第11章 叶片式泵与风机得理论基础
- 格式:ppt
- 大小:3.21 MB
- 文档页数:76
回忆上次课所做的实验
被输送的是理想液体,液体在叶轮内流动不存在流动阻力;
:完全不可压缩的无粘滞性的流体。
不可压缩:流体中任一质量元在流动过程中体积都不会变化。
中各部分之间无摩擦阻力的作用。
:在流体占据的空间里,每一点都对应于一个表示该处流体流动速度的流速矢量,构成了流体在空间中的离心泵工作时,液体一方面随叶轮作旋转运动,同时又经叶轮流道向外流动,因此液体在叶轮内的流动情况是十分复杂的。
二、流体在叶轮中运动的速度三角形
理想流体在理想叶轮中的旋转运动应是等角速度的。
α表示绝对速度与圆周速度两矢量之间的夹角,
速度反方向延线的夹角,称之为流动角。
α及β的大小与叶片的形状有关。
速度三角形是研究叶轮内流体流动的重要工具,在分析泵的性能、确定叶轮进出口几何参数时都要用到它。
由速度三角形并应用余弦定理得到
当叶轮的直径和转速、叶片的宽度及理论流量一定时,离心泵的理论压头随叶片的形状而变。
实际上离心泵多采用的一种叶片。
理论压头居中;
产生的理论压头最大;
不断增大;但H
p 随β
2
的变化却不同,在β
2
<90度时,
所占的比例大致相当,在β
2>90时,H
p
所占比例较少,
一定,若、
前面讨论的是理想液体通过理想叶轮时的H
T∞-Q
T
的关系曲线上,叶轮的叶片数目是有限的,
因此,液体并非完全沿叶片弯曲形状运动,而且在流道中产生与旋转方向不一致的旋转运动,称为轴向涡流。
于是,实际的圆周都较理想叶轮的为小,致使泵的压头降低。
第八章叶片式泵与风机的理论第一节离心式泵与风机的叶轮理论离心式泵与风机是由原动机拖动叶轮旋转,叶轮上的叶片就对流体做功,从而使流体获得压能及动能。
因此,叶轮是实现机械能转换为流体能量的主要部件。
一、离心式泵与风机的工作原理泵与风机的工作过程可以用图2—l来说明。
先在叶轮内充满流体,并在叶轮不同方向上取A、B、C、D几块流体,当叶轮旋转时,各块流体也被叶轮带动一起旋转起来。
这时每块流体必然受到离心力的作用,从而使流体的压能提高,这时流体从叶轮中心被甩向叶轮外缘,,于是叶轮中心O处就形成真空。
界流体在大气压力作用下,源源不断地沿着吸人管向O处补充,而已从叶轮获得能量的流体则流人蜗壳内,并将一部分动能转变为压能,然后沿压出管道排出。
由于叶轮连续转动,就形成了泵与风机的连续工作过程。
流体在封闭的叶轮中所获得的能(静压能):上式指出:流体在封闭的叶轮内作旋转运动时,叶轮进出口的压力差与叶轮转动角速度的平方成正比关系变化;与进出口直径有关,内径越小,外径越大则压力差越大,但进出口直径均受一定条件的限制;且与密度成正比关系变化,密度大的流体压力差也越大。
二、流体在叶轮内的运动及速度三角形为讨论叶轮与流体相互作用的能量转换关系,首先要了解流体在叶轮内的运动,由于流体在叶轮内的运动比较复杂,为此作如下假设:①叶轮中叶片数为无限多且无限薄,即流体质点严格地沿叶片型线流动,也就是流体质点的运动轨迹与叶片的外形曲线相重合;②为理想流体,即无粘性的流体,暂不考虑由粘性产生的能量损失;③流体作定常流动。
流体在叶轮中除作旋转运动外,同时还从叶轮进口向出口流动,因此流体在叶轮中的运动为复合运动。
当叶轮带动流体作旋转运动时,流体具有圆周运动(牵连运动),如图2—3(a)所示。
其运动速度称为圆周速度,用符号u表示,其方向与圆周切线方向一致,大小与所在半径及转速有关。
流体沿叶轮流道的运动,称相对运动,如图2—3(b)所示,其运动速度称相对速度,符号w表示,其方向为叶片的切线方向、大小与流量及流道形状有关。
(红色字是需要删除的内容,绿色字是改动过的内容,仅做参考!)第十一章 相似理论在泵与风机中的应用【本章重点】泵与风机的相似条件与相似定律,比转数与无因次性能参数。
【本章难点】相似定律的应用【学习目标】理解泵与风机几何、运动、动力相似的内容;掌握流量、扬程和功率(相似)定律的具体内容,理解比转数对风机的分类方法(,掌握风机性能曲线与无因次性能曲线的换算方法)。
泵与风机的相似理论(定律)是研究几何相似的泵或风机在相似工况之间性能参数的关系。
(它应用于)泵与风机的研制、选用与运行中(性能参数的换算),可以解决以下三方面问题。
首先,研制新的泵与风机尤其大型机,需要通过模型试验,原型与模型之间性能参数按相似律进行换算。
第二,泵与风机的设计与制造按系列进行,同一系列的泵与风机是几何相似的,它们的性能参数符合相似律。
第三,同一台泵与风机,当转数(速)改变或流体密度改变时,性能参数随之变化,需要用相似律进行换算。
工程上使用的泵与风机有不同的尺寸,并且可以在不同的转速下运行。
对于不同尺寸的和转速的泵与风机,其工作参数各不相同,但存在内部流动彼此相似的泵与风机。
根据流动的相似性,相似的泵和风机相应的运行参数(之)间必(然)存在着一定的关系,这种关系正是相似理论所描述的。
