(1)土质边坡稳定分析之条分法
- 格式:ppt
- 大小:524.50 KB
- 文档页数:50
边坡稳定性分析方法1.1 概述边坡稳定性分析是边坡工程研究的核心问题,一直是岩土工程研究的的一个热点问题。
边坡稳定性分析方法经过近百年的发展,其原有的研究不断完善,同时新的理论和方法不断引入,特别是近代计算机技术和数值分析方法的飞速发展给其带来了质的提高。
边坡稳定性研究进入了前所未有的阶段。
任何一个研究体系都是由简单到复杂,由宏观到微观,由整体到局部。
对于边坡稳定性研究,在其基础理论的前提下,边坡稳定分析方法从二维扩展到三维,更符合工程的实际情况;由于一些新理论和新方法的出现,如可靠度理论和对边坡工程中不确定性的认识,边坡稳定分析方法由确定性分析向不确定性分析发展。
同时,由于边坡工程的复杂性,边坡稳定评价不能依赖于单一方法,边坡的稳定性评价也由单一方法向综合评价分析发展。
1.2 边坡稳定性分析方法边坡稳定性分析方法很多,归结起来可分为两类:即确定性方法和不确定性方法, 确定性方法是边坡稳定性研究的基本方法,它包括极限平衡分析法、极限分析法、数值分析法。
不确定性方法主要有随机概率分析法等。
1.2.1 极限平衡分析法极限平衡法是边坡稳定分析的传统方法,通过安全系数定量评价边坡的稳定性,由于安全系数的直观性,被工程界广泛应用。
该法基于刚塑性理论,只注重土体破坏瞬间的变形机制,而不关心土体变形过程,只要求满足力和力矩的平衡、Mohr-Coulomb准则。
其分析问题的基本思路:先根据经验和理论预设一个可能形状的滑动面,通过分析在临近破坏情况下,土体外力与内部强度所提供抗力之间的平衡,计算土体在自身荷载作用下的边坡稳定性过程。
极限平衡法没有考虑土体本身的应力—应变关系,不能反映边坡变形破坏的过程,但由于其概念简单明了,且在计算方法上形成了大量的计算经验和计算模型,计算结果也已经达到了很高的精度。
因此,该法目前仍为边坡稳定性分析最主要的分析方法。
在工程实践中,可根据边坡破坏滑动面的形态来选择相应的极限平衡法。
一、边坡稳定性计算方法在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。
根据边坡不同破裂面形状而有不同的分析模式。
边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。
这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。
(一)直线破裂面法所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。
为了简化计算这类边坡稳定性分析采用直线破裂面法。
能形成直线破裂面的土类包括:均质砂性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。
图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗剪度指标为c、φ。
如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析该滑动体的稳定性。
沿边坡长度方向截取一个单位长度作为平面问题分析。
已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(Δ ABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为:T=W · sina和则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。
对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时图9-1 砂性边坡受力示意图当 F s =1时,β=φ,表明边坡处于极限平衡状态。
此时β角称为休止角,也称安息角。
此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。
这类滑坡滑动面的深度与长度之比往往很小。
