时间序列分析--第五章非平稳序列的随机分析
- 格式:ppt
- 大小:1.02 MB
- 文档页数:119
第四十二课 非平稳序列的随机分析20世纪70年代,G. P. Box 和G. M. Jenkins 发表了专著《时间序列分析:预测和控制》,对平稳时间序列数据,提出了自回归滑动平均模型ARIMA ,以及一整套的建模、估计、检验和控制方法。
使时间序列分析广泛地运用成为可能。
为了纪念Box 和Jenkins 对时间序列发展的特殊贡献,现在人们也常把ARIMA 模型称为Box-Jenkins 模型。
当我们拟合一个时间序列时,先通过差分法或适当的变换使非平稳序列化成为平稳序列,我们再要考虑的是参数化和记忆特征的有效性,用这种参数方法拟合序列为某种特定的结构,只用很少量的参数,使参数的有效估计成为可能。
相对于一个序列的过去值,可用传统的Box 和Jenkins 方法建模。
实际上,Box-Jenkins 模型主要是运用于单变量、同方差场合的线性模型。
随着对时间序列应用的深入研究,发现还存在着许多局限性。
所以近20年来,统计学家纷纷转向多变量、异方差和非线性场合的时间序列分析方法的研究,并取得突破性的进展,其中Engle 和Granger 一起获得2003年诺贝尔经济学奖。
在异方差场合,Robert F.Engle 在1982年提出了自回归条件异方差ARCH 模型,以及在ARCH 模型上衍生出的一系列拓展模型。
在多变量场合,70年代末,G. E. P. Box 教授和刁锦寰教授在处理洛山矶的环境数据时,提出了干预分析和异常值检验方法。
1987年,C.Granger 提出了协整(co-integration )理论,在多变量时间序列建模过程中“变量是平稳的”不再是必须条件了,而只要求它们的某种组合是平稳的。
非线性时间序列分析也有重大发展,汤家豪教授等在1980年左右提出了利用分段线性化构造门限自回归模型。
一、 ARIMA 模型随着对时间序列分析方法的深入研究,人们发现非平稳序列的确定性因素分解方法(如季节模型、趋势模型、移动平均、指数平滑等)存在一些问题,它只能提取显著的确定性信息,对随机性信息浪费严重,同时也无法对确定性因素之间的关系进行分析。
应用时间序列分析实验报告实验名称第五章非平稳序列的随机分析专业班级姓名学号一、上机练习程序及其结果分析:data ex3_1;input x@@;time=_n_;cards;0.30 -0.45 0.36 0.00 0.17 0.45 2.154.42 3.48 2.99 1.74 2.40 0.11 0.960.21 -0.10 -1.27 -1.45 -1.19 -1.47 -1.34-1.02 -0.27 0.14 -0.07 0.10 -0.15 -0.36-0.50 -1.93 -1.49 -2.35 -2.18 -0.39 -0.52-2.24 -3.46 -3.97 -4.60 -3.09 -2.19 -1.210.78 0.88 2.07 1.44 1.50 0.29 -0.36-0.97 -0.30 -0.28 0.80 0.91 1.95 1.771.80 0.56 -0.11 0.10 -0.56 -1.34 -2.470.07 -0.69 -1.96 0.04 1.59 0.20 0.391.06 -0.39 -0.162.07 1.35 1.46 1.500.94 -0.08 -0.66 -0.21 -0.77 -0.52 0.05;procgplot data=ex3_1;plot x*time=1;symbol1c=red I=join v=star;run;结果分析:上图是数据对应的时序图,从图上曲线分析来看,数据并没有周期性或者趋向性规律,因而可以初步判断这是平稳数列。
procarima data=ex3_1;identifyVar=x nlag=8;run;结果分析:本过程中,我们建立了8阶自回归分析模型,图上依次是变量的描述性统计量、样本自相关图、样本逆相关图和样本偏自相关图。
由于本次实验探究的是平稳序列,因而样本逆相关图先不作分析。
从自相关图来看,自相关系数趋于0的速度是比较快的,再结合时序图来看,可以确定这组数列是属于平稳数列。
第五章 非平稳序列的随机分析非平稳序列的确定性因素分解方法(第四章)的优点为原理简单、操作简便、易于解释等,因此在宏观经济管理与预测领域有着广泛的应用。
缺点主要有:(1)确定性因素分解方法只能提取强劲的确定性信息,对随机性信息浪费严重。
(2)确定性因素分解方法把所有序列的变化都归结为四大因素的综合影响,却始终无法提供明确、有效的方法判断各大因素之间确切的作用关系。
这些问题导致确定性因素分解方法不能允分提取观察值序列中的有效信息,导致模型拟合精度通常不够理想。
随机时序分析方法发展的必要性:弥补确定性因素分解方法的不足,为人们提供更加丰富、更加精确的时序分析工具。
5.1 差分运算5.1.1 差分运算的实质拿到观察值序列之后,无论是采用确定性时序分析方法还是随机时序分析方法,分析的第一步都是要通过有效的手段提取序列中所蕴含的确定性信息。
确定性信息的提取方法非常多,前面我们介绍过的构造季节指数、拟合长期趋势模型、移动平均、指数平滑等诸多方法都是确定性信息提取方法。
但是它们对确定性信息的提取都不够充分。
Cox 和Jenkins 在Time Series Analysis Forecasting and Control 一书中特别强调差分方法的使用,他们使用大量的案例分析证明差分方法是一种非常简便、有效的确定性信息提取方法。
