车削加工路径、切削参数选择
- 格式:ppt
- 大小:4.57 MB
- 文档页数:23
车削加工的基本操作方法
车削加工的基本操作方法包括以下几个步骤:
1. 选择合适的车床和刀具:根据加工工件的尺寸、材料和形状的要求,选择合适的车床和刀具。
2. 安装工件:将工件固定在车床上,通常使用卡盘或夹具进行固定,并确保工件的切削面与车床主轴中心线保持垂直。
3. 调整刀具:根据加工要求,调整刀具的位置和角度,确保刀具与工件接触良好。
4. 设置加工参数:根据不同材料和尺寸,设置合适的切削速度、进给速度和切削深度等加工参数。
5. 开始车削:启动车床,使主轴旋转,通过刀具与工件的相对运动,进行切削加工。
在加工过程中,要注意观察切削状态和工件尺寸的变化,及时调整加工参数。
6. 完成车削:根据工件的要求和加工程序,持续进行车削,直至达到所需的加工尺寸和表面粗糙度。
7. 检查工件:对已加工完成的工件进行检查,包括尺寸测量、表面质量等,确保加工质量符合要求。
8. 清理车床和刀具:加工完成后,及时清理车床和刀具,保持其良好状态,以便下次使用。
需要注意的是,车削加工操作需要具备相关的操作经验和技能,操作时要注意安全,遵守相关的操作规程和安全操作要求。
机械加工工艺参数设定规定机械加工是一种制造工艺,通过对金属材料进行切削、车削、铣削等加工操作,以达到所需的形状和尺寸。
为了保证机械加工的质量和效率,需要准确设定和控制加工过程中的各项工艺参数。
本文将探讨机械加工工艺参数的设定规定。
I. 设定合适的切削速度切削速度是机械加工中最重要的参数之一,它指的是工件在加工过程中与刀具之间的相对运动速度。
切削速度的高低直接影响到加工表面的质量和加工效率。
在设定切削速度时,需要考虑材料的硬度、刀具的材质和结构以及切削液的使用情况等因素。
一般来说,硬度较高的材料需要较低的切削速度,而使用高速切削刀具时,可以适当提高切削速度。
II. 确定合适的进给速度进给速度是指切削工具在单位时间内切削加工的深度,它与每分钟的切削次数和每次切削的深度有关。
进给速度的设定要根据具体的材料和工艺要求来确定,过低的进给速度会导致加工时间过长,过高则容易引起刀具磨损和损坏。
因此,在设定进给速度时,需要综合考虑切削力、切削温度和加工表面质量等因素,以确保加工质量和效率的平衡。
III. 控制合适的切削深度切削深度是指刀具在每次切削中削除工件材料的厚度。
切削深度的设定要根据工件的材质、硬度和稳定性来确定。
如果切削深度过大,会增加切削力和切削温度,容易导致刀具振动、工件变形和表面质量下降。
因此,在设定切削深度时,需要根据具体情况做出合理的选择,并进行试切实验以验证加工效果。
IV. 设定适当的切削液使用量切削液在机械加工过程中起到冷却、润滑和清洁的作用,能有效降低切削温度、减少切削力和延长刀具寿命。
切削液的使用量需要根据加工材料、切削速度和切削方式等因素来确定。
针对不同的工艺要求,有时需要调整切削液的类型和浓度。
在设定切削液使用量时,操作人员应掌握切削液的性能指标,并遵循相关的安全操作规范。
V. 考虑刀具的选择和磨损控制刀具的选择要根据不同的加工任务来确定,包括工件材料、形状和尺寸等方面的要求。
同时,刀具的磨损情况也需要及时控制,以保证加工质量和效率。
车削加工操作中切削用量的选择摘要:切削用量的选择关系到能否合理使用刀具与机床,对保证加工质量、提高生产效率和经济效益,都具有很重要的意义。
本文介绍在粗车、半精车和精车时,如何正确和合理地选用切削深度、进给量和切削速度。