当深长比小于 0.1时,可以把它当作一个无限边坡进行分析。
图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。
取一单位长度的滑动土条进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的剪应力等于土的抗剪强度,即得式中N s =c/ γ H 称为稳定系数。
边坡稳定性分析方法至今为止,广大学者针对边坡稳定性的分析方法主要包括以下两个方面。
(一)定性分析方法此方法的研究对象主要包括边坡稳定性的影响因素、边坡失稳破坏时的力学作用、边坡的工程价值等,以及结合边坡的形成历史,从定性的角度解释和说明了边坡的发展方向及稳定性情况。
该方法的优势在于充分地分析了影响边坡稳定性中各个因素的相互作用关系,能够快速地评价边坡的自稳能力。
具体包括以下几个方面:(1)自然历史分析法自然历史分析法主要是通过分析边坡发育历史进程中的各种自然影响因素,包括边坡自身的变形情况、发育程度以及边坡分布区域的地貌特征、岩层性质、构造活动等,进而评价边坡的总体情况和稳定性特征,同时也可以预测将来可能导致边坡变形和失稳的触发因素。
该方法对边坡稳定性所做出的评价是从边坡的自然演化方面入手的。
(2)工程地质类比法工程地质类比法首先需要对边坡概况进行充分了解,包括组成边坡的岩体岩性、产状和结构面特征。
然后将目前已知的边坡稳定性情况和需要研究的边坡进行对比,记录两者之间的相似性与差异性,以此分析出所要研究边坡的稳定性情况和破坏模式。
为了能够准确地类比分析,就需要对现有边坡的环境地质条件进行全面的调查记录,并建立数据库。
该方法能够大致判断出研究对象的稳定性发展状况和趋势。
(3)图解法图解法通过在示意图上表示出边坡本身各类参数的组合关系来对边坡的稳定情况、破坏特征、破坏因素以及未来的发展方向进行分析。
常用的图解法包括极射赤平投影、边坡等比例投影等。
该方法的优势在于可以直观地表示影响边坡稳定性的因素。
(二)定量分析方法此方法主要通过数值法和极限平衡法等数学手段,依靠计算软件,更加精确地给出满足实际情况的边坡稳定性分析结果。
(1)极限平衡法主要是按照摩尔-库伦强度准则,通过分析作用在土体上的静力平衡条件来判断边坡的稳定性情况,最常见的极限平衡法是条分法,该方法经过100多年的发展,已经成为目前工程实践中使用最为广泛的一种方法。
第二节边坡稳定性分析方法力学验算法和工程地质法是路基边坡稳定性分析和验算方法常用的两种方法。
1.力学验算法(1)数解法假定几个不同的滑动面,按力学平衡原理对每个滑动面进行验算,从中找出最危险滑动面,按此最危险滑动面的稳定程度来判断边坡的稳定性。
此方法计算较精确,但计算繁琐。
(2)图解或表解法在图解和计算的基础上,经过分析研究,制定图表,供边坡稳定性验算时采用。
以简化计算工作。
2.工程地质法根据稳定的自然山坡或已有的人工边坡进行土类及其状态的分析研究,通过工程地质条件相对比,拟定出与路基边坡条件相类似的稳定值的参考数据,作为确定路基边坡值的依据。
一般土质边坡的设计常用力学验算法进行验算,用工程地质法进行校核;岩石或碎石土类边坡则主要采用工程地质法进行设计。
3.力学验算法的基本假定滑动土楔体是均质各向同性、滑动面通过坡脚、不考虑滑动土体内部的应力分布及各土条(指条分法)之间相互作用力的影响。
一、直线滑动面法松散的砂类土路基边坡,渗水性强,粘性差,边坡稳定主要靠其内摩擦力。
失稳土体的滑动面近似直线状态,故直线滑动面法适用于砂类土:如图2-2-4所示,验算时,先通过坡脚或变坡点假设一直线滑动面,将路提斜上方分割出下滑土楔体ABD,沿假设的滑动面AD滑动,其稳定系数K按下式计算(按边坡纵向单位长度计):验算的边坡是否稳定,取决于最小稳定系数Kmin的值。
当Kmin=1.0时,边坡处于极限平衡状态。
由于计算的假定,计算参数(r,Ψ,c)的取值都与实际情况存在一定的差异,为了保证边坡有足够的稳定性,通常以最小稳定系数Kmin≥1.25来判别边坡的稳定性。
但Kmin过大,则设计偏于保守,在工程上不经济。
