动车组概论
- 格式:doc
- 大小:37.50 KB
- 文档页数:3
动车组概论期末总结一、概念动车组是指以机车为动力,运用高效能的半导体电子技术控制车辆及动力系统的电气化传动车组。
它没有车头和车尾,由多个车辆组成一个整体,中间通过转向架或联挂进行连接,具有较高的整体性能。
二、发展历程动车组的发展历程可以追溯到20世纪初,最早的动车组是以燃料发动机为动力的柴油机车,主要用于近郊铁路和国际长途列车。
20世纪60年代,欧洲国家开始研发使用电力传动的动车组,并实现了高速运行。
20世纪90年代,我国开始引进国外的动车组技术,并进行了自主研发,逐步形成了自己的动车组体系。
三、技术特点1. 电气化传动技术:动车组采用电气化传动技术,减少了能耗和污染,提高了运行效率。
2. 自动控制系统:动车组配备了自动控制系统,包括自动驾驶、自动换道、自动停车等功能,提高了运输的安全性和可靠性。
3. 轻量化设计:动车组采用了轻量化的设计,减少了车体重量,提高了运输能力和运行速度。
4. 舒适度设计:动车组在设计上注重乘客的舒适度,包括车厢噪音的控制、空调系统的优化、座椅的舒适度等。
5. 快速维修保养:动车组采用模块化的设计,方便了维修保养,减少了停机时间,提高了运营效率。
四、运输能力动车组具有快速运输能力,是高铁运输的主要车型。
它的运输能力主要体现在以下几个方面:1. 速度快:动车组具有较高的运行速度,在途中不断刷新着世界铁路速度纪录。
2. 运距长:动车组能够连续运行几百公里,满足了远距离高速运输的需求。
3. 载客量大:动车组车厢一般配备有数百个座位,能够满足大量乘客的运输需求。
4. 运行频次高:动车组运行频次高,能够满足乘客灵活的出行需求。
五、安全性动车组具有较高的安全性,主要表现在以下几个方面:1. 防撞安全系统:动车组配备了防撞安全系统,能够在紧急情况下及时刹停,减少事故发生。
2. 紧急求救系统:动车组配备了紧急求救系统,乘客可以通过按钮呼叫列车员或寻求帮助。
3. 轨道监测系统:动车组通过轨道监测系统对轨道的情况进行实时监测,减少运行风险。
动车组概论随着经济的发展,铁路运能与运量之间的矛盾日益突出。
中国铁路时世界铁路的重要组成部分,进一步改善铁路的运能与运量之间的和谐是当今铁路方面亟待解决的重要问题。
提速、重载是扩大铁路运能有效的手段。
在这样一个环境下,动车组作为铁路高速客运最有效的工具之一,需要进一步的投入科技和成熟技术。
发展高铁是符合中国国情需要的。
第一部分:课程所学知识动车组就是把带动力的动力车与非动力车按照预定的参数组合在一起,因此可以概括的讲,动车组是自带动力的,固定编组的,列车两端分别设有司机室进行驾驶操作,配备现代化服务设施的旅客列车的单元。
高速动车组是按照速度的划分,通常指设计及运行时速达200km/h以上的动车组列车。
带动力的车辆叫动车,不带动力的车辆叫拖车,动车组技术源于地铁,是一种动力分散技术。
动车组按动力装置分为柴油动车组、燃气轮动车组和电力动车组三类。
其中柴油动车组按传动方式又分为机械传动动车组、液力传动动车组和电力传动动车组;燃气轮动车组按传动方式分为液力传动动车组和电力传动动车组;电力动车组按电流制分为直流电力动车组和交流电力动车组。
动车组有两种牵引动力的分布方式,一种是动力分散,一种是动力集中。
转向架是轨道车辆结构中最为重要的部件之一,增加车辆的载重、长度与容积、提高列车运行速度,支撑车体,保证车辆安全运行灵活顺利通过曲线,减少振动和冲击减少动应力,提高车辆运行平稳性和安全性等等功能。
动车组制动方式按电动车组功能转移方式可以分为摩擦制动方式和动力制动方式;按制动力形成方式划分为粘着制动和非粘着制动;按制动源动力分类主要有压缩空气和电力。
