第三章非平稳序列的随机分析-课件
- 格式:ppt
- 大小:639.50 KB
- 文档页数:4
第四十二课 非平稳序列的随机分析20世纪70年代,G. P. Box 和G. M. Jenkins 发表了专著《时间序列分析:预测和控制》,对平稳时间序列数据,提出了自回归滑动平均模型ARIMA ,以及一整套的建模、估计、检验和控制方法。
使时间序列分析广泛地运用成为可能。
为了纪念Box 和Jenkins 对时间序列发展的特殊贡献,现在人们也常把ARIMA 模型称为Box-Jenkins 模型。
当我们拟合一个时间序列时,先通过差分法或适当的变换使非平稳序列化成为平稳序列,我们再要考虑的是参数化和记忆特征的有效性,用这种参数方法拟合序列为某种特定的结构,只用很少量的参数,使参数的有效估计成为可能。
相对于一个序列的过去值,可用传统的Box 和Jenkins 方法建模。
实际上,Box-Jenkins 模型主要是运用于单变量、同方差场合的线性模型。
随着对时间序列应用的深入研究,发现还存在着许多局限性。
所以近20年来,统计学家纷纷转向多变量、异方差和非线性场合的时间序列分析方法的研究,并取得突破性的进展,其中Engle 和Granger 一起获得2003年诺贝尔经济学奖。
在异方差场合,Robert F.Engle 在1982年提出了自回归条件异方差ARCH 模型,以及在ARCH 模型上衍生出的一系列拓展模型。
在多变量场合,70年代末,G. E. P. Box 教授和刁锦寰教授在处理洛山矶的环境数据时,提出了干预分析和异常值检验方法。
1987年,C.Granger 提出了协整(co-integration )理论,在多变量时间序列建模过程中“变量是平稳的”不再是必须条件了,而只要求它们的某种组合是平稳的。
非线性时间序列分析也有重大发展,汤家豪教授等在1980年左右提出了利用分段线性化构造门限自回归模型。
一、 ARIMA 模型随着对时间序列分析方法的深入研究,人们发现非平稳序列的确定性因素分解方法(如季节模型、趋势模型、移动平均、指数平滑等)存在一些问题,它只能提取显著的确定性信息,对随机性信息浪费严重,同时也无法对确定性因素之间的关系进行分析。
第3章 非平稳随机过程从本章起介绍计量经济学近20年来最新研究成果。
如果把第1章内容称为经典计量经济学,那么将要介绍的内容则应该称为非经典计量经济学。
从1974年开始计量经济学工作者渐渐意识到当用含有单位根的时间序列建立经典计量经济模型时会出现一些问题,这就是虚假回归。
应该知道通过经济数据了解经济变量的变化规律有时是存在相当大的局限性的,所以在建立模型时,必须依靠经济理论,同时对参数进行假设检验。
实际上,只有经济理论是不够的。
比如处于调整中的经济变量,哪些是它的外生变量,哪些是它的无关变量,单凭经济理论就很难判别清楚。
所以当研究经济变量参数变化规律时,常常采用另外一种方法,即依靠统计理论的方法,通过设计具有某种特征的能生成数据的随机过程或数据生成系统研究经济问题。
下面常常用到数据生成系统这个概念。
3.1 单整性单整:若一个随机过程 {x t } 必须经过d 次差分之后才能变换成一个平稳的可逆的ARMA 过程,则称 {x t } 是d 阶单整过程。
用x t ~ I(d ) 表示。
对于平稳过程表示为I(0)。
注意:单整过程是指单整阶数大于零的过程。
对于I(d ) 过程x t Φ(L ) (1- L ) d x t = Θ(L ) u t因含有d 个单位根,所以常把时间序列单整阶数的检验称为单位根检验(unit root test )。
若x t ~ I(d ),y t ~ I(c ),则 z t = (a x t + b y t ) ~ I (max[d , c ]).∆ z t = ∆ (a x t + b y t ) = (a x t + b y t ) - (a x t -1 + b y t - 1) = (a ∆ x t + b ∆ y t ) 当 c > d 时,z t 只有差分c 次才能平稳。
