线性代数与解析几何__东南大学(29)--2010-2011-2《几何与代数A》试题参考解答
- 格式:pdf
- 大小:178.50 KB
- 文档页数:5
《线性代数与解析几何》课程教学大纲课程性质:学科基础课英文名称:Geometry and Algebra课程代码:080210学时:56 (讲课时数:52 课内实践时数:4 )学分:3.5适用专业:理工类本科各专业一、课程教学基本要求《线性代数与解析几何》课是我校理工类本科各专业必修的、重要的基础理论课,通过本课程的学习,要使学生较系统地理解和掌握有关的基本概念、基本理论、基本方法。
在讲解本课程内容的同时通过各个教学环节逐步培养学生的抽象思维能力、空间想象能力和综合运用所学知识分析问题、解决问题的能力,也为后继课打下良好的数学基础。
二、课程教学大纲说明在分级教学中,本课程是与《高等数学A》相配套的系列课程。
其内容是以往高等数学中空间解析几何的内容与线性代数向量部分有机的结合。
几何向量就是有限维向量空间的实际背景,是抽象的线性代数理论的具体解释。
这种安排使线性代数内容更加丰富、具体,也缩减了课时,这是数学课的一项改革。
大纲对概念与基本技能的要求与《高等数学A》课程的要求一致,这里不在重复。
第七章内容不在基本要求之列,视学生情况,由教师决定讲与不讲。
三、各章教学内容结构与具体要求(一)第一章彳亍列式1、教学目的和要求:目的:使学生掌握行列式的概念与性质、计算方法。
要求:(1)理解行列式的概念,理解行列式的子式、余子式及代数余子式的概念。
(2)掌握行列式的性质,按行、列展开定理,Cramer法则。
2、教学内容与要点:内容:彳亍列式及性质;计算方法;Cramer法则。
要点:行列式的定义与性质。
(二)第二章矩阵1、教学目的与要求:目的:使学生掌握矩阵代数的内容、矩阵的初等变换、秩的概念。
要求:(1)理解矩阵的概念,熟悉单位矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵的概念及其性质。
(2)掌握矩阵的线性运算、乘法、转置、以及它们的运算规律。
(3)理解逆矩阵的概念,掌握逆矩阵存在的充要条件与计算方法;掌握伴随矩阵的构成与性质。
线性代数与空间解析几何总结线性代数和空间解析几何是非数学专业的一门基础课程,可以看做是高等代数和解析几何的简化版。
其内容大概分为八章,以线性代数内容为主,穿插少量解析几何知识。
全书逻辑严谨,内容关联性强,但是缺乏直观性,对于没有基础的大一新生,不免显得生硬。
第一章主要讲述行列式相关内容,直接给出了行列式的定义。
这一章的重点内容是根据行列式的定义推出一些性质,利用定义推导出行列式运算的一些性质,并且根据这些性质灵活的化简计算具体的行列式。
其实行列式的计算相当繁琐,我们只需要掌握最基本的一些方法,如构造三角行列式(这种方法很重要,矩阵初等变换也要用)、加边法、递推法等等,还有一个重要的范德蒙行列式需要掌握。
在章末,给出了克莱姆法则及其在解方程组时的应用,这本来是线性方程组理论内容,为了强化行列式的应用,放在了第一章介绍。
第二章讲述矩阵的基本内容,这是全书的核心,而矩阵理论也是整个线性代数体系的核心内容之一。
这一章内容很多,而且联系复杂,但以矩阵的逆和秩为中心内容。
首先,介绍的是矩阵的基本概念,基本分类和基本运算,对于矩阵的运算,比较重要的是矩阵与矩阵之间的乘法,这是个新运算,要多加练习,在此基础上,还引出了方阵的幂的概念。
然后就开始通过单位矩阵和1的类比,引出矩阵的逆的概念,给出了矩阵逆的性质,给出了判别矩阵是否可逆的充要条件(以后还有很多补充)和求逆矩阵的伴随矩阵法。