关键词:切削用量切削深度进给量切削速度切削用量是度量主运动和进给运动大小的参数。
它包括切削深度、进给量和切削速度。
切削用量的选择关系到能否合理使用刀具与机床,对保证加工质量、提高生产效率和经济效益,都具有很重要的意义。
合理地选择切削用量是指在工件材料、刀具材料和几何角度及其他切削条件已经确定的情况下,选择切削用量三要素中的最优化组合来进行切削加工。
选择切削用量,不仅对切削阻力、切削热、积屑瘤、工件的加工精度、表面粗糙度有很大的影响,而且还与提高生产率,降低生产成本有密切的关系。
虽然加大切削用量对提高生产效率有利,但过分增加切削用量却会增加刀具磨损,影响工件质量,甚至会撞坏刀具,产生“闷车”等严重后果,所以应合理选择切削用量。
合理的切削用量应在保证安全生产,不发生人身、设备事故,保证工件加工质量的前提下,能充分地发挥机床的潜力和刀具的切削性能,在不超过机床的有效功率和工艺系统刚性所允许的额定载荷的情况下,尽量选用较大的切削用量。
一、粗车时切削用量的选择粗车时,加工余量较大,我们主要应考虑尽可能提高生产效率和保证必要的刀具寿命。
由于切削温度对刀具磨损影响最大,切削速度增大,导致切削温度升高,刀具磨损加快,刀具使用寿命明显下降,这是不希望发生的。
所以我们应首先选择尽可能大的进给量,然后再选取合适的切削深度,最后在保证刀具经济耐用度的条件下,尽可能选用较大的切削速度。
1.选用切削深度切削深度应根据工件的加工余量和工艺系统的刚性来选择。
(1)在保留半精加工余量和精加工余量后,应尽量将剩下的余量一次切除,以减小走刀次数。
(2)若总加工余量太大时,一次切除所有余量将会引起机床明显的振动,还会导致刀具强度和机床功率不能承受,这时就应分两次或多次进刀,第一次进刀的深度应选得大一些。
车削加工参数1切削用量选定原则选择机械加工切削用量就是指具体确定切削工序的切削深度、进给量、切削速度及刀具耐用度。
选择切削用量时,要综合考虑生产率、加工质量和加工成本。
从切削加工生产率考虑:切削深度、进给量、切削速度中任何一个参数增加一倍,都可提高生产率一倍。
从刀具耐用度考虑:应首先采用最大的切削深度,再选用大的进给量,然后根据确定的刀具耐用度选择切削速度。
从加工质量考虑:精加工时,采用较小的切削深度和进给量,采用较高的切削速度。
2车削加工参数2.1车削要素切削速度v:工件旋转的线速度,单位为m/min。
进给量f:工件每旋转一周,工件与刀具相对位移量,单位为mm/r。
切削深度ap:垂直于进给运动方向测量的切削层横截面尺寸,单位为mm。
Ra :以轮廓算术平均偏差评定的表面粗糙度参数,单位为^m。
dw :工件直径,单位为mm。
切削速度与转速关系:jsin nd1000 318_3 m/minlOOOv 3183vH - -- -= ---就』r/minv:切削速度,工件旋转的线速度,单位为m/min。
n:工件的转速,单位为r/min。
d:工件观察点直径,单位为mm。
2.2车削参数45钢热轧状态(硬度:187HB)外圆车削钢调质状态(硬度:28〜32HRC)外圆车削4540Cr钢热轧状态(硬度:212HB)外圆车削28〜32HRC)外圆车削40Cr钢调质状态(硬度:28〜32HRC)内圆车削TC4固溶处理并时效状态(硬度:320〜380HB)外圆车削TC4固溶处理并时效状态(硬度:320〜380HB)内圆车削。
不锈钢车削参数不锈钢车削参数是指在车削加工过程中,针对不锈钢材料的特性和要求所设定的一系列切削参数。
这些参数对于保证加工质量和提高生产效率具有重要意义。