当路堤填料为纯净的粗砂、中砂、砾石、碎石时,其粘聚力很小,可忽略不计,则式(2-2-3)变为:式(2-2-3)也适用于均质砂类土路堑边坡的稳定性验算。
二、圆弧滑动面法用粘性土填筑的路堤,边坡滑坍时的破裂面形状为一曲面,为简化计算,通常近似地假设为一圆弧状滑动面。
土木工程中边坡稳定性分析方法在土木工程领域,边坡稳定性是一个至关重要的问题。
边坡的失稳可能会导致严重的人员伤亡和财产损失,因此,准确分析边坡的稳定性对于工程的安全和成功实施具有重要意义。
本文将探讨几种常见的土木工程中边坡稳定性分析方法。
一、定性分析方法1、工程地质类比法这是一种基于经验和对比的方法。
通过对已有的类似地质条件和边坡工程的研究和经验总结,来对新的边坡稳定性进行初步判断。
这种方法虽然简单快捷,但依赖于丰富的工程经验和大量的案例数据。
2、历史分析法通过研究边坡地区的历史地质活动、自然灾害记录以及以往的边坡变形破坏情况,来推断当前边坡的稳定性。
然而,这种方法受到历史资料完整性和准确性的限制。
二、定量分析方法1、极限平衡法这是目前应用较为广泛的一种方法。
它基于静力平衡原理,将边坡划分为若干个垂直条块,通过分析条块之间的力和力矩平衡,计算出边坡的安全系数。
常见的极限平衡法有瑞典条分法、毕肖普法等。
瑞典条分法假设滑动面为圆弧,不考虑条块间的作用力,计算较为简单,但结果相对保守。
毕肖普法考虑了条块间的水平作用力,计算结果更为精确,但计算过程相对复杂。
2、数值分析方法(1)有限元法将边坡离散为有限个单元,通过求解每个单元的应力和位移,来分析边坡的稳定性。
它可以考虑复杂的边界条件和材料非线性特性,能够更真实地模拟边坡的力学行为。
(2)有限差分法与有限元法类似,但采用差分格式来近似求解偏微分方程。
在处理大变形和复杂边界问题时具有一定的优势。
(3)离散元法特别适用于分析节理岩体等非连续介质的边坡稳定性。
它能够模拟块体之间的分离、滑动和碰撞等行为。
三、监测分析方法1、地表位移监测通过设置测量点,使用全站仪、GPS 等仪器定期测量边坡表面的位移变化。
当位移量超过一定的阈值时,提示边坡可能存在失稳风险。
2、深部变形监测采用钻孔倾斜仪、多点位移计等设备,监测边坡内部的深部变形情况。
这种方法能够更早地发现潜在的滑动面。
土体边坡稳定性力学分析和K值检算方法赵 宇(沈阳铝镁设计研究院,沈阳110001) 摘 要 本文就土体边坡稳定性检算,这一工程设计中较复杂问题,运用土力学中摩尔强度理论和极限平衡理论,提出了用力学分析方法确定最危险的圆孤滑动面的几何参数。
利用计算机进行边坡稳定性K值检算和绘制所确定的边坡横断面图。
关键词 土体边坡稳定性 条分法 积分法 在土方工程中经常会遇到填方和挖方地段,有时还要在坡顶上或坡底下修建建筑物。
当边坡高度较大时,如把填方或挖方的边坡设计的太陡,或在坡顶上施加过大的荷载,则可导致边坡土体丧失稳定性,引起沿着某一滑动面塌落。
反之,如将边坡设计过缓,又会大量增加工程量,造成浪费。
在天然土坡的坡顶或坡底布置工程时,也存在着类似的情况,需要对边坡稳定性进行检算。
在公路或铁路工程中,高路堤的设计也需要对边坡稳定性进行检算。
根据对天然边坡和人工边坡破坏现象的大量调查研究资料表明,在含粘土较少的均质沙类土中滑动面近似平面(通常假定滑动面为平面);在均质粘性土中滑动面为一曲面(通常假定滑动面为圆弧面,也有假定滑动面为对数螺旋形面的,但计算较复杂且精度相差甚微,故不常用);不规则的滑动面(一般可假定滑动面为连续的折线形平面)。
边坡稳定性检算的方法按滑动面形式的不同,常用的有直线滑动面法和圆弧滑动面两种方法。
直线滑动面法边坡稳定性检算的方法比较简单,折线滑动面的边坡稳定性检算可以将折线划分为几个直线段,用直线滑动面法来解决。
而圆孤滑动面的边坡稳定性检算的方法较多且比较复杂,有的方法计算工作量十分巨大,在工程设计中很少被采用。
工程设计中被采用的方法有条分法和磨擦圆法,而经常被采用的是条分法。
1 条分法首先需要在已知的土体边坡的横断面图上,用4.5H法或36°法作图,设定一个或数个可能滑动的破坏面(圆孤形滑动面)的几何参数,再把圆弧滑动面上的土体垂直分为2~4m宽的土条,最宽不超过4~6m。