一般来说,若x t ~ I (c ),y t ~ I (c ),则z t = (a x t + b y t ) ~ I (c ).但也有z t 的单整阶数小于c 的情形。
第3章非平稳随机过程从本章起介绍计量经济学近20年来最新研究成果。
如果把第1章内容称为经典计量经济学,那么将要介绍的内容则应该称为非经典计量经济学。
从1974年开始计量经济学工作者渐渐意识到当用含有单位根的时间序列建立经典计量经济模型时会出现一些问题,这就是虚假回归。
应该知道通过经济数据了解经济变量的变化规律有时是存在相当大的局限性的,所以在建立模型时,必须依靠经济理论,同时对参数进行假设检验。
实际上,只有经济理论是不够的。
比如处于调整中的经济变量,哪些是它的外生变量,哪些是它的无关变量,单凭经济理论就很难判别清楚。
所以当研究经济变量参数变化规律时,常常采用另外一种方法,即依靠统计理论的方法,通过设计具有某种特征的能生成数据的随机过程或数据生成系统研究经济问题。
下面常常用到数据生成系统这个概念。
3.1 单整性单整:若一个随机过程{x t} 必须经过d次差分之后才能变换成一个平稳的可逆的ARMA过程,则称{x t} 是d阶单整过程。
用x t~ I(d) 表示。
对于平稳过程表示为I(0)。
注意:单整过程是指单整阶数大于零的过程。
对于I(d) 过程x tΦ(L) (1- L) d x t = Θ(L) u t因含有d个单位根,所以常把时间序列单整阶数的检验称为单位根检验(unit root test)。
若x t~ I(d),y t~ I(c),则z t = (a x t + b y t) ~ I (max[d, c]).∆z t = ∆ (a x t + b y t) = (a x t + b y t) - (a x t -1 + b y t - 1) = (a ∆ x t + b ∆ y t)当c > d时,z t只有差分c次才能平稳。
一般来说,若x t~ I (c),y t~ I (c),则z t = (a x t + b y t) ~ I (c).但也有z t的单整阶数小于c的情形。
当z t的单整阶数小于c时,则称x t与y t存在协整关系。
38. 非平稳时间序列的确定性分析实际中大多数时间序列是非平稳的,对非平稳时间序列的分析方法主要有两类:确定性分析和随机性分析。
确定性分析——提取非平稳时间序列明显的规律性(长期趋势、季节性变化、周期性),目的是:①克服其它因素影响,单纯测度出单一确定因素对序列的影响;②推断各种确定性因素彼此之间相互作用关系及它们对序列的综合影响。
随机性分析——分析非平稳时间序列由随机因素导致的随机波动性。
(一)趋势分析有的时间序列具有明显的长期趋势,趋势分析就是要找出并利用这种趋势对序列发展做出合理预测。
1. 趋势拟合法即把时间作为自变量,相应的序列观察值作为因变量,建立序列值随时间变化的回归模型。
分为线性拟合和非线性拟合。
2. 平滑法利用修匀技术,消弱短期随机波动对序列的影响,使序列平滑化,从而显示出长期趋势变化的规律。
(1)移动平均、加权移动平均已知序列值x1, …, x t-1, 预测x t的值为12ˆt t t n t x x x x n---+++= 称为n 期移动平均值,n 的选取带有一定的经验性,n 过长或过短,各有利弊,也可以根据均方误差来选取。
一般最新数据更能反映序列变化的趋势。
因此,要突出新数据的作用,可采用加权移动平均法:1122ˆt t n t n tw x x x xn ωωω---+++= 其中,111ni i n ω==∑. (2)二次移动平均对应线性趋势,移动平均拟合值有滞后性,可以采用二次移动平均加以改进:对移动平均值再做一次移动平均。
(3)指数平滑法指数平滑法是一种对过去观察值加权平均的特殊形式,观测值时间越远,其权数呈指数下降。
一次指数平滑法可用于对时间序列进行修匀,以消除随机波动。
预测公式为:1ˆˆ(1)t t t sx s αα-=+- 其中α∈(0, 1)为平滑常数,ˆt s 为第t 期平滑预测值,初始预测值0ˆs(通常取最初几个实测数据的均值)。
一般来说,时间序列有较大的随机波动时,宜选择较大的α值,以便能较快跟上近期的变化;也可以利用预测误差选择。