核电站数字化仪控系统简介
- 格式:docx
- 大小:24.86 KB
- 文档页数:6
方家山核电站数字化仪控系统浅析摘要:文章总结了核电厂仪控技术的历史和发展,以在建的方家山核电厂数字化仪控系统为例,结合核电站数字化仪控系统的设计标准和准则,对当代核电厂数字化仪控系统的特点、结构、功能和优势进行了阐述。
关键词:数字化仪控系统;Triconex;I/A核电站从工程设计、设备制造、工程管理、工程建设、直至安全运行和退役无一不体现高端技术,数字化仪控就是其中一项重要的组成部分。
同时也是最近几十年发展和更新换代最快的一个领域。
其设计和设备除了要保证高可靠性、高可用性,还要确保整个电站寿期内的升级和改造,是现代化大型核电站体现其先进性的技术之一。
1核电站仪控系统的历史和现状核电站仪表和控制系统发展基本上经历了三个时代:第一代仪控系统采用模拟技术,采用常规仪表和继电器来进行控制;如我国大亚湾核电站2×980 MW主控制系统采用Baily9020系统。
其特点是模拟量仪表采用小规模集成电路运行放大器为基础的元件来控制逻辑仪表,采用继电器等硬逻辑电器来控制。
第二代仪控系统采用了开关量及集成电路技术;如我国秦山二期和秦山二期扩建工程就属于这一范畴。
其特点是核岛系统仍采用小规模集成电路运算放大器为基础的模拟量元件来控制,常规岛和BOP系统参照常规火电厂采用数字化仪控系统。
第三代就是现今国际上广泛应用的以微处理技术和信息技术为基准的数字化控制技术,也称集散控制系统(DCS)。
如我国的田湾核电站采用西门子公司的TXS+TXP 数字化仪控系统,以及在建的方家山核电机组同样拟采用英维斯数字化仪控系统。
2方家山核电厂采用全数字化仪控系统的设计准则及特点2.1方家山仪控系统的平台分级方家山仪控系统的平台分级如图1所示,方家山#1、2号机组仪控平台使用了完整的控制和信息系统的设计,包括以下系统。
①Level 1。
1E 安全级系统:英维斯Triconex硬件平台;NC+ 安全相关系统:Triconex硬件平台和安全级I/A硬件平台;NC 非安全级系统:英维斯Foxboro 数字化仪控系统I/A平台。
核电厂数字化仪表与控制系统的应用现状与发展趋势随着科技的迅猛发展,核电厂数字化仪表与控制系统在核电行业中的应用越来越广泛,这些先进的技术不仅提高了核电厂的安全性和可靠性,还提高了核电厂的运行效率和经济性。
本文将介绍核电厂数字化仪表与控制系统的应用现状与发展趋势。
一、应用现状1. 数字化仪表与控制系统在核电厂中的应用数字化仪表是指使用数字技术替代原有的模拟仪表,数字化控制系统则是使用数字技术替代原有的模拟控制系统。
数字化仪表与控制系统的应用,使得核电厂的监测、控制和保护等功能更加可靠和高效。
数字化仪表具有抗干扰能力强、精度高、易于维护等优点,而数字化控制系统具有分布式、智能化、网络化等特点。
目前,全球大部分核电厂已经采用了数字化仪表与控制系统,并且很多核电厂正在进行数字化改造。
数字化仪表与控制系统在核电厂的安全中扮演着非常重要的角色。
它们可以实时监测核电厂的运行参数,保证核电厂的安全性。
在发生异常事件时,数字化仪表与控制系统能够迅速响应,及时采取措施,减小事故的危害程度。
数字化仪表与控制系统的应用大大提高了核电厂的安全性。
数字化仪表与控制系统的应用还提高了核电厂的经济性。
由于数字化技术的应用,核电厂的运行效率得到了提高,能够减少人力资源的消耗,减小能源损耗,提高了核电厂的经济效益。
二、发展趋势1. 智能化数字化仪表与控制系统将会向着智能化的方向发展。
随着人工智能技术的发展,数字化仪表与控制系统将会具备更加智能的功能。
智能化的数字化仪表与控制系统将会更加自动化、自适应、自修复,能够更好地满足核电厂对于安全、高效、经济的要求。
2. 网络化未来的数字化仪表与控制系统将会更加网络化。
这将使得核电厂的信息化水平得到进一步提高,能够实现远程监控、远程维护等功能。
通过互联网,数字化仪表与控制系统能够实现更加智能的运行。
3. 安全性数字化仪表与控制系统在安全性方面将会有更进一步的提升。
核电厂运行过程中,对于安全性的要求是非常高的,数字化仪表与控制系统将会向着更加安全可靠的方向发展,能够更好地保证核电厂的安全。
仿真试验成为数字化仪控系统真正投入运行前原理样机、工程样机研制过程中非常重要的手段之一。
