工程力学应力状态分析
- 格式:pptx
- 大小:676.34 KB
- 文档页数:29
工程力学第21讲应力状态分析:求斜截面应力在工程力学中,应力状态分析是研究物体受到外力作用后内部应力分布的一门学科。
在实际工程中,经常需要求解物体内部某一点的应力值。
在本文中,我们将着重介绍如何求解斜截面上的应力值。
斜截面应力状态的分析是典型的三维问题,但在一些实际应用中,我们只需要在某一平面上求解应力分量。
为了方便分析,我们通常假设物体是等截面的,其剖面可以看成一个平面截形,如下图所示。
假设物体受到一个外作用力F,我们需要分析该力作用在斜截面xy上,求解点P处的应力状态(包括法向应力σn和切应力τxy)。
点P的坐标可以表示为(x,y,z)。
截面上的任一元素dA的面积可以表示为dA=dxdy,其对应的法向为b。
为了求解点P处的应力状态,我们可以采用以下的步骤:### 第一步:求解对x分量的力和对y分量的力为了便于分析,我们可以将作用力F分解成两个分量F_x和F_y,如下图所示。
在这里,我们需要注意F_x和F_y的方向。
如图所示,F_x沿x轴正方向,F_y沿y轴正方向,因为较难确定夹角a和b的正负号,所以F_x和F_y以及后面的应力分量都是以箭头的方向表示。
同时我们还需要注意到式中的F_z。
如下图所示,我们可以建立一个平面一对应着力分解后的F_x,F_y和截面。
然后我们可以求解在x和y方向上的应力分量。
对应的应力分量为:$$\sigma_x=\frac{F_x}{A_x}$$$$\sigma_y=\frac{F_y}{A_y}$$其中,Ax和Ay分别是上图中标注的x和y方向上的面积。
由于F_x和F_y都垂直于z 轴,所以在z方向上不存在应力分量。
### 第三步:求解点P处的应力状态现在我们已经求解了对x分量的力和对y分量的力在x和y方向上的应力分量,接下来我们需要求解点P处的应力状态。
如下图所示,我们需要确定切线方向上的应力σ_t和法线方向上的应力σ_n。
工程力学中的应力和应变分析工程力学是应用力学原理解决工程问题的学科,它研究物体受外力作用下的力学性质。
应力和应变是工程力学中的重要概念,它们对于分析材料的强度和变形特性具有重要意义。
本文将就工程力学中的应力和应变进行详细分析。
一、应力分析应力是指物体单位面积上的内部分子间相互作用力。
根据作用平面的不同,可以分为法向应力和剪切应力两种。
1. 法向应力法向应力是指力作用垂直于物体某一截面上的应力。
根据物体受力状态的不同,可以分为拉应力和压应力两种。
- 拉应力拉应力是指作用于物体截面上的拉力与截面面积的比值。
拉应力的计算公式为:σ = F/A其中,σ表示拉应力,F表示作用力,A表示截面面积。
- 压应力压应力是指作用于物体截面上的压力与截面面积的比值。
压应力的计算公式与拉应力类似。
2. 剪切应力剪切应力是指作用在物体截面上切向方向上的力与截面面积的比值。
剪切应力的计算公式为:τ = F/A其中,τ表示剪切应力,F表示作用力,A表示截面面积。
二、应变分析应变是指物体由于外力的作用而产生的形变程度。
根据变形情况,可以分为线性弹性应变和非线性应变。
1. 线性弹性应变线性弹性应变是指物体在小应力下,应变与应力成正比,且随应力消失而恢复原状的应变现象。
线性弹性应变的计算公式为:ε = ΔL/L其中,ε表示线性弹性应变,ΔL表示物体的长度变化,L表示物体的原始长度。
2. 非线性应变非线性应变是指物体在较大应力下,应变与应力不再呈线性关系的应变现象。
非线性应变的计算公式较为复杂,需要根据具体情况进行分析。
三、应力和应变的关系应力和应变之间存在一定的关系,常用的关系模型有胡克定律和杨氏模量。
1. 胡克定律胡克定律是描述线性弹性材料的应力和应变之间关系的基本模型。
根据胡克定律,拉应力和拉应变之间的关系可以表示为:σ = Eε其中,σ表示拉应力,E表示弹性模量,ε表示拉应变。
2. 杨氏模量杨氏模量是描述材料抵抗拉伸或压缩变形能力的物理量。
三维应力状态分析
三维应力状态分析是工程力学中十分重要的一部分,它主要用于研
究物体内部各点的应力状态,并进一步分析物体在外力作用下的变形
和破坏情况。
本文将从应力的定义、三维应力分量、三维应力状态、
应力变换等几个方面展开探讨。
一、应力的定义
应力是描述物体内部单位面积上的力的作用情况的物理量,通常用
符号σ表示。
在三维坐标系下,应力可以分为三个方向上的分量:x方
向的应力σx,y方向的应力σy,z方向的应力σz。
其中,正应力代表
拉伸,负应力代表压缩。
二、三维应力分量
在三维空间中,一个点的应力状态可以用一个三维应力向量来表示,即:
σ = [σx, σy, σz]
三、三维应力状态
3D 应力分析会把其看到的那个body中的应力性质视的非常细致,
大部分的情况都会是标准状态非常好,而且力学方面的注意要细致而
恰当,所有的这些都是房屋抗震的基础;另一方面,首要条件是钢筋
混凝土类造体抗的震能。
四、应力变换
应力在不同坐标系之间的转换是三维应力分析中一个重要的内容。
在工程实践中,通常会遇到需要将应力从一个坐标系转换到另一个坐标系的情况,这时候就需要应力变换的知识来进行分析。
五、结论
通过对三维应力状态分析的讨论,我们可以更好地理解物体内部各点的应力情况,有助于设计和工程实践中的应力分析和结构设计。
希望本文的内容能为相关领域的研究和实践提供一定的参考,同时也欢迎各界同仁对三维应力状态分析进行更深入的研究和探讨。
8 应力状态与应变状态分析1、应力状态的概念,2、平面应力状态下的应力分析,3、主平面是切应力为零的平面,主应力是作用于主平面上的正应力。
(1)过一点总存在三对相互垂直的主平面,对应三个主应力,主应力排列规定按代数值由大到小为:321σσσ≥≥最大切应力为132max σστ-=(2)任斜截面上的应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2cos 2sin 2xy yx +-=(3) 主应力的大小22minmax )2(2xyyx yx τσσσσσ+-±+=主平面的方位y x xytg σστα--=2204、主应变12122x y xyx y()tg εεεεγϕεε⎡=+±⎣=-5、广义胡克定律)]([1z y x x E σσμσε+-=)]([1x z y y E σσμσε+-=)]([1y x z z E σσμσε+-=G zxzx τγ=G yzyz τγ=,G xyxy τγ=6、应力圆与单元体之间的对应关系可总结为“点面对应、转向相同、夹角两倍。
”8.1 试画出下图8.1(a)所示简支梁A 点处的原始单元体。
图8.1[解](1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A 点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy 平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。
再取A 点偏上和偏下的一对与xz 平行的平面。
截取出的单元体如图8.1(d)所示。
(2)分析单元体各面上的应力:A 点偏右横截面的正应力和切应力如图8.1(b)、(c)所示,将A 点的坐标x 、y 代入正应力和切应力公式得A 点单元体左右侧面的应力为:z M y I σ=bI QS z z*=τ由切应力互等定律知,单元体的上下面有切应力τ ;前后边面为自由表面,应力为零。