车削时切削温度的测量
- 格式:docx
- 大小:131.35 KB
- 文档页数:4
实验一车刀的几何角度及其测量实验报告实验名称实验日期班级姓名同组人一、实验目的二、实验仪器设备三、实验数据四、按测得的数据绘制外圆车刀的工作图(按实验指导书要求进行绘制)五、讨论和分析实验二车削力的测量实验报告实验名称实验日期班级姓名同组人一、实验目的二、实验仪器设备三、实验原理四、实验数据记录与处理(1)数据记录ƒ = mm/转a p = mm(2)数据处理1)图解法将表二,表三数据画在双对数坐标中log F zlog a pC 1==z F XC 2==z F Y221C C C z F +== zF z F z Y Xp F z fa C F ==log ƒlog F z2)一元线性回归法表四一元线性回归用表= mm/表五一元线性回归用表p = mm 五、讨论分析实验三加工误差统计分析实验报告实验名称实验日期班级姓名同组人一﹑实验目的二﹑实验仪器设备三﹑实验原理四﹑实验数据记录与处理1. 实验原始数据表一测量数据表2. 绘制实际分布图(1)剔除异常数据==∑=ni i x n x 11=--=∑=ni i x x n 12)(11σ 若σ3>-x x k ,认为k x 为异常数据,应剔除。
(2)确定尺寸间距和分组数(3)制作频率分布表 表二 频数分布表(4)绘制实际分布图(5)加工误差统计分析(误差性质、改进措施、工序能力、合格品率等)ƒ 频数 x (直径)X 图3. 制作R(1)取小样本容量n(2)数据处理①计算各样组的平均值X和极差R,填入表三。
表三样组的均值X和方差R②计算X和R的平均值X和RX-图控制线。
③计算RX-控制图(3)绘制RX-控制图(工艺过程稳定性、误差性质、改进措施等)(1)分析R五﹑讨论分析实验四切削温度的测量实验报告实验名称实验日期班级姓名同组人一实验目的二实验仪器及设备三实验原理和方法四实验数据记录及处理1.进给量对切削温度的影响(1)填写数据记录:(2)在双对数坐标纸上绘出曲线(3)计算2.吃刀深度对切削温度的影响(1)填写数据记录:(2)在双对数坐标纸上绘出曲线(3)计算3.速度对切削温度的影响(1)填写数据记录(2)在双对数坐标纸上绘出曲线(3)计算4.求出经验公式5.分析各因素对切削温度的影响。
车削加工切削力测量实验报告书学号姓名小组时间成绩上海大学生产工程实验中心2014-11一.实验概述切削过程中,会产生一系列物理现象,如切削变形、切削力、切削热与切削温度、刀具磨损等。
对切削加工过程中的切削力、切削温度进行实时测量,是研究切削机理的基本实验手段和主要研究方法。
通过对实测的切削力、进行分析处理,可以推断切削过程中的切削变形、刀具磨损、工件表面质量的变化机理。
在此基础上,可进一步为切削用量优化,提高零件加工精度等提供实验数据支持。
通过本实验可使同学熟悉制造技术工程中的基础实验技术和方法,理解设计手册中的设计参数的来由,在处理实际工程问题中能合理应用经验数据。
二.实验目的与要求1. 掌握车削用量υc 、f 、a p ,对切削力及变形的影响。
2. 了解刀具角度对切削力及变形的影响。
3. 理解切削力测量方法的基本原理、了解所使用的设备和仪器。
4. 理解切削力经验公式推导的基本方法,掌握实验数据处理方法。
三.实验系统组成实验系统由下列设备仪器组成 1、微型数控车床KC0628S 2、车床测力刀架系统(图1),包括 (1)车削测力刀架 (2)动态应变仪 (3)USB 数据采集卡 (4)台式计算机USB 线图1四、实验数据记录与数据处理1. 切削力测量记录表12. 请按指数规律拟合主切削力或背刀力和切削深度、进给量的关系,建立切削力的经验公式。
答:(请将数据处理过程写于此处)附录:车削加工切削力测量实验指导书一. 实验概述切削过程中,会产生一系列物理现象,如切削变形、切削力、切削热与切削温度、刀具磨损等。
对切削加工过程中的切削力、切削温度进行实时测量,是研究切削机理的基本实验手段和主要研究方法。
通过对实测的切削力、进行分析处理,可以推断切削过程中的切削变形、刀具磨损、工件表面质量的变化机理。
在此基础上,可进一步为切削用量优化,提高零件加工精度等提供实验数据支持。
通过本实验可使同学熟悉制造技术工程中的基础实验技术和方法,理解设计手册中的设计参数的来由,在处理实际工程问题中能合理应用经验数据。
切削温度测量方法
嘿,你问切削温度咋测量啊?这事儿咱得好好聊聊。
先说说热电偶法吧。
这就像给切削过程装个小温度计。
找个合适的热电偶,把它放在切削的地方附近。
热电偶能感应温度变化,然后把温度信号传出来。
不过放的时候可得小心,不能影响切削过程,也不能被切坏喽。
