数控铣刀具半径补偿的建立
- 格式:ppt
- 大小:363.00 KB
- 文档页数:19
数控铣编程中刀具半径补偿和长度补偿【摘要】刀具中心轨迹与工作轨迹常不重合。
通过刀具补偿功能指令,数控铣床系统可以根据输入补偿量或者实际的刀具尺寸,使数控铣床自动加工出符合程序要求的零件。
刀具半径补偿即根据按轮廓编制的程序和预先设定的偏置参数,实时自动生成刀具中心轨迹的功能成为刀具半径补偿功能。
【关键词】数控铣床;刀具;半径补偿;长度补偿1.刀具半径补偿由于数控加工的刀具总有一定的半径,刀具中心运动轨迹并不等于所需加工零件的实际轮廓,而是偏移轮廓一个刀具半径值。
在进行外轮廓加工时,使刀具中心偏移零件零件的外轮廓表面一个刀具半径值,加工内轮廓时,使刀具中心偏移零件内轮廓表面一个刀具半径值,这种偏移习惯上称为刀具半径补偿数控铣床刀具类型0-9种,这些内容应当事前输入刀具编制文件。
刀具半径补偿的轮廓切削。
刀具半径补偿的灵活应用,灵活应用的思路使用刀具半径补偿功能。
随着计算机技术和数控技术的发展都经历了B(Base)功能C极坐标法,法、矢量判断法。
刀具补偿技术和C功能刀具半径技术。
目前,数控系统中普遍采用的是C功能刀具半径补偿技术。
2.C功能刀具半径补偿的基本思想数控系统C功能刀具半径补偿的硬件结构由缓冲寄存器CS、工作寄存器AS和输出寄存器OS等部分组成。
在C功能刀补工作状态中,数控铣床装置内部总是同时存储着三个程序段的信息。
进行补偿时,第一段加工程序先被读入BS,在BS中算得的第一段编程轨迹被送到CS暂存后,又将第二段程序读入BS,算出第二段的编程轨迹。
接着对第一、第二两段编程轨迹的连接方式进行判别,根据判别结果,再对CS中的第一段编程轨迹进行相应的修正。
修正结束后,顺序地将修正后的第一段编程轨迹由CS送到AS,第二段编程轨迹由BS送入CS。
随后,由CPU将AS中的内容送到OS进行插补运算,运算结果送到伺服驱动装置予以执行。
当修正了第一段编程轨迹开始被执行后,利用插补间隙,CPU又命令第三段程序读入BS。
2012年1月内蒙古科技与经济Januar y 2012 第1期总第251期Inner M o ngo lia Science T echnolo gy &Economy N o .1T o tal N o .251数控铣床编程中刀具半径补偿的应用X谢艳艳(内蒙古机电职业技术学院,内蒙古呼和浩特 010070) 摘 要:介绍了刀具半径补偿的原理,探讨了实际编程中对半径补偿的应用技巧,在数控铣床编程中灵活运用刀具半径补偿。
关键词:数控编程;刀具半径补偿 中图分类号:T G547 文献标识码:A 文章编号:1007—6921(2012)01—0095—02 在数控铣床上进行零件加工时,大多需要多把刀具来完成,由于每把刀具都有一定的半径值,致使在加工过程中程序所控制的刀具刀位点的轨迹和实际刀具切削刃口切削出的形状并不重合,它们在尺寸大小上存在一个刀具半径的差别,为了简化编程,常用刀具半径补偿功能,使刀具沿工件轮廓的法向偏移一个刀具半径值。
所谓的刀具半径补偿就是根据零件轮廓编制的加工程序和预先设定在机床内的参数,实时自动生成刀具中心轨迹的功能。
1 刀具半径补偿的原理图1 刀具半径补偿原理工件加工过程中,如果按零件图中给出的尺寸进行加工,刀具中心轨迹与工件轮廓总是相差一个刀具半径差。
因此,必须使刀具在加工前沿工件的法向偏移一个刀具半径值,见图1。
刀具半径补偿(简称“刀补”)分为3步:¹刀补的引入:在刀具从O 点运动到A 点的过程中偏移一个刀具半径值,即刀具中心轨迹从与编程轨迹重合过渡到与编程轨迹偏离一个偏置量的过程;º刀补进行:刀具在加工零件的过程中(A →B →C →D →E ),刀具中心轨迹始终与编程轨迹相距一个偏置量,直到刀补取消(图1中实线与点划线之间相差一个刀具半径值);»刀补取消:刀具离开工件从E 点运动到O 点的过程中取消刀补,刀补取消的过程实际就是刀具中心轨迹过渡到与编程轨迹重合的过程。