以下是一些建议的不锈钢车削参数:1. 切削速度(Vc):切削速度是刀具在旋转时与工件接触点的速度。
对于不锈钢材料,切削速度应适当降低,以防止刀具过热和磨损。
一般推荐切削速度为20-60m/min。
2. 进给量(f):进给量是指刀具在每次切削行程中沿工件轴向移动的距离。
对于不锈钢材料,进给量应适当降低,以减小刀具磨损和切削力。
一般推荐进给量为0.1-0.3mm/r。
3. 切削深度(ap):切削深度是指刀具在每次切削行程中切入工件的深度。
对于不锈钢材料,切削深度应适当降低,以减小刀具磨损和切削力。
一般推荐切削深度为0.1-0.5mm。
4. 刀具前角(γo):刀具前角是指刀具主切削刃与工件表面的夹角。
对于不锈钢材料,刀具前角应适当增大,以提高切削性能和减少刀具磨损。
一般推荐前角为10-20°。
5. 刀具后角(αo):刀具后角是指刀具主切削刃与工件表面的夹角。
对于不锈钢材料,刀具后角应适当增大,以提高切削性能和减少刀具磨损。
一般推荐后角为8-12°。
6. 切削液:不锈钢车削过程中,应使用适当的切削液来冷却和润滑刀具和工件,以降低切削温度和减少刀具磨损。
常用的切削液有水溶性切削液、油溶性切削液和乳化液等。
7. 刀具材质:不锈钢车削过程中,应选择具有良好耐磨性和抗腐蚀性的刀具材质,如硬质合金、陶瓷和高速钢等。
8. 机床刚性:不锈钢车削过程中,应选择具有较高刚性的机床,以保证加工精度和表面质量。
9. 工艺路线:不锈钢车削过程中,应根据工件的形状和尺寸选择合适的工艺路线,以减少切削力和热量对加工质量的影响。
总之,不锈钢车削参数的选择应根据具体的工件材料、形状和尺寸以及加工要求进行综合考虑,以达到最佳的加工效果。
3.7 切削条件的合理选择一、刀具几何参数的合理选择刀具几何参数包含四方面内容:几何角度、刃形、刃面、刃口型式及参数(一)前角的选择1.前角的作用γ↑→变形程度↓→F↓q ↓→θ ↓→T↑振动↓质量↑0刀刃和刀头强度↓散热面积容热体积↓断屑困难在一定的条件下,存在一个合理值对于不同的刀具材料和工件材料,T 随γ的变化趋势为驼峰形。
高速钢的合理前角比Y合金的大。
加工塑材的合理前角比脆材的大2.合理前角的选择原则①粗加工、断续切削、刀材强度韧性低工材强度硬度高,选较小的前角;②工材塑韧性大、系统刚性差,易振动或机床功率不足,选较大的前角;③成形刀具、自动线刀具取小前角;④Aγ磨损增大前角,Aα磨损减小前角(二)后角的选择1.后角的作用α0↑→rn↓锋利、lα↓摩擦F↓→质量↑VB 一定,磨损体积↑→T↑但NB↑刀头强度↓散热体积↓重磨体积↑在一定的条件下,存在一个合理值2.合理后角的选择原则①粗加工、断续切削、工材强度硬度高,选较小后角, 已用大负前角应↑α;②精加工取较大后角,保证表面质量;③成形、复杂、尺寸刀具取小后角;④系统刚性差,易振动,取较小后角;⑤工材塑性大取较大后角,脆材↓α(三)主偏角的选择1.主偏角的作用κr ↓→ac↓aw↑→单位刃长负荷↓→T↑刀尖强度↑散热体积↑,Ra↓Fp↑→变形↑加工精度↓,易振动→Ra↑,T↓在一定的条件下,存在一个合理值2.合理主偏角的选择原则①主要看系统刚性。
若刚性好,不易变形和振动,κr取较小值;若刚性差(细长轴),κr取较大值(90°);②考虑工件形状、切屑控制、减小冲击等,车台阶轴,取90 °;镗盲孔>90 °;κr小切屑成长螺旋屑不易断;较小κr,改善刀具切入条件,不易造成刀尖冲击。
(四)副偏角的选择副偏角的主要作用是形成已加工表面。
副偏角↓→Ra↓刀尖强度↑散热体积↑↑易振动→Ra↑,T↓副刃工作长度↑→摩擦↑Fp在一定条件下,存在一合理值。