在这些几何参数的基础上依次检算每一土条沿滑动圆弧下滑的稳定性然后叠加得整个土体的稳定性。
.1. 不考虑浸水条件某路堤 H =13.0m,堤顶宽 B=10.0m,拟定横断面见图 1. 试1验得知:土的干重度3,孔隙率=31%,10 。
干 =18.13KN/m=26 ,c1=14.7KPa,换算土柱高h0=1.0m。
试计算其边坡稳定性。
解:按条分法的步骤如下:(1)按 1:50 比例作图,用 4.5H 法作圆心辅助线,定圆心O1划分九个土条;(2)分别量取各土条重心与竖轴的间距a i(右正左负),计算 a;量面积 F i,分别计算重力Q i;(3)量滑动圆弧两端点对竖轴的间距,计算圆心角0 和全弧长 L;(4)分别计算各土条圆弧面上的法向力N i和切向力 T i(区分正负);以上所有计算结果列于表 1 中。
(5)按以上方法定圆心O2,O3,O4,O5,划分土条,对其相应数据进行计算,分别列于表2,3,4,5中。
(6)计算动水压力 D I * *F2(7) f 1=tan1=0.4877,(8)计算 K=NifxcLi,计算结果列于图表中。
T i(9)绘 K 值曲线,确定K min=0.78. 边坡稳定性满足要求。
.2.考虑浸水条件某浸水路堤 H =13.0m,堤顶宽 B=10.0m,拟定横断面见图 1. 试1验得知:土的重度325.48KN / m3干重度干=18.13KN/m,孔隙率0。
0=31%,1 =26 ,2 =22 , c1=14.7KPa, c2=7.84KPa, 换算土柱高h0=1.0m。
试计算其边坡稳定性。
解:按条分法的步骤如下:(10)按 1:50 比例作图,用 4.5H 法作圆心辅助线,定圆心O1划分九个土条;(11)分别量取各土条重心与竖轴的间距a i(右正左负),计算 a;量面积 F i,分别计算重力Q i;其中湿重度w(0 )(1)=(25.48-9.80)(1-0.31)=10.82KN/m3(12)量滑动圆弧两端点对竖轴的间距,计算圆心角0 和全弧长 L;(13)分别计算各土条圆弧面上的法向力N i和切向力 T(i区分正负);以上所有计算结果列于表 1 中。
第四节 粘性土土坡稳定分析的条分法一、费伦纽斯条分法1、基本原理:当按滑动土体这一整体力矩平衡条件计算分析时,由于滑面上各点的斜率都不相同,自重等外荷载对弧面上的法向和切向作用分力不便按整体计算,因而整个滑动弧面上反力分布不清楚;另外,对于φ>0的粘性土坡,特别是土坡为多层土层构成时,求W 的大小和重心位置就比较麻烦。
故在土坡稳定分析中,为便于计算土体的重量,并使计算的抗剪强度更加精确,常将滑动土体分成若干竖直土条,求各土条对滑动圆心的抗滑力矩和滑动力矩,各取其总和,计算安全系数,这即为条分法的基本原理。
该法也假定各土条为刚性不变形体,不考虑土条两侧面间的作用力。
2、计算步骤:为—土坡,地下水位很深,滑动土体所在土层孔隙水压力为0。
条分法的计算步骤如下:1)按一定比例尺画坡;2)确定圆心O 和半径R ,画弧AD ;3)分条并编号,为了计算方便,土条宽度可取滑弧半径的1/10,即R b 1.0=,以圆心O 为垂直线,向上顺序编为0、1、2、3、……,向下顺序为-1、-2、-3、……,这样,0条的滑动力矩为0,0条以上土条的滑动力矩为正值,0条以下滑动力矩为负值;4)计算每个土条的自重b rh W i i = (i h 为土条的平均高度)5)分解滑动面上的两个分力i i i W N αcos =; i i i W T αsin =式中:i α——法向应力与垂直线的夹角。
6)计算滑动力矩∑==ni i i s a W R M 1sin ――式中:n :为土条数目。
7)计算抗滑力矩RcL a Wi Rtg M ni i r +=∑=1cos ϕ――式中:L 为滑弧AD 总长。
8)计算稳定安全系数(safetyfactor)。
∑∑==+==n i i i n i i i s r aW cL a W tg M M k 11sin cos ϕ 9)求最小安全系数,即找最危险的滑弧,重复2)~8),选不同的滑弧,求K 1、K 2、K 3…… 值,取最小者。