刀具半径补偿原理及补偿规则在加工过程中,刀具的磨损、实际刀具尺寸与编程时规定的刀具尺寸不一致以及更换刀具等原因,都会直接影响最终加工尺寸,造成误差。
为了最大限度的减少因刀具尺寸变化等原因造成的加工误差,数控系统通常都具备有刀具误差补偿功能。
通过刀具补偿功能指令,CNC系统可以根据输入补偿量或者实际的刀具尺寸,使机床自动加工出符合程序要求的零件。
1.刀具半径补偿原理(1)刀具半径补偿的概念用铣刀铣削工件的轮廓时,刀具中心的运动轨迹并不是加工工件的实际轮廓。
如图所示,加工内轮廓时,刀具中心要向工件的内侧偏移一定距离;而加工外轮廓时,同样刀具中心也要向工件的外侧偏移一定距离。
由于数控系统控制的是刀心轨迹,因此编程时要根据零件轮廓尺寸计算出刀心轨迹。
零件轮廓可能需要粗铣、半精铣和精铣三个工步,由于每个工步加工余量不同,因此它们都有相应的刀心轨迹。
另外刀具磨损后,也需要重新计算刀心轨迹,这样势必增加编程的复杂性。
为了解决这个问题,数控系统中专门设计了若干存储单元,存放各个工步的加工余量及刀具磨损量。
数控编程时,只需依照刀具半径值编写公称刀心轨迹。
加工余量和刀具磨损引起的刀心轨迹变化,由系统自动计算,进而生成数控程序。
进一步地,如果将刀具半径值也寄存在存储单元中,就可使编程工作简化成只按零件尺寸编程。
这样既简化了编程计算,又增加了程序的可读性。
刀具半径补偿原理(2)刀具半径补偿的数学处理①基本轮廓处理要根据轮廓尺寸进行刀具半径补偿,必需计算刀具中心的运动轨迹,一般数控系统的轮廓控制通常仅限于直线和圆弧。
对于直线而言,刀补后的刀具中心轨迹为平行于轮廓直线的一条直线,因此,只要计算出刀具中心轨迹的起点和终点坐标,刀具中心轨迹即可确定;对于圆弧而言,刀补后的刀具中心轨迹为与指定轮廓圆弧同心的一段圆弧,因此,圆弧的刀具半径补偿,需要计算出刀具中心轨迹圆弧的起点、终点和圆心坐标。
②尖角处理在普通的CNC装置中,所能控制的轮廓轨迹只有直线和圆弧,其连接方式有:直线与直线连接、直线与圆弧连接、圆弧与圆弧连接。
欢迎阅读数控铣床与加工中心5.4 刀具补偿和偏置功能刀具补偿可分为刀具长度补偿和刀具半径补偿,其内容和方法已在前面章节中作了详细说明,本章拟用另外一种指令格式对刀具长度补偿功能进行介绍,目的在于进一步强调不同的数控系统对同一编程功能可能采用不同的指令格式。
5.4.1B型刀G41G42XY、ZX 或YZ时,迹。
偏置计算在由G17、G18和G19确定的平面内进行,该平面称之为偏置平面。
例如在已经选择了XY平面时,仅对程序中(X、Y)或(1、J)计算偏置量,并计算偏置矢量。
不在偏置平面内的轴的坐标值不受偏置的影响。
在3轴联动控制中,投影到偏置平面上的刀具轨迹才得到偏置补偿。
(4).刀补的建立与刀补的取消刀补的建立是进入切削加工前的一个辅助程序段,刀补的取消是加工完成时要写入到程序中的辅助程序段,如果处理得好则有利于简捷快速而又安全地使刀具进入切入位置和加工完了时退出刀具。
刀补建立时的核心问题是刀具从何处下刀并进入到工件加工的起始位置,刀补取消时则主要应考虑刀具沿何方向退离工件。
系统操作说明书中讨论了各种可能遇到的情况,为简化叙述,下面仅根据习惯的编程方法讨论刀补建立与刀补取消的问题。
不使用这些方法一般也可以正确地完成刀补建立与刀补取消的过程,但特殊情况下可能出现过切或报警。
1)使用GOO或G01的运动方式均可完成刀补建立或取消的过程,事实上使用G01往往是出于安全的考虑。
而如果不把刀补的建立(包括刀补的取消)建立在加工时的Z轴高度上,而采取先建立补偿再下刀或先提刀再取消补偿的方法,则既使在GOO的方式下建立(或取消)刀补也是安全的。
2)为了便于计算坐标,可以按图5-18所示两种方式来建立刀补,图5-18a为切线进入方式,图5-18b为法线进入方式。
同样取消刀补通常也采用这种切线或法线的方式。
图5-18 两种刀补建立方式图5-19 内圆轮廓的补偿3)在不便于直接沿着工件的轮廓线切向切入和切向切出时,可再增加一个圆弧辅助程序段。