刀具及切削参数选择在进行切削加工时,刀具及切削参数的选择是非常重要的。
刀具的选择取决于工件的材料、加工方式和所需的加工质量,而切削参数的选择则直接影响到切削效率、加工质量和工具寿命。
下面将详细介绍刀具及切削参数的选择要点。
首先,刀具的选择应根据工件的材料来确定。
不同材料的硬度、耐磨性和塑性等性质会对刀具的选择产生影响。
常用的刀具材料有高速钢、硬质合金和陶瓷等。
高速钢刀具适用于切削低硬度的材料,如铸铁、铝等。
硬质合金刀具具有较好的耐磨性和硬度,适用于切削高硬度材料,如钢和钛合金等。
陶瓷刀具具有良好的高温硬度和耐磨性,适用于切削高硬度和高温材料。
其次,根据加工方式来选择刀具的类型。
常见的刀具类型有立铣刀、立铣刀、钻头、螺纹刀和车刀等。
立铣刀适用于平面和立面的铣削加工。
立铣刀适用于开槽和切割加工。
钻头适用于孔加工。
螺纹刀适用于螺纹加工。
车刀适用于车削加工。
再次,切削参数的选择要考虑切削效率、加工质量和刀具寿命的平衡。
常见的切削参数有切削速度、进给速度和切削深度等。
切削速度是刀具切削的线速度,影响切削热的产生和刀具寿命。
一般来说,当工件材料硬度较高时,切削速度应适当降低。
进给速度是工件在单位时间内移动的距离,影响切削力和加工质量。
一般来说,较高的进给速度可以提高切削效率,但过高的进给速度会增加切削力和工具磨损。
切削深度是刀具在每次切割时进入工件的距离,影响切削力和切削热的产生。
较大的切削深度可以提高切削效率,但会增加切削力和工具磨损。
此外,还应考虑冷却润滑剂的选择和使用。
合适的冷却润滑剂可以降低切削热的产生,减小工具磨损,提高加工质量。
综上所述,刀具及切削参数的选择需要考虑工件材料、加工方式和所需加工质量。
合理选择刀具类型和切削参数可以提高切削效率、加工质量和工具寿命。
在实际应用中,还需要根据具体情况进行调整和优化。
车削加工工艺流程车削加工是一种常见的金属加工方法,广泛应用于制造业中。
本文将从工艺流程的角度介绍车削加工的步骤和要点。
车削加工是通过旋转工件,利用刀具对工件进行切削来加工的。
它的加工流程一般包括以下几个步骤:工件装夹、工艺参数设定、刀具选择、切削过程控制和加工质量检查。
首先是工件装夹。
工件装夹是将待加工的工件固定在车床上的过程。
通常采用卡盘、夹具等装置将工件夹紧,确保工件的稳定性和精度。
同时还需注意工件与夹具的配合面间的间隙,以及夹紧力的控制,避免工件在加工过程中发生位移或变形。
接下来是工艺参数设定。
根据工件的材料、形状和加工要求,确定车削加工的各项工艺参数。
主要包括切削速度、进给速度和切削深度等。
切削速度的选择需考虑材料的硬度、切削刃的材料和刀具的类型等因素。
进给速度的选择需考虑加工的表面质量和加工效率等因素。
切削深度的选择需考虑工件的刚度和刀具的耐用性等因素。
然后是刀具选择。
根据工件的材料、形状和加工要求,选择合适的刀具进行车削加工。
常见的车削刀具有刀柄、切削刃和刀尖等部分。
刀柄是刀具与车床主轴连接的部分,其形状和尺寸需与车床相匹配。
切削刃是刀具用来切削工件的部分,其形状和材料需根据工件的材料和形状来选择。
刀尖是切削刃的尖端部分,其形状和尺寸需根据切削刃的形状和切削要求来选择。
接着是切削过程控制。
切削过程控制是指在加工过程中对切削参数和刀具状况进行监控和调整,以确保加工质量和刀具寿命。
在切削过程中,需根据加工情况对切削速度、进给速度和切削深度等进行实时调整,以避免过载和切削不良等问题的发生。
同时还需对刀具的磨损进行检查和更换,以保证刀具的良好切削状态。
