OPPO A520原厂电路原理图-SCH
- 格式:pdf
- 大小:1.29 MB
- 文档页数:9
USB用电池充电器电路图如图是USB用电池充电器电路。
它是在5.25V/500mA最大额定功率时,使用通用串联总线(USB)以最大电流对锤离子充电的电路。
电路中,LM3622为锤离子电池充电控制器。
设计的充电电路使USB具有最大功率工作的能力,为了满足USB的技术指标,在正常工作情况下,最大功率工作能力从总线中取出的电流不能大于5OOmA。
通过限流电阻R1将其最大充电电流设定为400mA,而剩下的100mA电流供给充电器控制电路等。
在系统启动期间,LM3525电源开关使电池充电器与总线保持隔离状态,充电电流不会超过总线提供的最大电流。
在总线输出口经过适当的计算后,USB控制信号将USB电源通过LM3525与充电电路连接起来。
在开关通/断工作时,LM3525具有过电流与欠电压防止功能。
在设计充电电路时,应认真考虑总线电源与充电电路之间的电压降,因此,VT1和VD1要选用低电压降的器件,使输入电压较低时电路也能有效地对电池进行充电。
在优选元件的情况下LM3525输入与电池正极之目的电压降的典型值为53OmV,或对电池的充电电流大于400mA。
最佳充电时间为从以最大电流对电池开始充电直到电池达到满充电电压为止。
对于4.2V锤离子电池,要求充电电路的输入电压典型值为4.7V。
USB规格规定的最小输出电压为4.75V,但USB电缆和接线电阻上电压降为35OmV,因此,在最坏情况下,充电电路的输入电压低至4.4V,而在USB规格中充电电路仍然有效。
要说清楚的是,要防止USB电压规格下限的系统对电池进行慢充电,或防止对满度电池充电。
4.2V电池的最佳充电电压是充电电路的输入电压,其典型值为4.7V。
当电路的输入电压低到4.6V以及电池电压接近满充电4.2V时,VT1和VD1的电压降使电路不能有效地提供充电电流。
在VT1和VD1的电压降仅为400mV时,电路为电池提供的充电电流不大于2OOmA。
在低输入情况下,充电电流降为50%对电池恒压充电。
如图:3、查找阻容元件。
如果我们想要查找某一阻容元件,而一块主板上又有那么多的电阻电容,有没有好的方法进行查找呢?其实,也是很简单的,我们只需要找到和阻容元件编号第一位数字相同的主要芯片的元件编号,那么这个阻容元件多数情况下就在这个芯片的周围。
例如:想要查找R201 和C203 的位置。
如图:可以看到,R201、C203与U201的第一位数字相同,所以我们只需要先在主板原理图中找U201的位置,然后只要在它周围查找即可。
如图:第三节主板原理图一、主板原理图中的标识我们只要学会查找主板原理图,就能够根据它去深入的进行维修。
下面我们将对主板原理图中的标识进行解释。
如图:二、各标识的作用1、附加电路:主要将主信号或主电压进行转换或变换的电路。
如下图:是将A VDD 电压通过阻容电路转换为VCC_MT6189的专用电压。
如图:2、线路连接页号提示:为了用户方便查找,在每一条非终端的线路上会标识与之连接的另一端信号的页码。
例如下图:我们想查找FM_INR 和FM_INL 由谁输入到U601 的,那么根据线路连接页号提示,就可以直接寻找第一张电路图,并根据信号描述找到所连接的芯片是U101。
如图:要说明一点,并不是所有机型的电路图都有线路连接页号提示,那么就需要大家多看电路图,因为所有的电路图都是万变不离其宗,能精读一种电路就能一通百通。
3、芯片管脚编号:标明此芯片的管脚编号。
方便用户查找芯片引脚或焊盘。
4、电压名称:标明了芯片所需的电压名称。
电池提供VBAT的电压后,通过电源芯片处理,分别输出7种电压,以供给其他芯片进行工作。
如图:下图为CPU所使用的5种电压,分别为VMEM、VDD、A VDD、VCORE、VRTC如图:。
简单手机电路图.txt我自横刀向天笑,笑完我就去睡觉。
你的手机比话费还便宜。
路漫漫其修远兮,不如我们打的吧。
1、方框图:利用方块形式粗略概述手机的结构与工作原理,方便初学者掌握手机的结构与工作原理,初学者读懂电原理图打下基础2、整机电原理图:利用电子元件符号清楚表示手机中各元器件的连接和工作原理,方便维修时分析电路原理及故障3、元件排列图:利用元件编号在板位图上标明元件所在方便维修时寻找元件在机板上的位置。
4、彩图:即手机照片,方便维修时对照机板元件缺损、错位二、手机电路图的读解原则:1、读图前先要打好电子基础,熟悉各种电子元件符号、特性和用途;电子元件在电路中的接法2、先读懂方框图,大概了解本机的结构(如用哪种电源结构、哪种时钟电路);然后按所学的原理去分析原理图。
3、读图时应先弄懂直流供电电路,后弄懂交流信号通路。
4、手机电路图是有规律的,一般电源居左下;控制居右下。
左射频右逻辑;上收下发中本振。
三、手机电路图的读解方法:1、电源电路读图要点:1)、先了解本机属哪种电源结构(分三种);以电源集成块为核心。
2)、从尾插或电池脚开始,找出电池电压(VBATT、B+)输入线;电池电压一般直接供到电源集成块、充电集成块、功放、背光灯、振铃、振动等电路;也可从上述电路往回找。
3)、在电源集成块、键盘、内联座处找到开机触发线(ON/OFF或标有开关符号)。
4)、在电源集成块上找出各路电压输出线(包括电压走向、电压值多少、是恒定的还是跳变的、在哪个元件上可测到该电压)。