接着通过解线性方程组的一般解法,引出矩阵的初等变换,给出了行阶梯型矩阵、行最简型矩阵和标准型矩阵的概念。
给出了矩阵秩的定义(显然,一个方阵是否可逆与其是否满秩是等价的),指出初等行变换不会改变矩阵的秩,并给出了求矩阵秩的方法——化矩阵为行阶梯型矩阵。
接着,又给出了初等矩阵的定义,并且将矩阵初等变换和矩阵与一个初等矩阵相乘建立起一一对应的关系,用初等变换将矩阵化为标准型,显然,根据初等变换不该变矩阵的秩,则初等变换不改变矩阵可逆性,由于我们可以很容易地观察出标准型矩阵的秩和行列式,所以若一个方阵可逆,它的标准型必然是一个单位阵。
线性代数与解析几何
线性代数与解析几何是一门重要的数学课程,它给出了对抽象数学对象的抽象描述,以及它们的关系的数学分析。
它的主要内容包括线性空间,矩阵分析,线性变换,内积,线性方程组,范数,秩,特征值,基变换等。
解析几何是一种几何学的分支,它研究几何图形在空间中的形状和运动。
它也给出了对几何对象的抽象描述,以及它们之间的关系。
其主要内容包括几何体,几何图形,向量和矢量,空间变换,曲面,曲线,参数方程,正交变换,正切变换,积分变换等。
线性代数与解析几何的内容之间存在一定的关联,它们都是对抽象数学对象的抽象描述,以及它们之间的关系进行数学分析。
从线性代数的角度来看,解析几何可以用矩阵分析和线性变换来表示;从解析几何的角度来看,线性代数可以用参数方程,正交变换,正切变换,积分变换等来表示。
线性代数与解析几何对于现代科学技术的发展有着重要的作用,它们可以用来解决各种复杂的数学问题,如机器研究,数据挖掘,机器人技术,计算机图形学等。
线性代数与解析几何的研究也可以用于解决物理学和工程学中的实际问题,比如热传导,结构力学,电磁学,电子学等。
《线性代数与空间解析几何》课程教学大纲课程编号:11100340适用专业:理、工、经、管各专业学时数:54 学分数: 4 开课学期:第一学期先修课程:执笔者:蒲和平编写日期:2010.1 审核人(教学副院长):高建一、课程性质和目标授课对象:本科一年级学生课程类别:公共基础课教学目标:《线性代数与空间解析几何》是理工科大学的基础理论课,是我校培养方案中各专业必修的公共基础课程。
由于线性问題广泛存在于科学技术的各个领域, 其些非线性问題在一定条件下可以转化为线性问題, 尤其是计算机飞速发展的今天, 解大型线性方程组、求矩阵的特征值与特征向量等问题已经成为科学技术人员经常遇到的问題, 因此,本课程所介绍的内容和方法,广泛应用于各个学科,这就要求学生具备有关本课程的基本理论知识,并熟练地掌握它的方法。
通过本课程的学习使学生获得本课程的基本理论和基本方法,培养学生的抽象思维能力、逻辑推理能力、熟练运算能力、空间想象能力、创造性思维能力和自学能力,以及综合运用所学知识解决一些实际问题的能力,为后续课程的学习奠定必要的数学基础。
二、课程内容安排和要求(一)教学内容、要求及教学方法第一章矩阵及其初等变换1.教学内容:(1)矩阵及其运算(2)高斯消元法与矩阵的初等变换(3)逆矩阵(4)分块矩阵2. 教学要求:(1)理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质。
(2)掌握矩阵的线性运算、乘法、转置,以及它们的运算规律,了解矩阵多项式的概念。
(3)理解逆矩阵的概念,掌握逆矩阵的性质。
(4)掌握矩阵的初等变换,了解初等矩阵的性质和矩阵等价的概念,掌握用初等变换求逆矩阵的方法。
(5)了解分块矩阵及其运算。