制动控制系统是制动系统在司机和其他装置的控制下,产生、传递制动信号,并对各种制动方式进行制动率分配、协调的部分。
目前主要有空气制动控制系统、电制动控制系统两大类。
第二部分:动车组与信息科学技术随着通信技术和网络技术的进步,几乎所有领域都可以利用计算机的高效实现自我领域内的生产突破。
CRH动车组牵引系统技术概论CRH(中国高速铁路)动车组牵引系统是指用于驱动和控制高速列车运行的动力装置和相应的控制系统。
该系统是高速列车牵引和运动控制的关键组成部分。
CRH动车组牵引系统由电机、传动装置、电控系统和辅助设备组成。
其中,电机是实现动车组牵引力的关键装置,通常采用三相异步电机或同步电机。
传动装置负责将电动机的转速和扭矩传递给车轮,通常采用齿轮传动或直接驱动方式。
电控系统则用于控制和调节电机的工作状态和输出功率,同时也监测电机和传动系统的运行状态。
辅助设备包括冷却系统、油路系统和气路系统等,用于保证牵引系统的正常运行。
1.高效能:CRH动车组牵引系统采用先进的电机和控制技术,能够提供较大的牵引力和高速运行所需的功率。
同时,系统的能量转换效率比传统的内燃机车更高,能够实现能量回收和再利用,减少能源消耗和环境污染。
2.稳定性强:CRH动车组牵引系统具有较高的控制精度和稳定性,能够实现快速启动、平稳加速和减速,并保持列车在运行过程中的稳定性和平顺性。
此外,系统还能够自动监测和保护电机和传动装置的运行状态,确保列车安全运行。
3.可靠性高:CRH动车组牵引系统采用可靠性较高的电机和控制器,具有较长的使用寿命和维修周期。
系统还具有良好的故障自诊断和容错能力,能够自动检测和诊断故障并采取相应的措施进行修复,从而提高系统的可靠性和可用性。
4.智能化:CRH动车组牵引系统采用先进的电子控制技术和通信技术,能够实现对列车运行状态的监测和调节,实现列车之间的通信和协调,提高列车的运行效率和安全性。
此外,系统还可以通过数据采集和分析,实现对列车运行和牵引系统性能的优化和改进。
总之,CRH动车组牵引系统是实现高速列车牵引和运动控制的重要技术装置,具有高效能、稳定性强、可靠性高和智能化等特点。
该系统的发展和应用有助于提高高速列车的运行速度、安全性和舒适性,推动中国高速铁路的发展。
近几年来,我们国家高速铁路发展迅速,已经建成世界上规模最大的高速铁路网,我为此感到非常的骄傲。
与此同时,我也对高速铁路充满了好奇,所以在这个学期选修了动车组概论这门课,以期能的到一些知识,丰富我的视野。
一、这学期,我们学习了三个大的部分,分别是高速铁路概述和动车组组成、转向架、还有制动,下边我将分步介绍这下方面。
〈一〉高速铁路概述和动车组组成
1、高速铁路概述
1)高速铁路的产生
列车的运行速度一直是铁路竞争力的一个重要指标。
二次大战后,高速公路和民用航空发展迅速,铁路运输业客货运量日减,营业亏损,铁路为了增强竞争力,产生了高速铁路。
世界上第一条高速铁路是1959年4月5日动工,1964年7月竣工,1964年10月通车的日本的东京━━大阪的东海道的新干线,最高时速为210公里,耗资3300亿日元。
东京至大阪515公里,新干线全线运行时间仅3小时10分钟,90年代它又将时速提高到270公里,进一步缩短了运行时间。
法国在1981年建成了它的第一条高速铁路,长425公里的TGV东南线,时速达270公里;1989年长308公里的TGV大西洋线投入运行,时速为300公里。
2)高速铁路的特点
高速铁路与其他运输方式相比,具有独特的技术优势:
速度快:从节约总旅行时间来看,在距离200-1000公里范围内优于高速公路和飞机。
舒适度和安全度:既有高速铁路在运营中很少发生伤亡事故,且旅客乘坐舒适。
能耗低:如以普通铁路每人每公里的能耗为1,则高速铁路为1.42;
