,)(,)T Tx x TT x x =,因此**(,)(,)Tx Tx T x T x =,所以*||||||||T x T x =对任意x X ∈成立.反之,若对任意x X ∈有*||||||||T x Tx =,则**(,)(,)Tx Tx T x T x =,故**(,)(,)T Tx x TT x x =.因而**((),)0T T TT x x -=对任意x X ∈成立.所以**0TT T T -=,即是T 正规算子.5.29 设X 是Hilbert 空间, T 是X 到X 的线性算子,若对任意,x y X ∈,有(,)(,)Tx y x Ty =,试证明T 是连续线性算子.5.29 证明:由于()D T X =,因此只须证T 是闭线性算子,若00,n n x x Tx y →→,则对于黎永锦-部分习题解答157任意y X ∈,有000(,)lim(,)lim(,)(,)(,)n n n n y y Tx y x Ty x Ty Tx y →∞→∞====故00(,)(,)y y Tx y =对任意y X ∈成立,因此00Tx y =,因而T 是闭线性算子,所以由闭图象定理可知T 是连续的.学年论文可选的题目学完一门课程,如能对所学内容做些比较系统的整理和思考,对加深该课程的理解和进一步学习都会有很好的帮助.学年论文的写作,可以提高阅读有关文献资料的能力,学会从书本和论文中了解有关信息、得到启发.并可有目的、有计划地搜集相关资料,可以养成独立思考和研究探索的好习惯. 下面的一些题目和思路可供参考:1. 抽象空间的球具有哪些奇怪的性质,在度量空间和赋范空间中,它们的性质有哪些不同,如开球的闭包一定是与开球球心和半径一样的闭球吗?开球有可能是闭集吗?2. 不动点定理的推广和应用,特别是在微分方程中的一些应用.3. 度量空间和赋范空间中,序列的各种收敛性的相互关系.4. 度量空间和赋范空间中,紧、完备、闭、有界等的相互关系.5. 凸集和凸函数的性质.6. 线性连续泛函和可加泛函的性质.7. 一致有界原理的应用.8. 逆算子定理或闭算子定理的应用. 9. Hahn-Banach 定理及其推广和应用. 10. 内积空间中的正交性的推广.11. 平面几何的有关概念和性质在Hilbert 空间的推广.泛函分析讲义-黎永锦12. 数学分析中的Fourier 级数相关概念在内积空间的推广.13. 赋范空间中的级数收敛的判别法.158。