最后是加工质量检查。
加工质量检查是对加工后的工件进行尺寸、形状和表面质量等方面的检查,以确保加工结果符合要求。
通常采用量具、测量仪器和表面粗糙度仪等设备进行检测。
对于不合格的工件,需进行再加工或修磨,以提高加工质量。
车削加工工艺流程包括工件装夹、工艺参数设定、刀具选择、切削过程控制和加工质量检查等步骤。
车削实验报告(一)车削实验报告1. 实验目的本次车削实验的主要目的如下:•了解车削的基本原理和流程;•掌握车削工艺参数的设置和调整;•熟悉车削工具的使用方法;•实际操作中掌握各种车削方法的应用。
2. 实验设备和材料•数控车床;•刀具;•工件;•冷却液。
3. 实验流程3.1 设备调整在进行车削操作前,需要先对设备进行正确配置和调整,主要包括以下几方面:•确定机床加工能力与要求匹配;•选择最佳的机床进给速度和主轴转速;•选择合适的切削刃数;•坚固地夹持工件,确保其均匀受力。
3.2 工具选择选择合适的车刀和夹持系统,保证加工精度和表面质量。
3.3 车削加工在设备和工具调整完成后,即可进行车削操作,主要分为以下几个环节:3.3.1.寻找工件的零点,并定位工件;3.3.2.选择加工路径和切削参数;3.3.3.进行预热和冷却操作;3.3.4.开始车削加工。
3.4 工件检查在车削完成后,需要对工件进行必要的检查,以保证尺寸和表面质量符合要求。
4. 难点解决在车削实验中,我们遇到了一些难点,主要如下:•工件夹紧力不均导致加工质量下降;•加工过程中刀具断裂,需要更换;•切削液不足或不均匀导致加工效果不理想。
为了解决这些难点,我们经过多方面的调整和协调,最终顺利完成了本次实验任务。
5. 结论通过本次车削实验,我们深入了解了车削工艺的基本原理和流程,掌握了车削工艺参数的设置和调整方法,熟悉了车削工具的使用方法,并实践中掌握和应用了各种车削技术。
我们相信,这些经验将对日后的机械加工操作和工艺改进都具有重要的指导和借鉴意义。
6. 改进建议通过本次实验,我们发现在实际操作中还存在一些需要改进的地方:•在设备调整和工具选择阶段需要更加细致认真,以保证精度和质量;•在车削加工前需要充分预热和冷却,以保证刀具和工件的寿命和质量;•在工作过程中需要密切观察和调整各种参数,以确保加工效果和工件质量。
我们认为这些问题可以通过更加细致的操作、更科学的加工策略和更加完善的质量管理来逐步解决和改进。
国家职业教育机械制造技术专业教学资源库车削薄壁工件时车刀的几何参数及切削用量选择一、车刀的几何参数选择在薄壁工件的车削过程中,合理的车刀几何角度对车削时切削力的大小,产生的热变形、工件表面的粗糙度值都有较大的影响。
车刀前角的大小,决定着切削变形与车刀锋利程度。
前角大,切削变形和摩擦力减小,切削力减小,使切削变形小,切屑容易流出。
但前角太大,会使车刀的楔角减小,车刀的强度降低,车刀散热差,加快车刀的磨损。
若车刀的后角增大,则可减少后刀面与工件之间的摩擦,切削力也相应减小,工件不易产生热变形。
但后角过大时,车刀的强降低。
总之,在车削薄壁工件时,要求刀柄的刚度要求高,车刀的修光刃不易过长(一般取O.2~O.3mm),刃口要锋利。
在车刀的角度选取方面遵循以下原则:1、选用较大的主偏角,增大主偏角可减小主切削刃参加工作的长度,并有利于减小径向切削分力。
2、适当增大副偏角,可以减少副切削刃与工件之间的摩擦,从而减少切削热,有利于减小工件热变形。
3、前角适当增大,应尽量使车刀锋利,切削轻快,排屑顺畅,促使减小切削力和切削热。
4、刀尖圆弧半径要小。
车刀的几何参数可参考下列要求:1、外圆精车刀。