Ovatio n系统简介在核电站数字化仪控系统开发仿真试验中.采用的是西屋公司Ovation的最小配置系统。
这是一个可以扩展的快速以太网系统.其中的SUN Blade150工作站既作为工程师站,又作为操作员站,所有的控制组态都在SUN工作站上进行。
从而建立的最小配置核电站数字化仪控系统组成包括:I /O卡件、控制器、高速数据通信网络、系统服务器、操纵员控制台、工程师站、显示器、键盘、微机等。
该Ovati on系统的硬件配置如图7:(1)Sun Blade15O工作站一台,作为Ovation系统的操作员站和工程师站,主要用于完成监视以及组态等任务。
主要性能指标和配置为:600MHz Sparc处理器芯片;512M内存;36G内置硬盘;32M 显存的显示卡;20英寸纯平彩色CRT显示器;软盘驱动器、CD—ROM驱动器;外置SCSI硬盘盒和磁带驱动器。
(2)Ovatio n控制器一套.可实现从10ms~30 S五种不同频率的过程控制.并实现报警处理、冗余处理、控制状态和备份状态管理、以及故障自动切换等功能。
配备了VxWorks嵌入式实时操作系统。
两组控制器硬件,互为冗余:两组控制器电源.互为冗余。
CiSCO24口高速交换机,作为Ova t ion控制器和Sun工作站通信连接的桥梁.提供1 00M带宽的高速以太网通信条件。
4个I/o模块,主要是数据的采集和发送模块.包括模拟量和数字量的处理。
模拟量输入/输出模块,8路输入/输出信号互为隔离.每路有单独的A/D(D/A)转换器.O.4w低功耗.1 3位分辨力.正常时每秒刷新10次.每8 S自动校验一次.每路电流输入配有熔断保险丝。
2010年05月28日13:25:04查看数:162 摘要在总结不同时期核电站仪表控制系统应用特点和发展趋势的基础上,以两座典型的核电站全数字化仪控系统为例,结合核电站仪控系统的特点及设计准则,进行详细的系统结构和功能分析,并提出我国新世纪核电站数字化仪控系统的改造与设计思路。
关键词过程控制DCS 智能化以太网现场总线核电站的仪表和控制系统是核电站的重要组成部分,机组的安全可靠、经济运行已经在很大程度上取决于仪表控制系统的性能水平。
从我国已经建成的和在建的核电工程来看,核电站的仪控系统经历了三个阶段。
第一阶段是以模拟量组合单元仪表为主的控制系统,如正在运行的我国300 MW秦山核电站主控制系统应用的FOXBORO公司的SPEC200组装仪表,大亚湾2×980 MW核电站主控制系统采用的Baily 9020系统也属于这一类。
其模拟量仪表采用小规模集成电路运算放大器为基础的元件来控制,逻辑量仪表采用继电器等硬逻辑电路来控制。
因而系统所需要的仪表控制器件数量多,运行操作管理和维护工作任务重,大部分采用手动操作,主控室布局也显得较大。
第二阶段是以模拟量和数字量混合运用的主控制系统,这一类实际是核岛系统仍采用小规模集成电路运算放大器为基础的模拟量元件来控制。
而部分常规岛和辅助系统采用PLC自动控制系统,结合软件自诊断技术、冗余技术和网络通信技术,减少很多硬接线和就地控制柜,提高了系统运行可靠性。
刚刚建成的广东岭澳核电站(2×980 MW)仪表控制系统就属于这一类。
第三阶段称为全数字化仪表控制系统,它将应用成熟的常规电站分布式控制系统(DCS)加以改进并移植过来,全面应用在常规岛、BOP、核岛部分,构成核电站全新数字化仪表控制系统。
现阶段应用比较典型的全数字化仪控系统有:日本日立等公司开发的NUCAMM-90系统、法国法马通公司N4控制系统、ABB公司的NUPLEX80 系统、美国西屋公司的Eagle21 WDPFⅡ系统以及我国在建的田湾核电站所采用的德国西门子公司的TELEPERM XP XS系统等。
核电厂数字化仪控系统信息安全探讨随着信息化时代的发展和全球能源危机的日益严峻,核能作为一种清洁、高效的能源形式受到越来越多的关注。
核电厂数字化仪控系统是核电站的重要组成部分,其安全性的保障具有重要意义。
本文将从数字化仪控系统的构成、信息安全问题以及相应的解决方法三个方面分别探讨核电厂数字化仪控系统的信息安全。
一、数字化仪控系统构成数字化仪控系统(Digital Instrumentation and Control System,简称DICS)是指应用数字化技术,通过微处理器、可编程逻辑器件(Programmable Logic Device,简称PLD)等器材提供分类和控制各个系统的设备。