而且还得选对热电偶的类型,不然测出来的温度可不准。
还有辐射测温法。
就像用个小望远镜看切削时发出的热辐射。
通过测量辐射的强度啥的,就能算出温度。
这方法不用直接接触切削的地方,挺方便的。
但是得注意周围环境的影响,不能有别的热源干扰。
另外呢,硬度法也可以试试。
切削后看看工件的硬度变化,因为温度会影响材料的硬度。
不过这方法不是特别直接,得通过一些经验公式来推算温度。
还有一种叫金相法。
切削完了看看材料的金相组织,不同温度下金相组织会不一样哦。
这就像给材料做个小体检,通过观察组织变化来判断温度。
但是这方法比较麻烦,需要专业的设备和知识。
我给你讲个事儿吧。
有一次我们车间要测切削温度,一开始大家都不知道咋弄。
后来找了个老师傅,他用热电偶法测了一下,发现温度有点高。
于是大家就想办法调整切削参数,降低温度。
后来再测的时候,温度就正常了。
从那以后,我们就知道了切削温度测量的重要性,也学会了用不同的方法来测量。
总之呢,切削温度测量有好几种方法,你可以根据实际情况选择合适的。
只要你用心去做,肯定能测出准确的温度。
加油吧!。
切削热和切削温度切削过程中产生的切削热对刀具磨损和刀具寿命具有重要影响,切削热还会使工件和刀具产生变形、残余应力而影响加工精度和表面质量。
一、切削热的产生与传导切削热来源于两个方面,一是切削层金属发生弹性和塑性变形所消耗的能量转换为热能;二是切屑与前刀面、工件与后刀面间产生的摩擦热。
切削过程中的三个变形区就是三个发热区域。
切削过程中所消耗能量的98%~99%都将转化为切削热。
切削热由切屑、工件、刀具及四周的介质(空气,切削液)向外传导。
影响散热的主要因素是:(1)工件材料的导热系数工件材料的导热系数高,由切屑和工件传导出去的热量增多,切削区温度就低。
工件材料导热系数低,切削热传导慢,切削区温度就高,刀具磨损就快。
(2)刀具材料的导热系数刀具材料的导热系数高,切削区的热量向刀具内部传导快,可以降低切削区的温度。
(3)四周介质采纳冷却性能好的切削液能有效地降低切削区的温度。
车削加工时产生的切削热多数被切屑带走,切削速度越高,切削厚度越大,切屑带走的热量越多;传给工件的热量次之,约为30%;传给刀具的热量更少,一般不超过5%。
钻削时,由于切屑不易从孔中排出,故被切屑带走的热量相对较少,只有30%左右,约有50%的热量被工件汲取。
二、切削温度的测量测量切削温度的方法许多,有热电偶法、辐射热计法、热敏电阻法等。
目前常用的是热电偶法,它简洁、牢靠、使用便利。
1. 自然热电偶法;2. 人工热电偶法。
三、影响切削温度的主要因素1.切削用量对切削温度的影响、、增大,单位时间内材料的切除量增加,切削热增多,切削温度将随之上升。
但、和对切削温度的影响程度不同,切削速度对切削温度的影响最为显著,次之,最小,缘由是:增大,前刀面的摩擦热来不及向切屑和刀具内部传导,所以对切削温度影响最大;增大,切屑变厚,切屑的热容量增大,由切屑带走的热量增多,所以对切削温度的影响不如显著;增大,刀刃工作长度增大,散热条件改善,故对切削温度的影响相对较小。
热工测量仪表作业切削温度测量方法概述Summary of Cutting Temperature MeasurementMethods作者姓名:王韬专业:冶金工程学号:20101360指导老师:张华东北大学Northeastern university2013年6月切削温度测量方法概述王韬东北大学摘要:高速切削加工现已成为当代先进制造技术的重要组成部分,切削热与切削温度是高速切削技术研究的重要内容。
本文根据国内外高速切削温度测量方法的研究现状,对目前常用的切削温度测量方法进行了分类和比较,主要包括接触式测温、非接触式测温和其他测量方法三种,详细介绍了热电偶法、光辐射法、热辐射法、金相结构法等几种常用切削测温方法的基本原理、优缺点、适用范围及发展状况;介绍了几种新型高速切削温度测量方法。
最后对各种测量方法作了比较,探讨了切削温度实验测量方法研究的发展方向。
