4 三角有理函数积分
- 格式:doc
- 大小:60.50 KB
- 文档页数:4
【高等数学】秒杀必背积分表三角部分欢迎纠错常用极限,导数,级数秒杀必背积分表实数部分秒杀必背积分表三角部分基本三角公式sec 2 x − tan 2 x = 1 csc 2 x − cot 2 x = 1 ∫ sec x d x = l n ∣ sec x + tan x ∣ + C ∫ csc x d x = l n ∣ csc x − cot x ∣ + C ∫ tan x d x = − ln ∣ cos x ∣+ C ∫ cot x d x = ln ∣ sin x ∣ +C \sec^2x-\tan^2x=1\\\ \\ \csc^2x-\cot^2x=1\\\ \\ \int \sec x dx=ln|\sec x+\tan x|+C\\\ \\ \int \csc x dx=ln|\csc x-\cot x|+C\\\ \\ \int \tan xdx=-\ln |\cos x |+C\\\ \\ \int \cot xdx=\ln |\sin x|+C\\\ \\sec2x−tan2x=1 csc2x−cot2x=1 ∫secxdx=ln∣secx+tanx ∣+C ∫cscxdx=ln∣cscx−cotx∣+C ∫tanxdx=−ln∣cosx ∣+C ∫cotxdx=ln∣sinx∣+C∫ arcsin x d x = x arcsin x + 1 − x 2 +C ∫ arccos x d x = x arccos x − 1 − x 2 + C ∫ arctan x d x = x arctan x − 1 2 ln ( 1 + x 2 ) + C ∫ a r c c o t x d x = π 2 x − ∫arctan x d x \int \arcsin x dx=x\arcsin x+\sqrt{1-x^2}+C\\\ \\ \int \arccos xdx=x\arccos x-\sqrt{1-x^2}+C\\\ \\ \int \arctan x dx=x\arctan x-\frac{1}{2}\ln(1+x^2)+C\\\ \\ \int arccot xdx=\frac{\pi}{2}x-\int \arctan x dx∫arcsinxdx=xarcsinx+1−x2ln(1+x2)+C ∫arccotxdx=2πx−∫arctanxdx简单积分策略∫ sin n x cos m x d x m , n 至少一奇数,凑偶数项 m , n 均为偶数,倍角降幂 s e c 偶凑 t a n , s e c 奇凑 s e c \int\sin^nx \cos^m xdx\\\ \\ m,n至少一奇数,凑偶数项\\m,n均为偶数,倍角降幂\\\ \\ sec偶凑tan,sec奇凑sec ∫sinnxcosmxdx m,n至少一奇数,凑偶数项m,n均为偶数,倍角降幂sec偶凑tan,sec奇凑sec三角有理函数积分① 若 R ( − sin x , cos x ) = − R ( sin x , cos x ) ,凑 d cos x ② 若 R ( sin x , − cos x ) = − R ( sin x , cos x ) ,凑 d sin x ③ 若 R ( − sin x , −cos x ) = R ( sin x , cos x ) ,凑 d tan x ∫ 0 π 2 f ( cos x , sin x ) d x = ∫ 0 π 2 f ( sin x , cos x ) d x ∫ 0 π x f( sin x ) d x = π 2 ∫ 0 π f ( sin x ) d x = π ∫ 0 π 2 f ( sin x ) d x = π ∫ 0 π 2 f ( cos x ) d x ∫ 0 π x f ( ∣ cos x ∣ ) d x = π2 ∫ 0 π f ( ∣ cos x ∣ ) d x = π ∫ 0 π 2 f ( cos x ) d x = ∫ 0 π x f ( sin x ) d x ∫ 0 1 x m ( 1 − x ) n d x = ∫ 0 1 ( 1 − x ) m x n d x 三角有理函数积分\\ ①若R(-\sin x,\cos x)=-R(\sin x,\cos x),凑d\cos x\\ ②若R(\sin x,-\cos x)=-R(\sin x, \cos x),凑d\sin x\\ ③若R(-\sin x,-\cos x)=R(\sin x, \cos x),凑d\tan x\\\ \\ \\\ \\ \int_0^{\frac{\pi}{2}} f(\cos x,\sin x)dx=\int_0^{\frac{\pi}{2}} f(\sinx,\cos x)dx\\\ \\ \int_0^\pi xf(\sin x)dx=\frac{\pi}{2}\int_0^\pi f(\sin x) dx=\pi\int_0^{\frac{\pi}{2}} f(\sin x) dx = \pi\int_0^{\frac{\pi}{2}} f(\cos x) dx\\\ \\ \int_0^\pixf(|\cos x|) dx=\frac{\pi}{2}\int_0^\pi f(|\cos x|)dx=\pi \int_0^{\frac{\pi}{2}} f(\cos x) dx =\int_0^\pi xf(\sin x) dx\\\ \\ \int_0^1x^m(1-x)^ndx = \int_0^1(1-x)^mx^ndx 三角有理函数积分①若R(−sinx,cosx)=−R(sinx,cosx),凑dcosx②若R(sinx,−cosx)=−R(sinx,cosx),凑dsinx③若R(−sinx,−cosx)=R(sinx,cosx),凑dtanx ∫02πf(cosx,sinx)dx=∫02πf(sinx,cosx)dx ∫0πxf(sinx)dx=2π∫0πf(sinx)dx=π∫02πf(sinx)dx=π∫02πf(cosx)dx ∫0πxf(∣cosx∣)dx=2π∫0πf(∣cosx∣)dx=π∫02πf(cosx)dx=∫0πxf(sinx)dx ∫01xm(1−x)ndx=∫01(1−x)mxndx三角秒杀积分∫ 0 π sin θ d θ = 2 ∫ 0 π 2 sin n θ cos θ d θ = ∫ 0 π 2 sin θ cos nθ d θ = 1 n + 1 ∫ 0 π sin 2 θ d θ =∫ 0 π cos 2 θ d θ = π 2 ∫ 0 π sin 3 θ d θ = 3 4 ; ∫ 0 π cos 3 θ d θ = 0 ∫ 0 π sin 4 θ d θ = ∫ 0 π cos 4θ d θ = 3 π 8 ∫ 0 π sin 5 θ d θ =16 15 ; ∫ 0 π cos 5 θ d θ = 0 ∫ 0 π sin 6 θ d θ = ∫ 0 π cos 6 θ d θ = 5 π 16 \int_0^\pi \sin \theta \space d\theta=2\\\ \\ \int_0^{\frac \pi 2}\sin^n \theta \cos \theta\space d\theta =\int_0^{\frac \pi 2}\sin \theta \cos^n \theta \space d\theta =\frac{1}{n+1}\\\ \\ \int_0^\pi \sin^2 \theta\space d\theta=\int_0^\pi \cos^2\theta\space d\theta=\frac \pi 2\\\ \\ \int_0^\pi\sin^3\theta\space d\theta=\frac 3 4 \space ; \space\int_0^\pi \cos^3 \theta\space d\theta=0\\\ \\\int_0^\pi \sin^4 \theta\space d\theta=\int_0^\pi\cos^4 \theta\space d\theta=\frac {3\pi} 8\\\ \\\int_0^\pi \sin^5\theta\space d\theta=\frac {16} {15} \space ; \space \int_0^\pi \cos^5 \theta\spaced\theta=0\\\ \\ \int_0^\pi \sin^6 \theta\spaced\theta=\int_0^\pi \cos^6 \theta\space d\theta=\frac {5\pi} {16}\\\ \\ ∫0πsinθdθ=2 ∫02πsinnθcosθdθ=∫02πsinθcosnθdθ=n+11 ∫0πsin2θdθ=∫0πcos2θdθ=2π∫0πsin3θdθ=43 ; ∫0πcos3θdθ=0 ∫0πsin4θdθ=∫0πcos4θdθ=83π∫0πsin5θdθ=1516 ; ∫0πcos5θdθ=0 ∫0πsin6θdθ=∫0πcos6θdθ=165π∫ 0 π 2 sin n θ d θ = { ( n − 1 ) ( n − 3 ) ⋯ 4 ⋅ 2 n ( n − 2 ) ( n − 4 ) ⋯ 5 ⋅ 3 , n 为奇整数 ( n − 1 ) ( n − 3 ) ⋯ 5 ⋅ 3 ⋅ 1 n ( n −2 ) ( n − 4 ) ⋯ 4 ⋅ 2 π 2 , n 为偶整数\int_0^{\frac \pi 2}\sin^n\theta d\theta=\left\{ \begin{array}{c} \frac{(n-1)(n-3)\cdots4\cdot2}{n(n-2)(n-4)\cdots5\cdot3},n为奇整数\\\ \\ \frac{(n-1)(n-3)\cdots5\cdot3\cdot1}{n(n-2)(n-4)\cdots4\cdot2}\frac{\pi}{2},n为偶整数 \end{array} \right. ∫02πsinnθdθ=n(n−2)(n−4)⋯5⋅3(n−1)(n−3)⋯4⋅2,n为奇整数n(n−2)(n−4)⋯4⋅2(n−1)(n−3)⋯5⋅3⋅12π,n为偶整数其他积分{ ∫ e a x sin b x d x = 1 a 2 + b 2 ∣ ( e ax ) ′ ( sin b x ) ′ e a x sin b x ∣ + C ∫ e a x cos b x d x = 1 a 2 + b 2 ∣( e a x ) ′ ( cos b x ) ′ e a x cos b x ∣ + C \left\{ \begin{array}{c} \int e^{ax}\sin bx\spacedx=\frac{1}{a^2+b^2} \begin{vmatrix}(e^{ax}) ' & (\sin bx) ' \\ e^{ax} & \sin bx\\ \end{vmatrix}+C\\\ \\ \int e^{ax}\cos bx\space dx=\frac{1}{a^2+b^2}\begin{vmatrix}(e^{ax}) ' & (\cos bx) ' \\ e^{ax} &\cos bx\\ \end{vmatrix}+C \end{array} \right.∫eaxsinbx dx=a2+b21∣∣∣∣(eax)′eax(sinbx)′sinbx∣∣∣∣+C ∫eaxcosbx dx=a2+b21∣∣∣∣(eax)′eax(cosbx)′cosbx∣∣∣∣+C一些公式诱导公式唯几一个有负号的 cos (π / 2 + α ) = −sin α tan (π / 2 + α ) = − cot α cot (π / 2 + α ) = − tan α 唯几一个有负号的\\\cos(π/2+α)=-\sin α\\\tan(π/2+α)=-\cotα\\\cot(π/2+α)=-\tanα 唯几一个有负号的cos (π/2+α)=−sinαtan(π/2+α)=−cotαcot(π/2+α)=−tanα sin ( w ( π − x ) ) = sin w x , w 为奇数 sin ( k ( π − x ) ) = − sin k x , k 为偶数 \sin (w(\pi-x))=\sin wx,w为奇数\\\sin(k(\pi-x))=-\sin kx,k为偶数sin(w(π−x))=sinwx,w为奇数sin(k(π−x))=−sinkx,k为偶数 sin ( n 2 π ) , n ∈ 1 , 2 , 3 ⋯ = ( − 1 ) n − 1 2 , n ∈ 1 , 3 , 5 ⋯ cos ( n 2 π ) , n ∈ 1 , 2 , 3 ⋯ = ( − 1 ) n 2 , n ∈ 2 , 4 , 6 ⋯\sin(\frac n 2\pi),n\in1,2,3\cdots=(-1)^{\frac{n-1}2},n\in 1,3,5\cdots\\\ \\ \cos(\frac n2\pi),n\in1,2,3\cdots=(-1)^{\frac{n}2},n\in2,4,6\cdots sin(2nπ),n∈1,2,3⋯=(−1)2n−1,n∈1,3,5⋯cos(2nπ),n∈1,2,3⋯=(−1)2n,n∈2,4,6⋯积化和差和差化积。
有理函数及三角函数有理式的积分
一、有理函数的积分
有理函数是指可以表示为常熟分式的函数,称为有理函数。
有理函数主要由多项式和
不定积分所组成。
1.直接积分法:即把有理函数积分后的结果表达式化成原函数的另一种表达形式,常
用整理、贝塞尔曲线等方法来解决。
2.常熟分式积分法:将有理函数分解成分加函数,然后分别积分,再把积分结果求和。
三角函数是一类有特殊解析特性的函数,它们其中包括正弦、余弦函数、正切函数等等。
由于三角函数以及它们的倒数和反函数都有解析特性,因此其积分是容易解决的。