数字化仪控系统由主要驱动硬件、输入/输出模块、逻辑控制器、数据总线、数据处理器等几个模块组成。
1.主要驱动硬件主要驱动硬件是系统的核心,包括各种处理器、操作系统等,它们能够实现各种算法以及控制模块的运行。
2.输入/输出模块输入/输出模块是用于将各种输入/输出设备与主要驱动硬件连接在一起的设备,包括传感器、控制阀门、执行器等。
3.逻辑控制器逻辑控制器是系统的控制中心,主要是实现数据的实时处理、数据的传输和控制逻辑的建立。
4.数据总线数据总线是连接各个模块和单元的信息传输通道,包括以太网、CAN总线等。
5.数据处理器数据处理器是将数据以特定算法处理成控制信号的设施,其中包括数字信号处理器、逻辑处理器等。
数字化仪控系统具有安全可靠、自动化程度高、运行成本低等优点,但与此同时,其信息安全问题也备受关注。
二、数字化仪控系统信息安全问题数字化仪控系统的信息安全问题主要包括以下几个方面:1.系统漏洞由于数字化仪控系统属于软件设备,其存在大量的软件漏洞,这些漏洞可能导致信息泄漏、系统崩溃等安全隐患。
2.攻击数字化仪控系统处于互联网上,因此受到黑客攻击的风险较高。
针对核电厂数字化仪控系统的攻击,一旦成功,其对系统安全和运行将产生巨大的影响。
核电数字化保护系统控制器研究摘要目前,国际上核电仪控系统已经发展到第三代,新一代的核电仪控系统采用数字化技术,提高了核电站运行的安全性和可靠性。
我国正处于核电事业的发展阶段,不仅需要新建数座百万千瓦级的核电站,还急需将原有的部分老化的仪控系统更新换代。
因此,发展我国自主设计的核电仪控系统有着极其重要的意义。
控制模件是整个保护系统中十分重要的组成部分,控制模件首先完成数据信号采集后的预处理和数值正确性的确认,然后,根据反应堆紧急停堆系统和专设安全系统分别设定的限值产生是否到达限值的逻辑信号,再分别进行必要的逻辑运算,最后产生反应堆紧急停堆系统断路器和专设安全系统驱动装置的启动信号。
安全可靠的控制模件对于降低核电厂各种事故造成的经济损失,尤其是重大的安全事故,起到非常重要的作用。
所以说安全可靠的控制模件是实现安全仪控系统功能的前提条件。
为了保证核级数字化设备达到足够的可靠性,除了设备本身(包括相应的硬件和软件)的高可靠性外,还在很大程度上取决于系统的设计,包括它的技术方案、体系结构等。
作为保护系统中设计较为复杂的组件,控制模件系统的设计不光要考虑自身的运行情况,还要为I/O 组件、通信组件等提供必要的接口和通信协议。
本文在遵循核级仪控设备的设计准则的基础上,比较国外保护系统控制模件的设计方案,采用当今计算机领域先进的技术,提出了一种基于先进中央处理器的控制模件,通过可编程逻辑器件连接处理器和系统部件的设计方案。
文章首先对核级控制模件系统的功能需求进行分析,提出了模块化的设计方案,并对各模块进行了详细的功能说明。
其次,在基于模块设计的基础上,阐述了采用先进计算机技术的控制模件系统硬件架构设计方案,并给出了完整的设计电路。
最后,对于控制模件中比较重要的任务调度设计了一种较为可行的方法。
核电保护系统的控制模件系统设计在我国还处于一个空白阶段,希望通过本论文中的控制模件的开发,为我国核电仪控系统的自主化设计提供一些思路。
Teleperm XS系统介绍1TXS系统发展历史反应堆控制和限制系统演化步骤:1968年:TELEPERM B系统特点:硬接线逻辑、晶体管;1973年:TELEPERM C系统特点:硬接线逻辑、集成电路;1978年:ISKAMATIC A系统特点:硬接线逻辑、集成电路1981年:TELEPERM ME特点:可编程逻辑1996年:TELEPERM XS系统特点:可编程逻辑、获得KTA、IEC、IEEE认证、自测试和自动化重复测试反应堆保护系统演化步骤:1968年:DM-System/TELEPERM B特点:硬接线逻辑(集成电路)、故障安全、获得KTA认证1981年:EDM-System TELEPERM C 8000R特点:硬接线逻辑(集成电路)、故障安全、获得KTA认证TELEPERM XS系统特点:可编程逻辑、获得KTA、IEC、IEEE认证、自测试和自动化重复测试2TXS系统架构TXS系统是一个分布式、冗余的计算机控制系统。