Κr = 90°~93°,Κ′r = 15°,a o = 14°~16°,a o1= 15°,γ0适当增大。
2、内孔精车刀。
Κr = 88°~90°,Κ′r = 10°~15°,γ0 = 10°~15°,a o = 14°~16°,a o1= 6°~8°,λs= 5°~6°。
二、切削用量的选择薄壁工件刚度低、易变形,在车削加工过程中切削用量的选择对加工质量影响很大,如果背吃刀量和进给量增大,则切削力增大,工件变形也增大,对加工质量不利。
如果减小背吃刀量,增大进给量,工件的表面残余面积增大,表面粗糙值加大,对加工质量也不利。
切削用量的选择原则数控机床加工的切削用量包括切削速度V c (或主轴转速n)、切削深度a p和进给量f,其选用原则与普通机床基本相似,合理选择切削用量的原则是:粗加工时,以提高劳动生产率为主,选用较大的切削量;半精加工和精加工时,选用较小的切削量,保证工件的加工质量。
1. 数控车床切削用量1)切削深度a p在工艺系统刚性和机床功率允许的条件下,尽可能选取较大的切削深度,以减少进给次数。
当工件的精度要求较高时,则应考虑留有精加工余量,一般为0.1~0.5mm。
切削深度ap计算公式:a p=2mw dd式中:d w—待加工表面外圆直径,单位mmd m—已加工表面外圆直径,单位mm.2)切削速度Vc①车削光轴切削速度V c光车切削速度由工件材料、刀具的材料及加工性质等因素所确定,表1为硬质合金外圆车刀切削速度参考表。
切削速度Vc计算公式:Vc=式中:d—工件或刀尖的回转直径,单位mmn—工件或刀具的转速,单位r/min表1 硬质合金外圆车刀切削速度参考表工件材料热处理状态a p=0.3~2mm a p=2~6mm a p=6~10mmf=0.08~0.3mm/r f=0.3~0.6mm/r f=0.6~1mm/rVc/m·min-1Vc/m·min-1Vc/m·min-1低碳钢易切热轧140~180100~12070~90钢热轧130~16090~11060~80中碳钢调质100~13070~9050~70热轧100~13070~9050~70合金工具钢调质80~11050~7040~60工具钢退火90~12060~8050~70HBS<19090~12060~8050~70灰铸铁HBS=190~22580~11050~7040~60高锰钢10~20铜及铜合金200~250120~18090~120铝及铝合金300~600200~400150~200铸铝合金100~18080~15060~100注:表中刀具材料切削钢及灰铸铁时耐用度约为60min。
数控车床切削加工三要素(2008-10-15 14:04:46)转载分类:CNC数控车床技术标签:杂谈不少数控车床的操作者,对车床的切削原理知道得很少,常常不知道如何正确选择主轴转速S、进刀量F,以及进刀的深度,希望这篇文章能对他们有所帮助。
主轴转速S、进刀量F,进刀的深度,在切削原理课程中称为切削加工三要素,如何正确选择这三个要素是金属切削原理课程的一个主要内容,我这里想尽可能简单地介绍一下选择这三个要素的基本原则:(一) 切削速度(线速度、园周速度)V(米/分)要选择主轴每分钟转数,必须首先知道切削线速度V应该取多少。
V的选择:取决于刀具材料、工件材料、加工条件等。
刀具材料:硬质合金,V可以取得较高,一般可取100米/分以上,一般购置刀片时都提供了技术参数:加工什么材料时可选择多少大的线速度。
高速钢:V只能取得较低,一般不超过70米/分,多数情况下取20~30米/分以下。
