气压传动基本回路及系统应用
- 格式:ppt
- 大小:764.50 KB
- 文档页数:25
课时授课计划教学过程:复习: 1、滤油器的结构及功能2、蓄能器的功能3、油箱的结构4、管路、接头、热交换器的种类。
新课:第七章液压基本回路第一节能量回路一、定量泵—溢流阀组成的液压能源回路图7-1所示的能源回路的优点是:结构简单,反应迅速,压力波动比较小。
缺点是:由于定量泵不能改变输出流量,在负载不需要全流量工作时,多余的流量通过溢流阀流回油箱,所以效率较低,尤其当负载流量为零时,泵的流量几乎全部由溢流阀溢流,泵的输出功率绝大部分消耗在溢流阀的节流口上,这将产生大量的热,使油温很快升高。
因此,这种能源一般用在供油压力较低的液压系统中。
能源系统的流量按系统的峰值流量设计,如果伺服所需要的峰值流量的持续时间很短,并且允许供油压力有一定变动,则可以用蓄能器贮存足够的能量以适应短期峰值流量的要求,以减小泵的容量,并使功率损失和油温升高小些。
蓄能器还可起到减小泵的压力脉动和冲击的作用,使系统工作更加平稳。
二、定量泵—蓄能器—自动卸荷阀组成的液压能源回路图7-2所示的液压能源回路克服了图7-1所示回路溢流损失大的缺点,其特点是结构比较简单,功率损失小,适用于高压,但压力波动较大,并且由于供油压力在一定范围内缓慢变化,对伺服系统将引起伺服放大系数的变化,因而对某些要求较高的系统不合适。
另外,所用元件较多,为了使泵有较长时间的卸荷,蓄能器的容量较大,整个能源装置的体积、重量都较大。
这种能源回路一般用在峰值流量系统只有很微小的运动的间歇工作系统中。
三、恒压力变量泵式(自动调压泵)液压能源回路图7-3所示为恒压力变量泵式(自动调压栗〉液压能源回路。
这种能源回路的优点是输出流量取决于系统的需要,因而效率高,经济效果好,适用于高压和大功率系统,既适用于流量变化很大的系统,也适用于间歇工作的系统,为目前航空液压伺服系统所广泛采用。
第二节基本回路一、顺序动作回路顺序动作回路是实现多个并联液压缸顺序动作的控制回路。
按控制方式不同,可分为压力控制、行程控制和时间控制三类。
液压与气压传动主编:郭晋荣本书目录第一章绪论第二章液压传动系统的基本组成第三章液压传动基本回路第四章典型液压传动系统第五章气压传动系统的基本组成第六章气压传动基本回路第七章典型气压传动系统第八章液压与气压传动系统的安装调试和故障分析第六章气压传动基本回路第一节方向控制回路第二节压力控制回路第三节速度控制回路第四节其他常用基本回路一、单作用气缸控制回路下图所示为单作用气缸换向回路,图(a)是用二位三通电磁换向阀控制的单作用气缸换向回路。
该回路中,当电磁铁YA得电时,活塞杆伸出;断电时,在弹簧力作用下活塞杆缩回。
图(b)所示为用三位五通电磁换向阀电—气控制的单作用气缸上、下和任意位置停止的换向回路。
该回路中,当电磁铁2YA得电、1YA断电时,气缸下腔通入压缩空气,活塞杆伸出;当电磁铁1YA得电、2YA断电时,气缸下腔与大气接通,在复位弹簧的作用下活塞杆缩回。
该阀在两电磁铁均断电时具有自动对中功能,可使气缸活塞停留在任意位置,但它的定位精度不高,定位时间也不长。
二、双作用气缸控制回路右图为各种双作用气缸的换向回路,其中图(a)是比较简单的换向回路,图(f)还有中停位置,但中停定位精度不高,图(d)、(e)、(f)的两端控制电磁铁线圈或按钮不能同时操作,否则将出现误动作,其回路相当于双稳的逻辑功能,对图(b)的回路中,当A 有压缩空气时气缸推出,反之,气缸退回。
下图为另一种调压回路。
它在气路上安装一个电接点压力表来控制空气压缩机的转动和停止。
当气罐内的压力未达到调定值时,电机转动,空压机继续往气罐内充气。
当达到调定压力时,电机停转,空压机不再工作。
这种回路比前一种回路节能,但对电机的控制要求较高,电机如果处于强震起停状态也不宜采用这种方法。
下图所示为调压回路。
它由空压机、气罐、安全阀等组成。
这种回路主要是利用安全阀(溢流阀)控制气罐的压力不超过规定值。
当气罐压力超过调定值时,溢流阀就会打开。
此种回路结构简单,工作可靠,但由于在一定压力下溢流,会浪费能量。
气压传动概述教案气压传动是一种以气体为介质的动力传动方式,它是利用气体压缩和释放的能量来实现机械运动的原理。
气压传动具有结构简单、可靠耐用、维护方便、使用寿命长等优点,在工业、农业、建筑等领域广泛应用。
一、气压传动的基本原理气压传动主要依靠气体的压缩和扩张来实现动力传递。
在气压传动系统中,气体经过压缩机或压缩气体储存器压缩成高压气体,并通过管道输送到执行元件处。
执行元件利用高压气体的动能来产生机械运动,如驱动气缸、执行器等。
在执行元件行程结束后,压缩气体被释放,返回气压传动系统的低压气体储存器或环境中。
二、气压传动的组成和工作原理1.压缩机:将空气压缩成高压气体。
2.储气罐:用于存储高压气体,供给执行元件使用。
3.主控元件:控制气压传动系统的压力、流量和方向,如气控阀、气控阀组等。
4.执行元件:根据气控信号进行机械运动,如气缸、执行器等。
5.管道系统:将高压气体输送到执行元件的管道网络。
气压传动系统的工作原理如下:1.压缩机将空气压缩成高压气体,并将其送入储气罐,以供给执行元件使用。
2.主控元件根据需要调节气压传动系统的压力、流量和方向。
当需要驱动执行元件时,主控元件打开相应的气控阀,让高压气体进入执行元件,从而产生机械运动。
3.执行元件根据气控信号进行机械运动,从而实现工件的加工、运输等操作。
4.当执行元件行程结束后,主控元件关闭气控阀,释放高压气体到低压气体储存器中,同时执行元件返回初始位置。
三、气压传动的应用气压传动广泛应用于各个领域,如工业生产、农业机械、建筑工程等。
以下是常见的应用场景:1.气动工具:气动钻、气动锤、气动砂轮机等。
2.气动输送系统:用于固体物料的输送,如粉尘收集系统、废料处理系统等。
3.气动搬运设备:气动输送机、气动搬运车等。
4.气动控制系统:用于机械设备的控制和操作,如自动化生产线、液压系统等。
5.空气制动系统:用于汽车、火车等交通工具的制动系统。
总结:气压传动通过气体的压缩和扩张来实现机械运动,具有结构简单、可靠耐用、维护方便等优点。