一般由3或4个独立冗余的数据处理通道,每一通道有2或3个操作层,这些操作层彼此之间不同步。
这样的操作层包含信号采集,数据处理,和驱动信号选择。
这些冗余通道之间利用点对点的光纤通信。
图1-1 TXS系统架构其中L2-bus为Profibus总线(速率为1.5Mbps),H1-bus为以太网总线(速率为10Mbps)。
每一个通道的信号采集层实现了来自核电站现场传感器的模拟、数字信号的采集(如温度、压力等)。
一个信号采集计算机将自己采集到的并且初步处理过的信号分发给下一层的数据处理层。
数据处理计算机实现电站保护功能信号的处理。
如信号在线确认、限定值监控和闭环控制计算等。
数据处理计算机通过处理数据,将输出结果输入到两路独立的优选计算单元。
执行计算机表决过程通常利用最小2值法(或最大2值法)的原则对信号的进行在线确认。
对冗余的测量系统,每一个保护通道使用最小2值法进行测量,并将测量值与设定的最小阈值进行比较,决定局部通道的下限值触发。
核电厂数字化仪控系统的发展及应用分析摘要现阶段,随着我国社会主义市场经济的不断发展,我国各行各业都取得了不同的成绩。
核电厂数字化仪控系统是核电厂发展的重要部分,对核电厂的安全运转与发展产生着重要的作用。
文章简述了核电厂数字化仪控系统,阐释了核电厂数字化仪控系统的发展及应用情况。
关键词核电厂数字化仪控系统发展应用随着社会主义市场经济的蓬勃发展,我国的综合实力也得到了显著的提升,各个行业也在快速的发展。
在核电厂发展的过程中,数字化仪控系统在核电厂正常的运转过程中占据着重要的地位。
因此,加强对数字化仪控系统的定期检查,能够有效的促进核电厂的健康可持续发展。
一、简述核电厂数字化仪控系统(一)核电厂数字化仪控系统的含义核电厂数字化仪控系统是核电厂在发展过程中非常重要的部分,在核电厂的发展过程中占据了主要的位置。
在核电厂正常运转的过程中,数字化仪控系统主要是以一种系统的形式所存在。
数字化仪控系统是科学技术不断发展的新型产物,数字化仪控系统在使用的过程中主要是计算机以及通讯为重,是一种分布式的系统。
在核电厂中使用数字化仪控系统,主要是根据计算机、通信、控制以及显示等四种技术。
而这四种技术的使用主要是依据网络技术的支撑,达到新型技术的应用,而这些新型技术主要是智能警报技术、远程操控技术等。
只有把这些技术应用在核电厂数字化仪控系统中,才能够对数字化仪控系统进行充分的控制。
(二)核电厂数字化仪控系统的特征核电厂数字化仪控系统的发展阶段主要是三个阶段,初创阶段、成长阶段以及扩展阶段。
数字化仪控系统在发展过程中的不同阶段,具备不同的特征。
核电厂数字化仪控系统初创阶段的特征主要展现在数据的收集以及过程的管控中,主要是单元的形式,能够有效的实现数据的快速运转,在数据运转的过程中所使用的软件和硬件都是质量非常的,但是仍然缺乏标准性以及开放性。
核电厂数字化仪控系统成长阶段的特征主要展现在系统是以局域网为主,并且功能比较多,能够有效的对现场进行控制以及对系统进行管理等。
核电DCS 行业报告一、行业概况。
核电DCS(数字控制系统)是指在核电站中用于监测和控制核反应堆及其相关设备的数字化控制系统。
随着核电行业的发展,核电DCS系统在核电站中的应用越来越广泛,成为核电站安全、稳定、高效运行的重要保障。
二、市场需求。
随着全球能源需求的增长和对清洁能源的需求,核能作为一种清洁、高效的能源形式受到越来越多国家的重视和发展。
核电DCS作为核电站的核心控制系统,其市场需求也随之增长。
特别是在一些新兴核能国家,对核电DCS系统的需求更为迫切。
三、发展趋势。
1. 数字化与智能化,核电DCS系统将向数字化、智能化方向发展,通过引入先进的信息技术和人工智能技术,提高系统的自动化水平和智能化程度,提升核电站的安全性和运行效率。
2. 高可靠性与安全性,核电DCS系统的可靠性和安全性是其发展的重要方向,将采用更加严格的技术标准和安全措施,确保系统在各种极端情况下的稳定运行。
3. 网络化与互联互通,核电DCS系统将向网络化、互联互通方向发展,实现与其他核电站及能源系统的互联互通,提高核电站的整体运行效率和灵活性。
四、发展机遇。
1. 国际合作,随着全球核能发展的趋势,国际合作将为核电DCS系统的发展带来机遇,通过国际合作,可以引进先进技术和经验,提高国内核电DCS系统的水平。