第二章行列式1. 教学内容:(1)n阶行列式的定义(2)行列式的性质与计算(3)Laplace展开定理(4)克拉默法则(5)矩阵的秩2. 教学要求:(1) 了解行列式的概念。
线性代数与空间解析几何现代数学自古以来一直深受赞誉,它有着无与伦比的智慧,深刻地理解了许多自然界的秩序。
在经典的几何学中,线性代数和空间解析几何是一种重要的数学理论。
它们不但有助于我们深入理解数学,还可以应用到许多实际问题中。
线性代数是一种数学理论,有着十分丰富的内容,它着眼于研究向量空间,研究线性变换及其线性组合,并将这些结果应用到其他向量空间中。
它的主要内容有:多维向量的基础概念,线性方程组和矩阵的计算,线性变换的性质,特征值分解,矩阵运算,矩阵行列式,矩阵特征和Eigenvalue decomposition等。
这些内容都有助于研究者们用数学统一分析和处理各种复杂的实际问题。
空间解析几何是一种数学理论,主要涉及几何体的形状、大小、位置、形变,空间向量的表示、数量计算及构造,三维图形的建模等,它更加强调呈现几何对象的形状,揭示几何对象的实质,把抽象几何学转化为实际的几何问题求解。
同时它也是其他几何理论的基础,可以在研究立体几何、分析几何、微分几何、代数几何、拓扑学、曲面几何等领域发挥作用。
线性代数和空间解析几何有着密切的关系,它们之间的协同作用可以帮助研究者更深入地了解数学,并将它们用于解决实际问题。
如空间解析几何的结果可以用来解决线性代数的线性方程,反之亦然,两者的应用实例很多。
比如,空间解析几何可以应用于三维建模和图像处理,线性代数可以用来求解函数和拟合曲线。
在经济管理学中,线性代数和几何解析学可以用来研究金融机构的可操作性和有效性,研究多维数据的分析等。
在工程和物理学方面,线性代数和空间解析几何可以用于求解大量复杂的物理问题和工程设计,它们也可以应用于预测和控制方面,如控制系统设计、航空航天应用,甚至是自然灾害和资源量化分析等。
综上所述,线性代数和空间解析几何在现代社会生活中起着越来越重要的作用,它们不仅可以用于解决科学上的复杂问题,也可以用于经济、工程和物理等不同领域的科学研究,我们可以用它们来解决实际问题,从而实现社会的发展。
《线性代数与解析几何》课程教学大纲课程编号:20811824总学时数:64(理论64)总学分数:4课程性质:学科基础课程适用专业:工程力学一、课程的任务和基本要求:本课程的主要任务是介绍行列式和矩阵的基础概念、基本性质及其运算,并以行列式和矩阵为工具,介绍齐次线性方程组有非零解的充要条件和非齐次线性方程组有解的充要条件及如何求解线性方程;介绍矩阵的特征值和特征向量的概念、性质及求矩阵的特征值与特征向量的方法,并利用矩阵特征值与特征向量研究二次型的性质和如何将二次型化为标准形,简单介绍线性空间与线性变换的基本概念。
为其它课程打下一定的代数基础。
空间解析几何是一门理工科学生必须掌握的基础理论课程,本课程主要以向量为工具,讨论空间的平面、直线、曲面与曲线的特性,介绍并求平面、直线、曲面与曲线的方程。
二、基本内容和要求:(一)行列式基本内容:1、行列式的定义与性质2、行列式的计算3、Cramer法则基本要求:理解n阶行列式的基本概念,熟悉n阶行列式基本性质,掌握行列式的基本计算方法,会计算简单的n阶行列式。
掌握Cramer法则及其应用。
(二)矩阵基本内容:1、矩阵的定义与运算、逆矩阵的概念与计算、分块矩阵2、矩阵的初等变换与初等矩阵、矩阵的秩基本要求:了解矩阵的概念,掌握矩阵的加法、数乘矩阵及矩阵的乘法运算。
并掌握矩阵运算与实数运算的区别。