关键词: 切削温度,测量方法,发展状况Summary of Cutting Temperature Measurement MethodsWang TaoNortheastern universityAbstract: High-speed machining has become an important part of the contemporary advanced manufacturing technology. Cutting heat and cutting temperature is the important content of high speed cutting technology research. This paper gives the background to the measurement of metal cutting temperatures and a review of the practicality of the various methods of measuring cutting temperature while machining metals. Classify the cutting temperature measurement methods, mainly including non-contact temperature measurement, non-contact temperature test of other three kinds of measurement methods; Introduced the thermocouple method, radiation method, radiation method and metallographic structure of the basic principle of several kinds of commonly used cutting temperature measurement method, the advantages and disadvantages, applicable scope and the status of the development; Several new high-speed cutting temperature measurement methods are introduced. Finally discusses the development direction of cutting temperature experiment measurement method research for a variety of measurement methods.Keywords:metal cutting, cutting temperature, measurement method目录摘要 (I)1引言 ................................................................................................................................. - 1 -2接触式测量方法 ................................................................................................................ - 1 -2.1 自然热电偶法 ............................................................................................................ - 1 -2.2 人工热电偶法 ............................................................................................................ - 2 -2.3 半人工热电偶法 ........................................................................................................ - 3 -3 非接触式测温 ................................................................................................................... -4 -3.1 红外辐射法红外 ........................................................................................................ - 4 -3.2 增强CCD 相机法 ..................................................................................................... -5 -3.3 红外—光学法 ............................................................................................................ - 5 -3.4金相结构法 .............................................................................................................. - 6 -4 其他切削温度测量方法 ................................................................................................... - 6 -5 切削测温技术发展方向 ................................................................................................... - 7 -6 总结................................................................................................................................... -7 -参考文献 ............................................................................................................................... -8 -1引言在机械制造业中,虽然已发展出各种不同的零件成型工艺,但目前仍有90%以上的机械零件是通过切削加工制成。
数控机床切削温度的测量与控制数控机床是一种高精密、高自动化的切削机床,广泛应用于航空航天、汽车制造、模具加工等领域。
在数控机床的工作过程中,由于高速切削带来的摩擦和热量,容易导致工件和刀具过热,从而影响加工质量,甚至导致刀具破损。
因此,准确测量和控制数控机床的切削温度是非常重要的。
为了测量数控机床的切削温度,目前常用的方法有接触式测量和非接触式测量两种。
接触式测量方法是使用热电偶或红外测温仪等设备对切削区进行直接接触测量。
热电偶是一种基于材料热电效应的测温装置,通过将热电偶插入切削区并与工件接触,可以测量到切削区的温度。
但这种方法的测量精度受到热电偶固定的位置和切削过程中的振动影响较大。
红外测温仪则是利用红外线传感器对工件表面的红外辐射进行测量,具有无接触、快速、灵敏度高等特点,但对于不同材料的工件,精确校准红外测温仪的温度转换系数是非常重要的。
非接触式测量方法是使用红外热像仪对切削区或工件表面进行扫描,通过记录热像仪接收到的红外辐射图像,可以得到切削区的温度分布情况。
热像图像不仅可以显示出整个切削区的温度分布情况,还可以提供时间上的变化过程,从而判断切削过程中是否存在异常热源或热量积累等问题。
然而,由于红外热像仪的成本较高,使用非接触式测量方法也需要考虑经济成本。
除了测量切削温度外,对数控机床的切削温度进行控制也是至关重要的。
切削温度的控制可以通过以下几种方式实现:1. 刀具冷却系统:在数控机床的刀架上安装冷却系统,通过喷射冷却液体来降低刀具和工件的温度。
冷却液可以通过喷射装置直接喷射到刀具和工件的接触面,使切削过程中产生的热量迅速散失,从而降低切削区的温度。
2. 进给速度控制:增加进给速度可以减少切削区的停留时间,进而减少切削区的热积聚量。
通过调节数控机床的进给速度,可以控制切削过程中的温度变化,以避免过热导致的刀具破损或工件表面质量问题。
3. 切削参数优化:切削参数的选择对于控制切削温度也起着至关重要的作用。
车削实验报告车削实验报告引言:车削是一种常见的金属加工方法,通过旋转工件,利用切削刀具对工件进行切削,从而得到所需形状和尺寸的零件。
本实验旨在探究车削工艺对工件表面质量和尺寸精度的影响,并分析车削过程中的切削力和切削温度变化。
实验设备和方法:实验中使用的设备包括车床、切削刀具、工件和测量仪器。
首先,选择适当的切削刀具,并将其装夹在车床上。
然后,将工件固定在车床上,并根据需要调整车床的进给速度和主轴转速。
在实验过程中,记录下切削力和切削温度的变化,并使用测量仪器对车削后的工件进行表面粗糙度和尺寸的测量。
实验结果与分析:在实验中,我们分别采用不同的切削条件进行车削,包括不同的切削速度、进给速度和切削深度。