2. 政策支持,一些国家对核能产业给予政策支持,包括核电DCS系统的研发和应用,这将为核电DCS系统的发展提供良好的政策环境和市场环境。
3. 技术创新,随着科技的不断进步,核电DCS系统的技术也在不断创新,新材料、新工艺、新技术的应用将为核电DCS系统的发展带来新的机遇。
五、发展挑战。
1. 安全风险,核电DCS系统的安全风险是其发展的重要挑战之一,需要加强系统的安全设计和安全管理,减少系统的安全隐患。
2. 技术壁垒,核电DCS系统的技术要求较高,技术壁垒较大,需要加强技术研发和人才培养,提高国内核电DCS系统的自主创新能力。
核电厂数字化仪表与控制系统的应用现状与发展趋势核电厂数字化仪表与控制系统是指将传统的机械式、电子式仪器仪表与控制系统进行数字化改造,其中包括数字仪表、控制系统和人机界面等。
这一技术的应用对于提高核电厂的安全性、可靠性和经济性具有重要意义。
数字化仪表在核电厂的应用已经逐步普及。
数字化仪表的应用可以提高仪表的精度和稳定性,减少人为误差,提高工作效率。
数字化仪表还可以对监测数据进行传输和存储,方便数据分析和处理。
在新建核电厂中,数字化仪表已经成为主流。
核电厂控制系统的数字化改造也在不断进行。
数字化控制系统可以提高控制的精度和稳定性,减少人为误差,增强核电厂的安全性。
数字化控制系统还可以实现与其他系统的联网和数据共享,提高整个核电厂的运行效率。
在核电厂的扩建和升级改造中,数字化控制系统被广泛采用。
人机界面的数字化改造也在逐步推进。
人机界面是操作员与控制系统之间的接口,直接影响操作员对核电厂情况的掌握和决策的准确性。
数字化人机界面可以提供更直观、清晰的显示效果,方便操作员进行参数调整和故障诊断。
在核电厂中,数字化人机界面的应用也越来越广泛。
随着技术的不断进步和应用经验的积累,核电厂数字化仪表与控制系统的发展趋势主要有以下几个方面:一是系统集成化水平将进一步提高。
目前,核电厂中的数字化仪表、控制系统和人机界面往往独立存在,缺乏协同工作的能力。
未来,数字化仪表与控制系统的集成化水平将不断提高,实现数据的共享和协同处理,提高系统的整体性能。
二是智能化程度将进一步提高。
未来的核电厂数字化仪表与控制系统将具备更高的智能化水平,能够根据运行状况进行自主优化和调整。
人机界面将具备更高的智能化能力,能够根据操作员的习惯和喜好进行个性化定制,提高操作效率和工作满意度。
三是安全性将进一步提高。
核电厂数字化仪表与控制系统的应用需要具备高度的安全性和可靠性。
未来的发展趋势是通过加密、防护和安全监控等手段,提高系统的安全性。
数字化仪表与控制系统的应用还需要具备故障诊断和容错能力,及时发现和解决问题,保证核电厂的安全运行。
核电厂数字化仪表与控制系统的应用现状与发展趋势发布时间:2021-11-19T08:19:28.570Z 来源:《当代电力文化》2021年6月18期作者:张明昊李阔[导读] 近年来,世界上的核电站的数量越来越多,规模越来越大,总的来说张明昊李阔中电华元核电工程技术有限公司烟台分公司山东烟台264000摘要:近年来,世界上的核电站的数量越来越多,规模越来越大,总的来说,在世界上核电站受到不同国家和地区的青睐,因为核电站的建设体积比较小,但容量比较大,同时开发成本较低,这些优点使核电站在当今市场上占有绝对的地位。
核电站对于社会的发展主要体现在两个方面,第一方面核电站的使用能够提高资源的利用率,促进经济的发展,第二方面核电站如果发生故障,出现泄露就会对社会环境,我们的生活造成严重的影响,所以减少核电站所带来的弊处,就需要这样对核电站加强管理和控制,通过数字化仪表和控制系统来提高核电站运行的稳定性和安全性,预防核电站在运行过程中可能出现的安全事故,加强对周围环境的保护。
本篇文章主要是对核电站数字化仪表与控制系统进行分析。
关键词:核电厂;数字化仪表;控制系统;应用现状;发展趋势引言我国算是世界上使用核能比较成熟的国家,以往,我们郭家主要利用核能来研发核弹,但是随着社会的发展,科学技术的不断进步,我们研发了核能的其他作用,利用核能来代替其他的一些能源,缓解我国能源短缺的局面,提高资源的利用率。
近些年,核电站发展越来越快,在科学技术水平不断提高的影响下,核电站也进行了转型升级。
核电站传统的数字控制系统逐渐发展为单机测控系统,并转换为分布式控制系统。