而Cramer 分解定理则在理论上保证了适当阶数的差分一定可以充分提取确定性信息。
根据Cramer 分解定理,方差齐性非平稳序列都可以分解为如下形式:式中,为零均值白噪声序列。
{}t a 离散序列的d 阶差分就相当于连续变量的d 阶求导,显然,在Cramer 分解定理的保证下,d 阶差分就可以将中蕴含的d 次(关于时间的)确定性信息充分提取。
(如何证明?){}t a展开1阶差分,有等价于这意味着1阶差分实质上就是一个自回归过程,它是用延迟一期的历史数据作为自变{}1-t x量来解释当期序列值的变动状况,差分序列度量的是l 阶自回归过程中产生{}t x {}t x ∇{}t x 的随机误差的大小。
时间序列分析中的平稳性与非平稳性时间序列分析是一种用来研究时间数据的统计方法,它可以揭示出时间序列数据的模式和趋势,并预测未来的发展。
在进行时间序列分析时,我们经常会遇到平稳性和非平稳性的问题,本文将重点讨论这两个概念及其在时间序列分析中的重要性。
1. 什么是平稳性?平稳性是指时间序列在统计特性上具有不变性,即其均值和方差不随时间的推移而发生改变。
具体而言,平稳时间序列的均值在时间维度上是稳定的,方差也不会随时间变化而增加或减小。
此外,平稳时间序列的自协方差只与时间间隔有关,而与特定时间点无关。
2. 平稳性的判断方法为了判断一个时间序列是否具有平稳性,我们可以使用一些统计检验方法。
常见的方法有ADF检验(Augmented Dickey-Fuller test)、KPSS检验(Kwiatkowski-Phillips-Schmidt-Shin test)等。
ADF检验通常用于检验平稳性,其原假设是时间序列具有单位根(非平稳),如果检验结果拒绝了原假设,则可以得出时间序列是平稳的结论。
3. 非平稳性的表现形式非平稳性的时间序列可能会呈现出明显的趋势、季节性或周期性变化。
趋势是时间序列长期的、持续的上升或下降,季节性是指时间序列在特定时间点上出现的周期性波动,周期性是指时间序列存在长期的、不规则的上升或下降。
4. 非平稳性的处理方法如果时间序列是非平稳的,我们需要对其进行处理,以使其具备平稳性。
常见的处理方法有差分法、对数变换等。
差分法可以通过计算相邻时间点的差值来消除趋势和季节性,对数变换则可以通过对时间序列取对数来减少其波动性。
5. 平稳性的重要性平稳性在时间序列分析中非常重要,具有以下几个方面的意义: - 简化模型:平稳时间序列的统计特性稳定,可以简化模型的建立和预测。
- 降低误差:平稳时间序列的随机误差具有恒定的方差,使得模型的预测更准确。
- 提高可靠性:基于平稳时间序列建立的模型具有更好的可靠性和稳定性,可以更好地应对未来的变化。
时间序列分析——基于R 王燕答案第一章时间序列分析简介略第二章时间序列的预处理#========================================## 2.5习题-1##========================================library(tseries)par(mfrow=c(1,2))x=rep(1:20)temp=ts(x)plot(temp)#不是平稳序列as.vector(acf(temp)$acf[1:6])#序列的自相关系数递减到零的速度相当缓慢,#在很长的延迟时期里,自相关系数一直为正,#而后又一直为负,在自相关图上显示出明显的#三角对称性,这是具有单调趋势的非平稳序列#的一种典型的自相关图形式。
这和该序列时序#图显示的显著的单调递增性是一致的。
#======================================== ## 2.5习题-2##======================================== library(tseries)par(mfrow=c(1,2))volcano.co2=read.table('习题2.2数据.txt',sep='\t',header=F) data=ts(as.vector(t(as.matrix(volcano.co2))),start=c(1975,1)) plot(data)#不是平稳序列as.vector(acf(data,lag.max=23)$acf)#序列自相关系数长期位于零轴的一边。
这是#具有单调趋势序列的典型特征,同时自相关#图呈现出明显的正弦波动规律,这是具有周#期变化规律的非平稳序列的典型特征。
自相#关图显示出来的这两个性质和该序列时序图#显示出的带长期递增趋势的周期性质是非常#吻合的。
#========================================## 2.5习题-3##======================================== library(tseries)par(mfrow=c(1,2))rain=read.table('习题2.3数据.txt',sep='\t',header=F) data=ts(as.vector(t(as.matrix(rain))),start=c(1945,1)) plot(data)#该序列为平稳序列as.vector(acf(data,lag.max = 23)$acf)#该序列的自相关系数一直都比较小,#基本控制在2倍的标准差范闹以内,#可以认为该序列自始至终都在零轴附#近波动,这是随机性非常强的平稳时#间序列通常具有的自相关图特征。