第一节 相似条件根据流体力学中的相似理论我们可以知道,要使泵与风机内部流体流动相似,必须满足几何相似、运动相似和动力相似三个相似条件。
在下面的讨论中,以下标“m”表示模型的各参数,和以“p”表示原型的各参数。
一、 几何相似几何相似是指模型和原型各对应的线性尺寸成比例且比值为一常数,对应的角度相等,叶片数相等。
图11-1表示满足几何相似的两个叶轮,其参数满足:pm p m p m p m p m D Db b b b D D D D ==== 22112211 (11-1)p m 11ββ=,p m 22ββ=(图中实型中的参数无下标)图11-1 几何相似和运动相似的叶轮二、 运动相似运动相似是指几何相似的泵与风机的流场中,流体对应点对应的速度大小成同一比值为一常数,且夹角相等,方向相同。
泵与风机课程自学指导书第0章绪论一、本章的核心、重点及前后联系(一)本章的核心本章的核心问题是要求学生对泵与风机有一个初步认识,这个认识从三个角度:在火力发电厂中的重要作用;表征整体性能的基本性能参数;叶片泵的工作原理。
(二)本章重点本章的重点是基本性能参数的物理意义。
(三)本章前后联系通过本章的学习,使学生对泵与风机有一个初步了解,激发学习后续内容的兴趣,奠定学习后续内容的基础。
二、本章的基本概念、难点及学习方法指导(一)本章的基本概念本章的基本概念是泵与风机的基本性能参数:流量、扬程、全压、轴功率、效率、转速。
(二)本章难点及学习方法指导本章的难点是泵与风机的工作原理,可以通过网络搜索一些相关动画加深理解。
三、典型例题分析通过自学例0-1,明白实际运行时的工作参数可能和额定参数不一致,造成这种情形的原因是管路系统的影响。
该例题还为解决实际问题提供了分析思路。
四、思考题、习题及习题解答(一)思考题、习题1.试述泵与风机在火力发电厂中的作用。
2.简述泵与风机的定义及它们在热力发电厂中的地位?3.写出泵有效功率表达式,并解释式中各量的含义和单位。
4.风机全压和静压的定义式是什么?5.试求输水量q v=50m3/h时离心泵所需的轴功率。
设泵出口处压力计的读数为25.5×104Pa,泵入口处真空计的读数为33340Pa,压力计与真空计的标高差为△z=0.6m,吸水管与压水管管径相同,离心泵的总效率η=0.6。
6.离心式风机的吸入风道及压出风道直径均为500mm,送风量q v=18500m3/h。
试求风机产生的全压及风机入口、出口处的静压。
设吸入风道的总阻力损失为700Pa,压出风道的总阻力损失为400Pa(未计压出风道出口的阻力损失),空气密度ρ=1.2kg/m3。
7.有一普通用途的离心式风机,其全压p=2000Pa,流量qv=47100m3/h,全压效率η=0.76,如果风机轴和原动机轴采用弹性联轴器连接,试计算该风机的全压有效功率、轴功率,并选配电机。
教学大纲(理论课)课程名称:工程流体力学总学时(学分):56 学时,其中讲授44 学时,实验8 学时,自修4 学时面向专业:农业建筑环境与能源工程一、课程的性质、地位和任务1、性质、任务《工程流体力学》是农业建筑环境与能源工程专业必修的一门学科基础课,同时又是一门独立性很强的技能培训课。
通过本课程的教学,使学生掌握流体力学的基本概念、基本原理和基本计算,具备一定的实验技能,培养学生分析问题和解决问题的能力以及创新能力,为后继专业课的学习以及将来从事专业技术工作打下基础。
此外,通过本课程的的学习,还可以培养学生学会学习。
2、本课程与相关课程的衔接、配合关系先修课程:高等数学、大学物理后续课程:过程流体机械、过程设备原理、过程设备设计、毕业设计二、课程教学目标与基本要求(1)本课程要求有课堂讲授和实验环节。
(2)通过本课程的学习,应使学生掌握静力学的基本方程及其应用,熟悉流体的相对平衡。
(3)掌握静止液体对各种壁面作用力的计算方法。
(4)理解流体运动的各种基本概念,能应用动量方程和伯努利方程解决有关实际问题。
(5)掌握一般阻力计算方法,能够进行各种管路计算。
(6)了解流动相似的概念和量纲分析方法;掌握流体实验的基本方法和技能。
三、教学内容第一章绪论(2学时)1、流体的定义和特征2、流体连续介质的假设3、作用在流体上的力4、流体的特性及主要物性参数(粘性、密度等)5、液体的表面性质基本要求:掌握流体连续介质的假设,了解作用在流体上的力和流体的主要物理性质、液体的表面性质。
重点:流体的定义和特征、连续介质的假设、作用在流体上的力、流体的主要物理性质、液体的表面性质。
难点:流体的连续介质的假设、流体的粘性和液体的表面张力等都是以前未曾接触过的新概念,必须准确理解。
第二章流体静力学(8学时)1、流体的静压强及其特性2、流体静压强的分布规律3、压强的计算基准和量度单位4、液柱测压计5、作用于平面的液体压力6、作用于曲面的液体压力7、流体平衡微分方程式8、液体的相对平衡基本要求:掌握流体的静压强及特性、流体平衡微分方程式和流体静力学基本方程式的主要推导过程。