相关单位和人员要高度重视核电站运行的安全性,因为核电站一旦发生事故,所造成的影响是巨大的。
1核电厂数字化仪表与控制系统概述数字化仪表和控制系统是当前核电站在运行过程中使用的一种系统,它主要是利用数字化技术,计算机技术来达到对核电站运行的控制和管理,提高核电站运行的可靠性和稳定性。
AP1000第三代核电站数字仪控系统DCS第三代核电 2009-09-30 19:41 阅读36 评论0字号:大中小AP1000第三代核电站数字仪控系统DCS简介:1. AP1000 仪控系统是一个先进的分散式计算机控制系统(即DCS)。
它是在已获美国NRC 许可证的AP 600 基础上又作了一些改进与发展,主要体现在反应堆保护系统的设计上, AP600 采用的是西屋已很成熟的Eagle 系统, AP1000 则提供了二套方案,一套是沿用AP600 的Eagle 方案,另一套是在此基础上改进的Common Q 系统。
由于AP600 已获得许可证,所以Common Q 在很大程度上都维持了原AP600关于I&C系统的功能要求,以使二者在硬件和软件方面能最大限度地兼容。
2. DCS 系统设备可分为二大类:一为安全级设备(1E 级),执行反应堆保护、专设安全系统驱动等功能。
一为非安全级设备(非1E 级),执行电厂控制、数据采集、显示、记录以及多样性驱动系统等功能。
3. 90 年代中:西屋在WDPF 的基础上经改进成为现在的OVATION 系统,它在常规电厂及核电站非1E 级的仪控系统中得到相当广泛的应用。
对1E 级(核安全级)系统则又开发了COMMON Q 系统(是Ea gle 的改进)。
2000 年后( ADVANT+OVATION 系统) :西屋的核电部份和美国另一家重要的PWR 核电供应商ABB/CE 公司先后加入了英国的BNFL公司,由于ABB/CE 也是一家在核电仪控方面能力相当强的公司,它早已取得NRC 的证书,特别是它的1E 级部分(ADVANT)包含有核级堆芯计算机,可以作DNBR 和LPD的在线计算与保护。
4. 应用公司系统应用说明西屋WDPF+EAGLE21 技术改造OVATION+ COMMON QABB/CE NUPLEX80+ADVANT 韩APR1400,美PLAO西屋+ABB OVATION+ ADVANT西门子TXP+TXS田湾核电站EDF/FRA N4 N4电站FANP TXP+TXS (FANP是FRA和西门子联合公司)。
2010年05月28日13:25:04 查看数:162摘要在总结不同时期核电站仪表控制系统应用特点和发展趋势的基础上,以两座典型的核电站全数字化仪控系统为例,结合核电站仪控系统的特点及设计准则,进行详细的系统结构和功能分析,并提出我国新世纪核电站数字化仪控系统的改造与设计思路。
关键词过程控制DCS 智能化以太网现场总线核电站的仪表和控制系统是核电站的重要组成部分,机组的安全可靠、经济运行已经在很大程度上取决于仪表控制系统的性能水平。
从我国已经建成的和在建的核电工程来看,核电站的仪控系统经历了三个阶段。
第一阶段是以模拟量组合单元仪表为主的控制系统,如正在运行的我国300 MW秦山核电站主控制系统应用的FOXBORO公司的SPEC200组装仪表,大亚湾2×980 MW核电站主控制系统采用的Baily 9020系统也属于这一类。
其模拟量仪表采用小规模集成电路运算放大器为基础的元件来控制,逻辑量仪表采用继电器等硬逻辑电路来控制。
因而系统所需要的仪表控制器件数量多,运行操作管理和维护工作任务重,大部分采用手动操作,主控室布局也显得较大。
第二阶段是以模拟量和数字量混合运用的主控制系统,这一类实际是核岛系统仍采用小规模集成电路运算放大器为基础的模拟量元件来控制。
而部分常规岛和辅助系统采用PLC自动控制系统,结合软件自诊断技术、冗余技术和网络通信技术,减少很多硬接线和就地控制柜,提高了系统运行可靠性。
刚刚建成的广东岭澳核电站(2×980 MW)仪表控制系统就属于这一类。
第三阶段称为全数字化仪表控制系统,它将应用成熟的常规电站分布式控制系统(DCS)加以改进并移植过来,全面应用在常规岛、BOP、核岛部分,构成核电站全新数字化仪表控制系统。