关键词:刀具半径补偿数控铣床G10指令1刀具半径补偿的概念及作用1.1刀具半径补偿的概念在FUNAC0i系统的数控铣床加工零件过程中,数控系统控制的是铣刀中心的运动轨迹,而用户一般都是按图纸尺寸以零件的轮廓来编制加工程序,因此需要一种能按零件轮廓编制的程序和预先设定的偏置参数,让数控装置实现自动生成刀具中心轨迹的功能,这就是刀具半径补偿功能。
根据规定,当刀具中心轨迹在编程轨迹(零件轮廓)前进方向的左边时,称为刀具半径左补偿,用G41指令实现;当刀具中心轨迹在编程轨迹(零件轮廓)前进方向的右边时,称为刀具半径右补偿,用G42指令实现。
取消刀补则用G40指令。
在实际加工中,整个刀具半径补偿的过程分为建立刀补、执行刀补、取消刀补三个阶段[1]。
1.2刀具半径补偿的作用在对零件进行编程加工的过程中,采用刀具半径补偿功能,可以有效简化编程的难度与工作量。
实际体现在以下几个方面:1)由于刀具半径补偿实现了根据编程轨迹对刀具中心轨迹的控制,因此可以避免在加工过程中由于刀具半径的变化(如刀具因损坏而换刀、刀具磨损等原因)而需要重新编程的麻烦,只需修改相应的偏置参数即可。
2)由于零件轮廓在加工时往往不是一道工序能完成的,在粗加工时,一般都要为精加工预留一定的加工余量,而加工余量的预留就可以通过修改偏置参数实现,而不必为粗、精加工各编制一个程序,可以大大减少粗、精加工程序编制的工作量。
2“公式法”精确修正刀补值保证尺寸精度以学生在实训时的典型零件为例,两个轮廓尺寸有严格的尺寸精度要求,分别是外轮廓尺寸92+0.091+0.037和内轮廓尺寸18-0.016-0.043。
在实际加工中,学生往往会根据零件尺寸要求直接修改刀具半径补偿值来满足零件的尺寸精度。
因此,学生能熟练利用公式计算正确的刀具半径补偿值是影响零件合格的关键因素。
在零件加工过程中,通常要按照粗、精加工的工艺顺序依次完成,且对于每个轮廓,一般采用独立的刀具半径补偿值,因此在粗加工外轮廓、内轮廓时通常要预留精加工余量,并分别采用地址寄存器D01和D02,以“刀具半径+精加工余量”刀具半径补偿值输入相应地址寄存器中来实现。
加刀具半径补偿时的注意事项在数控铣床上使用刀具补偿时,必须特别注意其执行过程的原则,否则往往容易引起加工失误甚至报警,使系统停止运行或刀具半径补偿失效等。
①刀具半径补偿的建立与取消只能G01、GOO来实现,不得用G02和G03。
②建立和取消刀具半径补偿时,刀具必须在所补偿的平面内移动,且移动距离应大于刀具补偿值。
③D00~D99为刀具补偿号,D00意味着取消刀具补偿,(既G41/G42 X_Y_D00等价于G40)。
刀具补偿值在加工或试运行之前须设定在补偿存储器中。
④加工半径小于刀具半径的内圆弧时,进行半径补偿将产生刀具干涉,只有过渡圆角R≥刀具半径r+精加工余量的情况才能正常切削。
⑤在刀具半径补偿模式下,如果存在有连续两段以上非移动指令(如G90、M03等)或非指定平面轴的移动指令,则有可能产生过切现象。
【例5-3-2】如图5-3-5所示,起始点在(X0,Y0),高度在50mm 处,使用刀具半径补偿时,由于接近工件及切削工件要有Z轴的移动,如果N40、N50句连续Z轴移动,这时容易出现过切削现象。
O5002N10 G90 G54 G00 X0 Y0 M03 S500N20 G00 Z50 安全高度N30 G41 X20 Y10 D01 建立刀具半径补偿N40 Z10N50 G01 Z-10.0 F50 连续两句Z轴移动,此时会产生过切削N60 Y50N70 X50N80 Y20N90 X10N100 G00 Z50 抬刀到安全高度N110 G40 X0 Y0 M05 取消刀具半径补偿N120 M30图5-3-5 刀具半径补偿的过切削现象以上程序在运行N60时,产生过切现象,如图5-3-5所示。
其原因是当从N30刀具补偿建立后,进入刀具补偿进行状态后,系统只能读入N40、N50两段,但由于Z轴是非刀具补偿平面的轴,而且又读不到N60以后程序段,也就做不出偏移矢量,刀具确定不了前进的方向,此时刀具中心未加上刀具补偿而直接移动到了无补偿的P1点。