工件材料:硬度高,V取低;铸铁,V取低,刀具材料为硬质合金时可取70~80米/分;低碳钢,V可取100米/分以上,有色金属,V可取更高些(100~200米/分).淬火钢、不锈钢,V应取低一些。
加工条件:粗加工,V取低一些;精加工,V取高些。
机床、工件、刀具的刚性系统差,V取低。
如果数控程序使用的S是每分钟主轴转数,那么应根据工件直径,及切削线速度V计算出S:S(主轴每分钟转数)=V(切削线速度)*1000/(3.1416*工件直径)如果数控程序使用了恒线速,那么S可直接使用切削线速度V(米/分)(二)进刀量(走刀量)F主要取决于工件加工表面粗糙度要求。
精加工时,表面要求高,走刀量取小:0.06~0.12mm/主轴每转。
粗加工时,可取大一些。
主要决定于刀具强度,一般可取0.3以上,刀具主后角较大时刀具强度差,进刀量不能太大。
另外还应考虑机床的功率,工件与刀具的刚性。
数控程序使用二种单位的进刀量:mm/分、mm/主轴每转,上面用的单位都是mm/主轴每转,如使用mm/分,可用公式转换:每分钟进刀量=每转进刀量*主轴每分钟转数(三)吃刀深度(切削深度)精加工时,一般可取0.5(半径值)以下。
卧式数控车床⼑具及切削参数选择卧式数控车床⼑具及切削参数选择⽬录⼀机卡车⼑的选⽤ (1)⼆孔加⼯⼑具的选⽤ (9)三切断和切槽⼑ (12)四螺纹车⼑ (13)五⼑具材料 (16)六⼑具⼚商 (17)七⼑具⼲涉图 (18)⼋⼑具允许的最⼤转动惯量 (19)数控车床⼑具系统⽐卧车复杂。
要求安装数量多,安装可靠,⾃动换⼑,装卸⽅便迅速还要求切削时间短以提⾼⽣产率。
因此普遍采⽤机卡车⼑。
机卡车⼑是把压制有合理的⼏何参数,在⼀定的切削⽤量范畴内保证卷屑,断屑并有⼏个⼑刃的⼑⽚,⽤机械卡固⽅式装卡在标准⼑体上的⼀种新型⼑具。
它避免了硬质合⾦⼑⽚在焊接中产⽣的种种不良后果,因此能充分发挥⼑⽚材料原有的切削性能,提⾼了车⼑的耐⽤度和切削加⼯的⽣产率.另外⼑体可重复使⽤,能节约⼤量制造⼑体的钢材.还便于使⼑具标准化和集中⽣产,同⼀型号⼑⽚的⼏何形状较⼀致切削效果稳定.有利于提⾼零件加⼯质量,简化了⼑具的管理⼯作.使⽤时,当⼑刃磨损后,只需松开卡紧机构将⼑⽚转⼀个⾓度,不必重磨,⼤⼤缩短了换⼑.磨⼑.装⼑的辅助时间,⽽且可以避免⼑⽚由于重磨⽽造成的缺陷.因此机卡车⼑也叫不重磨车⼑或可转位车⼑。
除不可避免的情况外,为⽤户选⽤的都应该是机卡车⼑。
⼀机卡车⼑的选⽤侧重外表⾯车⼑的选⽤。
内孔车⼑⼤体相同,其特殊性问题另做叙述。
ISO对外表⾯车⼑型号是如下表⽰的,它是国内外⼑具⼚商的统⼀标准。
选⼑⼯作也就是确定型号中的各项内容,按选⼑时考虑问题的⼤体顺序分叙如下:(⼀)⼑⽚形状的选择:外内表⾯车⼑⼑⽚形状关系车⼑类型,它取决于加⼯部位的形状,是选⼑的最重要内容。
它主要涉及⼑具的主偏⾓,⼑尖⾓和有效刃数等。
⼀般来讲⼑尖⾓愈⼤⼑尖强度愈⾼,应尽量采⽤。
但⼑尖⾓⼩⼲涉现象少,适⽤于复杂型⾯,开挖沟槽及下坡的型⾯。
⼑⽚形状甚多,某些⼚家列出⼗⼏种,本⼚实际只⽤过图1所⽰七种,也正是ISO规定的七种基本类型。
图1 图280°菱型⼑⽚C,⽬前是我⼚选⽤最多的。
加工中心刀具切削参数1. 切削速度(Cutting Speed):切削速度是指刀具在切削工件时的线速度,一般以米/分钟(m/min)为单位。
切削速度的选择应根据材料的性质和硬度来确定,以保证刀具在切削过程中不过热或不磨损。
切削速度过高容易导致刀具过热,切削速度过低则会损伤刀具刃口。
切削速度的选择是一个经验性问题,需要根据实际情况进行调整。