现阶段应用比较典型的全数字化仪控系统有:日本日立等公司开发的NUCAMM-90系统、法国法马通公司N4控制系统、ABB公司的NUPLEX80 系统、美国西屋公司的Eagle21 WDPFⅡ系统以及我国在建的田湾核电站所采用的德国西门子公司的TELEPERM XP XS系统等。
1 核电站仪控系统的特点及全数字化仪控系统的功能设计原则核电站仪控系统的特点是由其工艺过程的特点决定的,一般来讲典型的核电站仪控系统特点可以归纳为以下几点:(1)控制对象的工艺流程复杂,监测和控制的参数多而且各种过程参数联系密切,1000 MW典型的核电站仪控系统的参数信息量和指令大约是7000~9000个。
(2)系统安全性、可靠性要求高,运行质量直接与仪控系统性能相关。
(3)反应堆工作或停堆后一段时间内,大部分设备人员无法接近。
(4)控制和监测核燃料裂变链式反应及堆芯状态监测的必要性。
(5)大量核物理、热工、水力及其它一些直接测量无法得到的参数计算多,且精确性和实时性要求高。
这些特性使核电站的控制对象变得十分复杂,必须采用先进的计算机技术使仪控系统的软硬件装置的设计功能满足生产工艺过程的需要和对过程设备在机组运行工况下的监督和控制,才能保证电站的安全、稳定、经济运行。
因此,核电站数字化仪控系统的功能设计应该遵循以下原则:(1)故障安全原则;(2)单一故障原则;(3)多样性原则;(4)独立性原则;(5)冗余性原则;(6)共模故障最小原则;(7)节能降耗原则;(8)经济性原则。
下面就以两种典型的核电站数字化仪控系统为例,进行详细的功能分析,以便进一步探讨现阶段核电站数字化仪控系统的设计思路和具体应用。
2 典型的核电站数字化仪控系统功能分析2.1 N4核电站的数字化仪控系统N4是法国法马通公司推出的1450 MW系列的最新一代压水堆核电站,分别在法国的Chooz和Civaux两个地方建造4台机组,其中Chooz的两台机组已投入运行。
N4的仪表控制系统也是在原来该公司1300 MW P4机组的仪控系统上进一步发展而来的。
从功能上分为4级,即:现场设备级、控制和保护系统级、人机接口级、远程和就地技术管理系统级。
其中前两级的安全系统由两条实体隔离的通道A和B组成,这样每条通道均能独立控制整个机组。
其中现场设备级的控制和保护系统主要有150个称为"Contronic E"的仪表控制单元组成,组成一个完全模块化的分布式控制系统,用于数据采集、传输和处理。
每个控制站由一个中央系统(CMX)和I/O单元组成。
中央单元执行控制、操作和诊断任务以及外围总线(P-Bus)和通信网络之间的数据传输。
该网络按功能可划分为控制总线(A-Bus)和操作总线(L-Bus)。
它支持数据在实时状态下在所有站之间进行传输。
控制和保护系统级由Sema Group集团负责提供以它自己的产品ADACS为基础的KIC操作系统。
整个系统由下面几个部分组成:(1)操作员工作站:操作员工作站是控制系统与用户进行信息交换的设备,其主要功能是为运行操作人员提供人机界面,使操作人员及时全面地了解系统运行情况,并对生产过程进行调节和控制。
该系统可向操作员提供正常控制程序的1500幅画面、事件和事故控制程序的1200幅画面,以及4000个事故警报数据表。
控制室布置有4个同类型操作台和一个提供机组状态全貌的墙式动态模拟显示屏。
当计算机控制系统失灵时,一个常规辅助控制台作为计算机控制备用,并备有紧急操纵时的常规操作仪器。
(2)中央服务器:所有的系统信息、报告及总数据库由中央服务器统一管理,以实现信息集中管理。
中央服务器用UNIX或WINDOWS NT为操作系统,配以系统应用软件,组态功能由中央服务器提供。
工程师可利用中央服务器的系统应用软件来修改或添加控制配置并下载至控制器中。
(3)控制器:控制器作为自动控制系统中的控制中枢主要包括处理器、内存、I/O接口和外部通讯接口。
采用模块化结构形式。
处理器模块、本地I/O模块、通讯接口模块等均插入同一框架中,通过数据总线相连,实现"软接线",另外,通过现场PLC还可扩展远程I/O模块。
(4)局域网(LAN)及外围总线:Ethernet(以太网)采用载波侦听/多路访问协议,具有10 Mbps及100 Mbps的通讯速度,但它不具备实时性;ARCNET采用令牌传输协议,具有2.5 Mbps的通讯速度,具有较好的实时性。
局域网的网络拓扑结构采用总线形、混合形。
其传输介质使用同轴电缆和光纤。