1.利用倒数公式积分:针对三角函数有一系列专有倒数公式,其中包括 Ma 矩阵公式
和高尔文三角函数积分公式。
2.利用反函数积分:由于三角函数都有反函数,因此也可以利用反函数将三角函数的
积分问题转化为反函数的积分问题,从而轻松解决。
3.利用改元积分:改元积分是把变量改为一些更简单的函数,然后分别积分得出结果,可以将三角函数的积分转化为改元积分,以减少积分的难度。
总之,有理函数和三角函数都可以通过不同的方法解决积分问题,在解决的时候需要
根据具体的函数情况来选择最适合的积分法,才能更好的解决积分问题。
10分钟掌握高数上不定积分问题(考研、期末复习均可以用)好久没有更新高数的内容了,之前一直更新的是概率论和线性代数的内容,其中概率基本更完了,线性代数还没,知识点有点多,道阻且长,哭唧唧T_T!!下面是之前更新的内容,请自取10分钟掌握高等数学上册函数极限求解问题(考研、期末复习均可以用)10分钟掌握高等数学上册导数及微分问题(考研、期末复习均可以用)10分钟掌握高等数学上册函数图像绘制问题(考研、期末复习均可以用)10分钟掌握中值定理相关问题(考研、期末复习均可以用)码字不易,观看后的同学请给个赞+关注如果有考研或是期末复习方面问题的话可以随时留言或者私信【答学百科】,更多期末复习资料更多更新内容也可以点击下方链接加入社群--------------分割线---------------首先简单介绍下积分,积分是导数的一个反向求解过程,很多人在高中的时候是学过导数的,所以在大学再学的时候会觉得比较简单,但是到了积分这一节,会突然卡住,发现怎么那么难,正着做会,反着就不会了,那么下面重点讲讲不定积分的求解吧一、原函数与不定积分的基本概念1、原函数设 f(x),F(x) 为定义在区间 I 上的函数,若对一切的 x\in I ,有 F'(x)=f(x) ,则称 F(x) 为 f(x) 的原函数备注:(1)函数 f(x) 是否存在原函数与区间 I 有关(2)连续函数一定存在原函数,反之不对(3)有第一类间断的函数一定不存在原函数,但有第二类间断点的函数可能有原函数(这句话还有另一种表达方式:即某个函数的导函数不一定连续),如F(x)=x^{2}sin\frac{1}{x}(x\ne0) ,F(x)=0(x=0)f(x)=2xsin\frac{1}{x}-cos\frac{1}{x}(x\ne0) ,f(x)=0(x=0)显然 F'(x)=f(x) ,但 x=0 为 f(x) 的二类间断点,即导函数不连续(4)若 f(x) 有原函数,则一定有无数个原函数,且任意两个原函数之差为常数(5)原函数、函数及导函数对比2、不定积分设 F(x) 为 f(x) 的一个原函数,则 f(x) 的所有原函数F(x)+C 称为 f(x) 的不定积分,记为 \int f(x)dx=F(x)+C注解:(1)\int [f(x)\pm g(x)]dx=\int f(x)dx\pm \int g(x)dx (2) \int kf(x)dx=k\int f(x)dx【例题】\int (x+\frac{1}{x})dx=\int xdx+\int\frac{1}{x}dx=\frac{1}{2}x^{2}+ln\left| x\right|+C\int 5xdx=5\intxdx=5\times\frac{1}{2}x^{2}=\frac{5}{2}x^{2}+C二、不定积分基本公式1、常数函数积分\int kdx=kx+C2、幂函数积分\int x^{n}dx=\frac{1}{n+1}x^{n+1}+C ,\int\frac{1}{x}dx=ln\left| x \right|+C3、指数函数积分\int a^{x}dx=\frac{1}{lna}a^{x}+C ,\inte^{x}dx=e^{x}+C4、三角函数积分\int sinxdx=-cosx+C ,\int cosxdx=sinx+C,\inttanxdx=-ln\left| cosx \right|+C, \int cotxdx=ln\left| sinx \right|+C , \int secxdx=ln\left| secx+tanx\right|+C , \int cscxdx=ln\left| cscx-cotx\right|+C , \int sec^{2}xdx=tanx+C , \intcsc^{2}xdx=-cotx+C , \int secxtanxdx=secx+C , \int cscxcotxdx=-cscx+C5、特殊函数积分\int \frac{1}{\sqrt{1-x^{2}}}dx=arcsinx+C , \int\frac{1}{1+x^{2}}dx=arctanx+C三、不定积分的积分法不定积分的积分方法主要有五种:一类换元法、二类换元法、分步积分法、有理函数积分法、三角函数积分法,课本上一般只介绍了前三种,不够全面,下面具体来看看(一)一类换元法(凑微法)1、定义设 f(u) 的原函数为 F(u) , \varphi(x) 为可导函数,则\int f[\varphi(x)]\varphi'(x)dx=\intf[\varphi(x)]d\varphi(x)令 \varphi(x)=u ,则原式 =\intf(u)du=F(u)+C=F[\varphi(x)]+C在微凑法里面,很多同学会懵逼:d后面那个是怎么来的,完全没有思路实际上,一类换元法的话会涉及到微分的知识,如果对微分熟悉的同学应该还是可以看懂的,下面简单讲解一下回顾下微分的内容, dy=f'(x)dx ,其中 y=f(x) ,基于这个点,看下几个例子y=x^{2},dy=2xdx\Rightarrowdx^{2}=2xdxy=sinx,dy=cosxdx\Rightarrowdsinx=cosxdx【例题】\int 2xdx=\int d(x^{2})=x^{2}+C\intcosxdx=\int d(sinx)=sinx+C上述两道题从第一步到第二部的变化现在应该可以看懂了,主要就是利用微分的形式进行变化的2、凑微法基本公式以下列举了一些凑微法中常用的公式,不过不建议大家去背下来,主要还是要靠题目去巩固【例题】\int \frac{arcsinx}{\sqrt{1-x^{2}}}dx=\intarcsinxdarcsinx=\frac{1}{2}(arcsinx)^2+C(二)二类换元法1、定义设 \varphi(t) 为单调可导函数,且\varphi'(t)\ne0, f(x) 有原函数,则令 x=\varphi(t)\int f(x)dx=\int f[\varphi(t)]\varphi'(t)dt=\intg(t)dt=G(t)+C =G[\varphi^{-1}(x)]+C2、适用范围(1)二类换元法经常使用在根号下的平方相加减的积分计算中,这时候就利用三角替换进行解答主要利用两个三角函数公式的变换:sin^{2}x+cos^{2}x=1 , tan^{2}x+1=sec^{2}x ,利用三角函数的变化,去掉根号,再进行计算,常用的替换如下:情形一:若函数中含有 \sqrt{a^{2}-x^{2}} ,变换 x=asint情形二:若函数中含有 \sqrt{a^{2}+x^{2}},变换 x=atant情形三:若函数中含有 \sqrt{x^{2}-a^{2}},变换 x=asect(2)无理函数化成有利函数的积分【例题1】求解\int \frac{dx}{\sqrt{x}+1}解答:令 \sqrt{x}=t,x=t^{2},dx=2tdt原式为 \int\frac{dx}{\sqrt{x}+1}=\int\frac{2tdt}{t+1}=\int \frac{2t+2-2}{t+1}dt=2-\int \frac{2}{t+1}dt=2t-2ln\left| t+1\right|+C最后将 t 换回 x 即可,即原函数为2\sqrt{x}-2ln\left| \sqrt{x}+1 \right|+C【例题2】求解 \int \frac{dx}{\sqrt{1+x^{2}}}解答:令 x=tant,dx=sec^{2}t原式为 \int\frac{sec^{2}tdt}{\sqrt{1+tan^{2}t}}=\int\frac{sec^2t}{sect}dt=\int sectdt=ln\left|tant+sect \right|+C做到这边很多人又有疑问了,tant 可以换回去 x ,那么 sect 呢,如何换成 x的表达式,这里介绍一种图像结合的方法,大家看下下面这张三角形结合直角三角形及t和x的函数关系,即可推导出其余三角函数的公式所以原式为 =ln\left|x+\sqrt{1+x^{2}} \right|+C(三)分部积分法1、定义设 u(x),v(x) 连续可导,则分部积分法公式为 \intu(x)dv(x)=u(x)v(x)-\int v(x)du(x)2、适用情况以下几种形式可以采用分部积分法进行计算:(1)被积函数为幂函数与指数函数之积,如\int x^ne^{x}dx (2)被积函数为幂函数与指数函数之积,如\int x^nlnxdx (3)被积函数为幂函数与三角函数之积(4)被积函数为幂函数与反三角函数之积(5)被积函数为指数函数与三角函数之积(6)被积函数含有 sec^nx 或 csc^nx ( n 为奇数)备注:用分部积分法时一定要注意,哪个函数设为 u(x) ,哪个函数为 v(x) ,下列简述下不同的设法最后的结果是怎么样的【例题】求解 \int xe^{x}dx解答一:u(x)=e^{x},v'(x)=x 则u'(x)=e^{x},v(x)=\frac{1}{2}x^2\intxe^{x}dx=\inte^{x}d\frac{1}{2}x^2=\frac{1}{2}x^2e^{x}-\int\frac{1}{2}x^2e^{x}dx做到这发现一个问题,原来的积分仅为一次方,而用了一次分部积分后发现变成了二次方,解答难度变得更大了,这说明在函数的假设过程中是有问题的,若利用该方法继续往下算,会发现永远算不出来解答二:u(x)=x,v'(x)=e^{x} 则 u'(x)=1,v(x)=e^{x}\intxe^{x}dx=\int xde^{x}=xe^{x}-\inte^{x}dx=xe^{x}-e^{x}+C做到这里会发现分部积分法最重要的就是要将 u,v 设正确了,只要假设正确了,一般就能做出来(四)有理函数积分1、形式设 R(x)=\frac{P(x)}{Q(x)} ,其中 P(x),Q(x) 为多项式,此处仅考虑P(x)的次数比 Q(x) 次数低时的情况(若P(x)的次数比 Q(x) 次数高时,可对 P(x) 进行拆分)(1) \int \frac{dx}{(x+a)(x+b)}=\int\frac{A}{(x+a)}+\frac{B}{(x+b)}dx(2) \int \frac{dx}{(x+a)(x+b)^2}=\int\frac{A}{(x+a)}+\frac{B}{(x+b)}+\frac{C}{(x+b)^2}dx(3)\int \frac{dx}{(x+a)(x^2+bx+c)}=\int\frac{A}{(x+a)}+\frac{Bx+C}{(x^2+bx+c)}dx将有理函数设成上面带有 A,B,C 的函数,通过与原式对比,解答出 A,B,C ,再进行计算【例题】求解 \int \frac{x+1}{x^2-x-6}dx分析:\frac{x+1}{x^2-x-6}=\frac{x+1}{(x+2)(x-3)}=\frac{A}{(x+2)}+\frac{B}{(x-3)}由 A(x-3)+B(x+2)=(A+B)x+(2B-3A)=x+1A+B=1 , 2B-3A=1\RightarrowA=\frac{1}{5} , B=\frac{4}{5}解答:\int \frac{x+1}{x^2-x-6}dx=\int\frac{1}{5}\frac{1}{x+2}+\frac{4}{5}\frac{1}{x-3}dx\frac{1}{5}ln\left| x+2\right|+\frac{4}{5}ln\left| x-3 \right|+C(五)三角函数积分三角函数的积分一般利用几个基础的三角变换公式进行化简,化简后再进行积分求解:1、倍角公式:sin2x=2sinxcosx , cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x2、半角公式:利用背角公式进行推导,此处不进行列举3、和积化差公式:sin\alpha+sin\beta=2sin(\frac{\alpha}{2}+\frac{\beta}{ 2})cos(\frac{\alpha}{2}-\frac{\beta}{2})sin\alpha-sin\beta=2cos(\frac{\alpha}{2}+\frac{\beta}{2})sin(\fr ac{\alpha}{2}-\frac{\beta}{2})cos\alpha+cos\beta=2cos(\frac{\alpha}{2}+\frac{\beta}{ 2})cos(\frac{\alpha}{2}-\frac{\beta}{2})cos\alpha-cos\beta=-2sin(\frac{\alpha}{2}+\frac{\beta}{2})sin(\frac{\alpha }{2}-\frac{\beta}{2})4、万能公式法令 tan\frac{x}{2}=u ,则 sinx=\frac{2u}{1+u^2} ,cosx=\frac{1-u^2}{1+u^2} , dx=\frac{2}{1+u^2}du利用万能公式便可将三角函数积分变换成有理函数积分进行求解,不过该解法相对比较麻烦,很少会采用该方法进行计算不定积分的解答方法基本就是这些了,方法比较多,但是不同方法有对应的积分形式,只要熟悉了积分形式,解答的时候也相对快捷--------------分割线---------------码字不易,请大家点个赞吧~另外如果有考研或者数学方面问题的话可以随时留言或者私信,有问必答哈~也可以点击头像加入社群进行交流~。