1)VDD——逻辑电压给CPU、字库、暂存等电路(1.8V/2.8V)2)SYN-VCC(XVCC)时钟电压,使13M电路工作(3.8V)3)AVCC——音频电压(2.8V)4)VREF—中频电压(2V跳变)5)3VTX—发射电压(3V跳变)6)SYN-VCC—频合电压7)VRTC—实时时钟电压8)SIM-CC—SIM电路电压(3V/5V跳变)9)RST(PURX)——复位信号(2.8V)4)、在CPU与电源集成块间找到开机维持线(WD-CP、WATCCH G)。
手机充电器电路图应用讲解分析一个电源,往往从输入开始着手。
220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。
这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。
右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。
13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。
当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。
由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。
不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。
左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。
13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。
当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低(钳位),从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。
变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。
为了分析方便,我们取三极管C945发射极一端为地。
那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。
取样电压经过6.2V稳压二极管后,加至开关管13003的基极。
前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。
电源内部电子元件详解图解集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-电源内部电子元件详解(图解)来源:本站整理?作者:秩名2012年05月13日11:07分享[导读]? Dilingling,在下今天又要开新课了。
继上一次的电源工作原理图解之后,我们今天再来一篇电源元件的图解,强化大家理论知识与实际应用的结合。
关键词:不要被外观蒙蔽它们都是电容哦Dilingling,在下今天又要开新课了。
继上一次的电源工作原理图解之后,我们今天再来一篇电源元件的图解,强化大家理论知识与实际应用的结合。
通过上一篇电源工作原理图解的反馈,我们得知很多看官不能把原理对应到电源身上,于是在下再用一组图解来讲解电源的内部结构和它的组成元件。
在这里,需要提醒大家注意的是,在很多图解文章中我们都能够看到一些图注,而我们实际应用中不能以偏概全,对应文章中的图片找一模一样的电子元件,因为相同的电子元件在不同的电源之中,外观是经常不一样的。
这两个都是电容哦就拿上面的这张图来说,同样是电容,外观就截然不同,而且这还是出现在同一个电源里面。
其实这也是常见的事情,就拿滤波电容来说,每个电源之中都有很多个滤波电容,一次侧有,二次侧也有,他们的外观常常不一样,但是它们都叫做滤波电容。
先看外观可以认识很多标识接下来我们就按照从外到里、从进到出的顺序来图解电源的内部结构和各个电子元件的名称。
大家一起来看图说话。
电源风扇电源风扇尺寸,目前主流的是12cm和14cm的,另外还有8cm和10cm的风扇的电源。
需要注意的是这些都是指风扇的直径。
电源铭牌目前市场上的电源铭牌多种多样,没有统一标准,最常见的是用两路标识出+12V输出的格式,而我们上面看到是一个与众不同的标注一路的电源铭牌。
80PLUS认证标识80PLUS认证,是目前最火也最主流的电源能效认证标准,由低到高分为白牌、铜牌、银牌、金牌、白金牌,五个标准。
电脑主板CPU供电电路原理图解一.多相供电模块的优点1.可以提供更大的电流,单相供电最大能提供25A的电流,相对现在主流的处理器来说,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计,比如K7、K8多采用三相供电系统,而LGA755的Pentium系列多采用四相供电系统。
2.可以降低供电电路的温度。
因为多了一路分流,每个器件的发热量就减少了。
3.利用多相供电获得的核心电压信号也比两相的来得稳定。
一般多相供电的控制芯片(PWM芯片)总是优于两相供电的控制芯片,这样一来在很大程度上保证了日后升级新处理器的时候的优势。
二.完整的单相供电模块的相关知识该模块是由输入、输出和控制三部分组成。