通过对实验结果的观察和分析,我们得出以下结论:1. 切削速度对表面质量的影响:随着切削速度的增加,工件表面的质量有所下降。
这是因为较高的切削速度会导致切削刀具与工件之间的摩擦增加,从而引起刀具磨损和工件表面的划痕。
因此,在实际应用中,需要根据具体情况选择适当的切削速度,以保证工件表面的质量。
2. 进给速度对尺寸精度的影响:进给速度是指切削刀具在单位时间内对工件的移动距离。
实验结果表明,较高的进给速度会导致工件尺寸的偏差增大。
这是因为较高的进给速度会增加切削刀具与工件之间的摩擦,从而引起切削力的增加和切削过程中的振动。
因此,在车削过程中,需要根据工件的要求和机床的性能选择适当的进给速度,以确保工件的尺寸精度。
3. 切削深度对切削力和切削温度的影响:切削深度是指切削刀具在一次车削中对工件的切削量。
实验结果显示,较大的切削深度会导致切削力的增加和切削温度的升高。
这是因为较大的切削深度会增加切削刀具与工件之间的接触面积,从而增加切削力的大小。
同时,切削过程中产生的摩擦也会导致切削温度的升高。
因此,在车削过程中,需要根据工件的材料和切削刀具的耐磨性选择适当的切削深度,以避免切削力和切削温度过高。
结论:通过本次实验,我们深入了解了车削工艺对工件表面质量和尺寸精度的影响。
车削时切削温度的测量
一、实验目的及要求
1、掌握用自然热电偶法测量切削区平均温度的方法。
2、研究车削时,切削热和切削温度的变化规律及切削用理(包括切削速度、走刀量f、切削深度ap)对切削θ的影响。
3、用正交试验设计,确定在切削用量的三个因素中,影响切削温度的主次因素。
二、实验内容
用高速钢车刀和45#钢工件组成的热电偶,以正交试验计法实验切削温度的变化规律。
三、实验设备及用具
1、设备:CA6140型变通车床。
2、仪器:VJ37型直流电位差计(或毫伏表)。
3、刀具:高速钢外圆车刀。
4、工件:45#钢。
四、自然热电偶法测量温度的基本原理和方法
用热电偶测量温度的基本原理是:当两种化学成份不同的金属材料,组成闭合同路时,如果在这两种金属的两个接点上存在温度差(通常温度高的一端称为热端,温度低的一端称为冷端)。
在电路上就产生热电势,实验证明,在一定的温度范围内,该热电热与温度具有某种线性关系。
热电偶的特性是:
(1)任何两种不同金属都可配制成热电偶。
(2)任何两种均质导体组成的热电偶,其电动热的大小仅与热电极的材料和两接点的温度T、To有关,而与热电偶的几何形状及尺寸无关。
(3)当热电偶冷端温度保持一定,即To=C时,热电势仅是热端温度T的单值数,E= (t),这样,热电偶测量端的温度与热电势建立了——对应关系。
用自然热电偶法测量切削温度时,是利用刀具与工件化学成份的不同而组成热电偶的两级,如图(一)所示。
(刀具和工件均与机床绝缘,以消除寄生热电偶的两极的影响),切削时,工件与刀具接触区的温度升后,就形成了热电偶的热端,而工件通过同材料的细棒或切屑再与导体连接形成一冷端,刀具由导线引出形成另一冷端,如在冷端处接入电位差计,即可测得热电势的大小,通过热电热——温度的换算从而反映出刀具与工件接触处的平均温度。
为了将测得的切削温度毫伏值换算成温度值,必须事先对实验用的自然热电
偶进行标定热出“毫伏值——温度”的关系曲线,标定装置如图(二)所示,标定时取两根与刀具及工件材料完全相同的金属丝,在其一端进行焊接后,使其组成一对被校热电偶,然后将被校热电偶与标准热电偶放入加热炉内同一位置处,以保证两个热电偶的热端温度相同,与此同时将两个热电偶的冷端,插入有冰块的容器中,以保持冷端恒温0℃,冷端的引出导线分别接入标准电位差计及被校毫伏计上,当炉温升高时,标准热电偶的热电势,通过电位差计,读出它的标准温度值,而自然热电偶的热电势则通过被校毫伏计读出毫伏值。
炉温从室温升至350℃,每间隔50℃读出对应的毫伏值,画成关系曲线就是所求的热电势——温度的标定曲线,如图(三)所示。
标定曲线是换算温度的依据,它的准确程度成热电偶的材质,引出导线的材质、直径、联接形式,炉温控制,冷端的温度以及测试仪表的校正有很大关系。
五、实验步骤
1、安装试件、刀具、接好线路(按图一接)。
2、进行切削用量各要素对切削温度的影响实验。
(1)确定试验指标和试验因素。
a、试验指标:切削温度。
b、试验因素:切削速度V、切削深度ap、进给量f。
(2)确定各因素水平,列出因素水平表。
因素水平表
注:工件直径D为定值。
(3)选用L(3)正交表,进行试验。
切削温度试验结果表
注:(1)I(或II、或III)为各因素在1(或2、或3)水平下所得切削温度θ的数据和。
(2)R为I、II、III之间的极差。
(2)根据极差R的厌上,确定影响切削温度的主、次因素。