作为工厂网络底层的现场总线对现场环境有较强的适应性,不但减少了大量的隔离器、端子柜、I/O卡及I/O端口,节省了I/O装置及装置室的空间,同时还减少了大量电缆,节省了安装费用。
(5)输入/输出(I/O)模块:如模拟量/数字量、直流/交流、电压/电流及不同电压等级的I/O模块等。
将多个控制器及I/O框架分散后进行联网,一方面可将生产过程的全部信息通过网络传送至中央服务器以实现信息集中,另一方面避免因个别设备出现故障殃及整个系统而造成的危险,提高可靠性。
N4核电站的数字化仪控系统充分体现了"信息集中,控制分散"的设计思路。
随着计算机信息控制技术的不断发展,各生产厂商竞相研制各种丰富多样的自带处理器的智能型I/O 模块,如CRT模块、数控模块、计算模块、模糊模块等,这些I/O模块可与工业现场的按钮、变送器、传感器、电磁阀门及马达控制器等设备元件直接相连,在完成基本控制功能的同时还可以随时诊断设备的运行情况。
如果在系统应用软件中采用智能控制算法或利用人工智能技术进行自诊断和故障的早期预测,并通过优化过程控制来提高系统的工作可靠性和控制水平,使系统更具有开放性、互操作性和互用性。
将使现在的数字化仪控系统更加完善。
但是目前由于计算机软硬件水平的限制,有些功能模块的功能还不是很强,品种也不够齐全,只能组成一般的控制回路如单回路、串级、比例控制等,对于复杂的、先进的控制算法还无法在仪表中实现;对于单回路内有多输入、多输出的情况缺乏良好的解决方案,成功的应用实例不多,难以评估其实际应用的效果。
所以有的用户借鉴上述仪控系统中的局部设计思路,尝试将现场已经应用成熟PLC设备连接到独立的现场总线网络服务器,与操作站直接通信。
尤其在旧的核电站仪控系统改造方案中,可以直接利用现场原有的电缆和一次测量元件及执行机构,只是对监测和控制部分用先进的I/O模块和PLC设备对原来的控制柜或控制仪表进行改造或替换。
根据现场的实际情况,选用适当的以太网PLC、现场总线PLC以及远程智能I/O设备更换现场的老式控制柜和辅助继电器柜,甚至利用先进的小型分布式控制网络替代原来的第一代模拟量组装仪表和控制盘台,使原先第一代或第二代的核电站仪控系统重新焕发了生命力,不但解决了原有老系统卡件老化严重且没有备品备件的问题,而且对机组的安全、稳定、经济运行起到至关重要的作用。
2.2 西门子TELEPERM XP XS系统西门子TELEPERM XP XS分布式控制系统是集计算机技术、信号处理技术、测量控制技术、通讯网络技术、CRT技术、图形显示技术及人机接口技术于一体,对生产过程进行集中监测、控制、操作、管理的一种新型数字化仪控系统。
从系统安全和系统硬件角度看,结构图划分为安全系统、正常运行系统以及和安全相关的正常运行系统。
其中TELEPERM XS用于安全系统,TELEPERM XP用于正常运行系统。
而且由这两个控制系统共同完成核电站中全部的自动控制任务。
图中的标识分别表示:AP 为自动处理器;APF为故障安全自动处理器;AS620为自动控制系统;ES/DS为工程设计及调试诊断系统;ET/DT为工程师诊断终端;FUM为功能模件;M为电动机;MSI为监测和服务接口;OM为操作和监测系统;OT为操作终端;PU为数据处理单元;SU为数据存储单元;TXP为TELEPERM XP系统;TXS为TELEPERM XS系统;XU为外部网络连接装置。
根据系统功能可分为:(1)过程控制级(包括电站控制级和机组控制级):它提供在主控室(MCR)对工艺过程的控制、监测和观察。
行程仪控系统和主控操作员之间的接口,包括操作终端、显示器及主控室和应急控制室的备用监测控制设备。
备用设备同TXS和TXP直接相连。
此控制级同样具有执行仪控工程师要求的功能,并处理文件和保存归档。
(2)通信级(终端总线):它是在操作和监测系统(OM690)框架内部的通讯级,完成过程控制级和处理级之间的连接。
(3)处理级:包括OM650系统的信号处理计算机(PU/ET/DT等),用于完成各种信息信号的处理。
(4)通信级(电厂总线):通过它和其它总线将整个系统和分布式控制系统连接起来。
所有的总线都采用光纤。
其中TXP系统的电厂总线保证所有的自动化处理器之间的通信,以及过程操作和监测系统(OM650)、工程设计和调试诊断系统(ES/DS)部件之间的通信。