输入部分由一个电感线圈和一个电容组成;输出部分同样也由一个电感线圈和一个组成;控制部分则由一个PWM控制芯片和两个场效应管(MOS-FET)组成(如图1)。
图1单相供电电路图主板除了给大功率的CPU供电外,还要给其它设备的供电,如果做成单相电路,需要采用大功率的管,发热量很大,成本也比较高。
所以各大主板厂商都采用多相供电回路。
多相供电是将多个单相电路并联而成的,它可以提供N倍的电流。
小知识场效应管:是一种单极性的晶体管,最基本的作用是开关,控制电流,其应用比较广泛,可以放大、恒流,也可以用作可变电阻。
PWM芯片:PWM即Pulse Width Modulation(脉冲宽度调制),该芯片是供电电路的主控芯片,其作用为提供脉宽调制,并发出脉冲信号,使得两个场效应管轮流导通。
实际电感线圈、电容和场效应管位于CPU插槽的周围(如图2)。
图2 主板上的电感线圈和场效应管了解了以上知识后,我们就可以轻松判断主板的采用了几相供电了。
三.判断方法1.一个电感线圈、两个场效应管和一个电容构成一相电路。
这是最标准的供电系统,很多人认为:判定供电回路的相数与电容的个数无关。
这是因为在主板供电电路中电容很富裕,所以,一个电感加上两个场效应管就是一相;两相供电回路则是两个电感加上四个场效应管;三相供电回路则是三个电感加上六个场效应管。
详解智能手机电源电路的供电原理电源电路在智能手机电路中是至关重要的,它所起的作用是为智能手机各个单元电路提供稳定的直流电压。
如果该电路的出现问题,将会造成整个电路工作的不稳定,甚至造成智能手机无法开机。
由于电源电路工作在大电流、温度高的环境,往往容易出现问题,因此学习和理解电源电路的维修知识,对日后的手机维修工作有很大的帮助。
一、电源电路的组成元件和电路1.1电源电路的组成元件智能手机的电源电路位于智能手机的主电路板中,由于各品牌型号的智能手机电路板设计不同,所以电源电路的位置也不相同。
从组成结构上来看,智能手机电源电路主要由电源控制芯片、充电控制芯片、充电接口、电池及插座、复位芯片、晶振、谐振电容、电源开关、场效应管、滤波电容、电感等组成。
如图1所示为智能手机电源电路组成图。
从图中可以看出,电源控制芯片是电源电路的核心。
在电源电路中,重要的芯片包括充电控制芯片和电源控制芯片。
其中,充电控制芯片主要负责对电池进行充电,并实时检测充电的电压值。
充电控制芯片用于保护电池的电路,可以保护电池过放电、过压、过充、过温,可以有效地保护电池寿命和使用者的安全。
电源控制芯片又称为电源管理芯片PWM(Pulse Width Modulation),意思是脉冲宽度调制,是一种通过微处理器的数字输出对模拟电路进行控制的技术。
电源控制芯片是开关稳压电源电路的核心,负责对整个电路的控制。
1.2电源电路的结构智能手机的电源电路主要由充电电路、时钟电路、复位电路、电源开关、电源输出电路等组成。
如图2所示为电源电路的结构。
其中,充电电路负责检测电池的电量,并为电池进行充电,充电电路可以保护电池过放电、过压、过充、过温,可以有效地保护电池寿命和使用者的安全;时钟电路负责产生开机所需的32.768kHz时钟信号;复位电路为微处理器提供开机所需的复位信号;电源开关负责在开机时提供触发信号;电源输出电路负责输出手机其他单元电路所需的供电电压。
主板CPU供电电路完全图解12007-11-12 01:35:09 业界| 评论(1) | 浏览(5618)相信大家看主板导购文章的时候经常听到说这块主板是三相供电,那块是两相供电的说法,而且一般总是推荐三相供电的主板。
那么两相三相到底代表什么,对于普通消费者来说应该怎么选择呢?本文将就这个问题展开,尽量让大家能够自己分辨出主板到底几相供电,并且提供一点购买建议。
CPU供电电路原理图我们知道CPU核心电压有着越来越低的趋势,我们用的ATX电源供给主板的12V,5V直流电不可能直接给CPU供电,所以我们要一定的电路来进行高直流电压到低直流电压的转换,这种电路不仅仅用在CPU的供电上,但是今天我们把注意力集中在这里。
我们先简单介绍一下供电电路的原理,以便大家理解。
一般而言,有两种供电方式。
1.线性电源供电方式:通过改变晶体管的导通程度来实现,晶体管相当于一个可变电阻,串接在供电回路中。
上图只要是学过初中物理的都懂,通过电阻分压使得负载(这里想像为CPU)上的电压降低。
虽然方法简单,但由于可变电阻与负载流过相同的电流,要消耗掉大量的能量并导致升温,电压转换效率非常低,一般主板不可能用这种方法。
2.开关电源供电方式:我们平时用的主板基本都用这种方式,原理图如下。
其工作原理比刚刚的电路复杂很多,笔者只能简单说说:ATX供给的12V电通过第一级LC电路滤波(图上L1,C1组成),送到两个场效应管和PWM控制芯片组成的电路,两个场效应管在PWM控制芯片的控制下轮流导通,提供如图所示的波形,然后经过第二级LC电路滤波形成所需要的Vcore。
上图中的电路就是我们说的“单相”供电电路,使用到的元器件有输入部分的一个电感线圈、一个电容,控制部分的一个PWM控制芯片、两个场效应管,还有输出部分的一个线圈、一个电容。
强调这些元器件是为了后文辨认几相供电做准备。
由于场效应管工作在开关状态,导通时的内阻和截止时的漏电流都较小,所以自身耗电量很小,避免了线性电源串接在电路中的电阻部分消耗大量能量的问题。