2. 进给速度(Feed Rate):进给速度是指加工中心在进行切削过程中刀具的前进速度,一般以毫米/转(mm/rev)为单位。
进给速度的选择需考虑切削过程中刀具的刃口磨损和工件表面光洁度。
进给速度过高容易导致刃口磨损,进给速度过低则会导致工件表面粗糙度增加。
进给速度的选择也需要根据实际情况进行调整。
3. 切削深度(Cutting Depth):切削深度是指每次刀具进给的深度,一般以毫米为单位。
切削深度的选择应根据刀具尺寸和切削性能来确定,以避免刀具过度磨损或切削过程中出现振动。
切削深度过大容易导致刀具断裂,切削深度过小则会降低加工效率。
切削深度的选择也需要根据实际情况进行调整。
4. 切削角度(Cutting Angle):切削角度是指刀具切入工件时与工件表面的夹角。
切削角度的选择应根据刀具的形状和切削性能来确定,以保证刀具在切削过程中能够切入工件并顺利进行切削。
切削角度对切削力和刀具寿命有着显著的影响。
切削角度的选择也需要根据实际情况进行调整。
5. 切削液(Cutting Fluid):切削液是指在切削过程中用于冷却刀具和工件的液体。
切削液可以有效降低切削温度、减少切削力和刃口磨损,提高加工质量和刀具寿命。
切削液的选择应根据加工材料和切削性能来确定,以保证切削效果的最佳化。
综上所述,加工中心刀具切削参数是切削加工中的重要参数,对于加工质量和效率具有重要意义。
在实际操作中,需要根据材料性质、刀具特点和切削要求来灵活调整这些参数,以达到最优的加工效果。
车削加工路径切削参数选择引言车削加工是通常应用于金属加工领域的一种常见切削工艺。
车削过程中,选择合适的切削参数对于保证工件质量、提高加工效率至关重要。
本文将介绍在车削加工中,如何选择合适的路径和切削参数。
车削路径选择车削路径是指车刀在工件上运动的轨迹。
选择合适的车削路径对于加工效率和表面质量有重要影响。
常见的车削路径有以下几种:1.直线车削路径:沿着工件轴线进行直线运动,适用于对称工件的加工。
2.长度向车削路径:沿着工件的长度方向进行车削,适用于加工棒材等形状较长的工件。
3.面向车削路径:沿着工件的横截面进行车削,适用于加工平面工件。
4.弧线车削路径:以弧线轨迹进行车削,适用于加工圆形工件或有曲线需求的工件。
在选择车削路径时,应根据具体的工件形状和加工要求进行合理的选择。
同时,还应考虑加工的稳定性和切削刃的寿命等因素。
切削参数选择切削参数是指影响切削过程的各项参数,包括切削速度、进给速度和切削深度等。
正确选择切削参数可以有效地控制切削过程中产生的热量和切削力,提高加工效率和工件质量。
切削速度切削速度是指车刀切削工件的速度。
切削速度的选择应根据工件材料和车刀材料进行合理调整。
对于硬质材料,应选择较低的切削速度,以减少刀具磨损和热量产生;对于软质材料,可以选择较高的切削速度以提高加工效率。
进给速度进给速度是指车刀每分钟进给工件的距离。
进给速度的选择应根据工件材料、车刀材料和切削深度等因素进行综合考虑。
通常情况下,较高的进给速度可以提高加工效率,但过高的进给速度可能导致切削力过大,造成刀具损坏或工件表面质量下降。
切削深度切削深度是指车刀在一次切削中所移除的工件材料的厚度。
选择合适的切削深度可以有效控制加工过程中的切削力和热量产生。
较大的切削深度可以提高加工效率,但过大的切削深度可能导致加工过程不稳定,造成刀具破裂或工件变形等问题。
切削液选择切削液是指在车削加工过程中用于冷却和润滑的液体。
切削液的选择应根据工件材料、切削参数和加工环境等综合考虑。