占地:高速铁路比高速公路占地少,四车道高速公路占地宽26米,双线铁路占地宽20米。
环境保护:高速铁路一般采用电力牵引,基本无空气污染,如考虑火电厂污物排放量,则高速铁路、小汽车、飞机的二氧化碳排放量之比为1:3.0:4.1。
2、动车组组成
动车组是由动力车和非动力车组成的固定编组的轨道客运列车,各车之间常由密接车钩缓冲器连接,在日常的运营和维护中不解编组,其中带动力的车辆叫动车,不带动力的车辆叫拖车。
动车组按动力的配置形式,可分为动力集中和动力分散式。
(1)笔记上有
〈二〉转向架
1、转向架是轨道车辆结构中最为重要的部件之一,其主要作用如下:
1)车辆上采用转向架是为增加车辆的载重、长度与容积、提高列车运行速度,以满足铁路运输发展的需要;
2)保证在正常运行条件下,车体都能可靠地坐落在转向架上,通过轴承装置使车轮沿钢轨的滚动转化为车体沿线路运行的平动;
3)支撑车体,承受并传递从车体至车轮之间或从轮轨至车体之间的各种载荷及作用力,并使轴重均匀分配。
4)保证车辆安全运行,能灵活地沿直线线路运行及顺利地通过曲线。
5)转向架的结构要便于弹簧减振装置的安装,使之具有良好的减振特性,以缓和车辆和线路之间的相互作用,减小振动和冲击,减小动应力,提高车辆运行平稳性和安全性。
6)充分利用轮轨之间的粘着,传递牵引力和制动力,放大制动缸所产生的制动力,使车辆具有良好的制动效果,以保证在规定的距离之内停车。
7)转向架是车辆的一个独立部件,在转向架于车体之间尽可能减少联接件。
2、转向架主要由轮对、轴箱、一系弹簧悬挂装置、构架、二系弹簧装置悬挂、驱动装置和基础制动装置等七部分组成。
轮对:轮对直接向钢轨传递车辆重量,通过轮轨间的粘着产生牵引力或制动力,并通过轮对的回转实现车辆在钢轨上的运行。
轴箱:联系构架和轮对的活动关节,它除了保证轮对进行回转运动外,还能使轮对适应线路等条件,相对于构架上下、左右和前后活动。
构架:转向架的骨架,承受和传递垂向力及水平力。
弹簧悬挂装置:用来保证一定的轴重分配,缓和线路不平顺对车辆的冲击并保证车辆的运行平稳性。
驱动机构:将动力装置的功率最后传递给轮对。
基础制动装置:将制动缸传来的力增大若干倍后传给执行机构进行制动。
〈三〉制动技术
1、动车组制动方式
(1)按电动车组动能转移方式分类
动车组动能的转移方式可以分为二类:
一类是摩擦制动方式,即通过摩擦把动能转化为热能,然后消散于大气;
二是动力制动方式,即把动能通过发电机转化为电能,然后将电能从车上转移出去。
2.)按制动力形成方式划分
按电动车组制动力的获取方式,可分为粘着制动与非粘着制动。
3)按制动源动力分类
目前,动车组制动的源动力主要有压缩空气和电力。
2、制动控制系统
制动控制系统是制动系统在司机和其他控制装置的控制下,产生、传递制动信号,并对各种制动方式进行制动率分配、协调的部分。
目前主要有:空气制动控制系统、电控制动控制系统两大类。
(1)空气制动控制系统(又称为空气制动机),以压力空气作为制动信号传递和制动力控制的介质的系统。
2)电气指令式制动控制系统,以电气信号来传递制动信号的制动控制系统。
二.动车组概论与法学的关系
三、动车组技术发展的前景与方向
列控技术向着移动闭塞、自动驾驶、GSM-R无线信号传输方向发展,以取代落后的轨道电路、地面信号机等设备;
转向架向着无摇枕设计方向发展。
(1)车内环境和设备不断改善,提高了旅客乘坐舒适度和服务质量。
(2)电力牵引传动系统向功率大、体积小、重量轻、高可靠性和低成本方向发展。
(3)速度不断提高,表现在以提高试验速度为基础,不断提高运营速度
(4)环境保护是制约轨道交通发展的一大难题。
因此在提速、节能之外,降噪、减振是轨道交通技术进步的另一个方向。