理解逆矩阵的概念并会用伴随矩阵求可逆矩阵的逆矩阵。
理解分块矩阵的概念,会分块矩阵的运算。
理解矩阵的初等变换的概念,掌握矩阵的初等变换,并会用矩阵的初等变换求矩阵的逆矩阵。
理解矩阵秩的概念,并会用矩阵的初等变换求矩阵的秩。
(三)向量空间基本内容:1、n维向量的概念,n维向量的概念的线性相关与线性无关的概念2、向量组的极大线性无关组与向量组的秩3、n维向量的空间及向量空间的基、维数、向量的坐标基本要求:理解n维向量的概念,理解向量组的线性相关与线性无关及向量组的极大线性无关组的概念,会用矩阵的初等变换求向量组的秩和向量组的极大线性无关组并将其余向量用该极大线性无关组表示。
线性代数与解析几何(A)教学大纲(课程编号:07011270;课程类型:必修;总学分:4;总上课学时:64;上机时数:0)东南大学数学系一.课程的性质与目的本课程是(吴健雄学院)工科电类专业学生本科阶段关于几何及离散量数学重要的数学基础课程。
本课程的目的是使学生熟悉空间解析几何与线性代数基本概念,掌握用坐标及向量的方法讨论几何图形的方法,熟悉空间中简单的几何图形的方程及其特点,掌握线性代数的基本理论和基本方法,熟悉矩阵运算的基本规律和基本技巧,熟悉矩阵在等价关系、相似关系、合同关系下的标准形,提高其空间想象能力、抽象思维和逻辑思维的能力,为后继课程的学习做好准备,并为用线性代数的理论解决实际问题打下基础。
二.课程内容的教学要求1.向量代数平面与直线(1)理解几何向量的概念及其加法、数乘运算,熟悉运算规律,了解两个向量共线和三个向量共面的充分必要条件;(2)理解空间直角坐标系的概念,理解仿射坐标系的概念,掌握向量的坐标表示;(3)理解向量的数量积、向量积和混合积的概念,理解它们的几何意义,了解相关的运算性质,掌握利用坐标进行计算的方法;(4)理解平面的法向量的概念,熟练掌握平面的方程的确定方法,熟悉特殊位置的平面方程的形式;(5)理解直线的方向向量的概念,熟练掌握直线的对称方程、一般方程及参数方程的确定方法;(6)了解直线、平面间的夹角的定义,了解点与直线、平面间的距离的定义,并掌握相关的计算;(7)了解平面束的概念,并会用平面束处理相关几何问题。
2.矩阵和行列式(1)理解矩阵和n维向量的概念;(2)理解矩阵和向量的加法、数乘、乘法运算及矩阵的转置及相关的运算性质,熟练掌握上述运算;(3)理解零矩阵、单位矩阵、数量矩阵、对角阵、三角阵、对称矩阵、反对称矩阵的定义及其运算性质;(4)理解二阶、三阶行列式的定义,熟练掌握它们的计算;(5)知道全排列及全排列的逆序数的定义,会计算排列的逆序数,知道对换及对换对于排列的奇偶性的影响;(6)了解n阶行列式的定义,会用行列式的定义计算简单的n阶行列式;(7)掌握行列式的性质,熟练掌握行列式按行、列展开公式,了解行列式的乘法定理;(8)掌握利用行列式的性质计算行列式的方法;(9)理解矩阵的可逆性的概念,掌握矩阵可逆的判别方法,掌握逆矩阵的性质;(10)理解伴随矩阵的概念,熟练掌握伴随矩阵的性质,掌握利用伴随矩阵计算矩阵的逆矩阵;(11)理解Cramer法则,掌握用Cramer法则求方程组的解的方法;(12)掌握分块矩阵的运算规则,掌握典型的分块方法。
10-11-2《几何与代数》数学实验报告学号: 姓名: 得分: . 要求:报告中应包含实验中你所输入的所有命令及运算结果,用4A 纸打印.并在第15周之前交给任课老师。
实验一:某市有下图所示的交通图,每条道路都是单行线,需要调查每条道路每小时的车流量。
图中的数字表示该路段的车流数。
如果每个道口进入和离开的车辆数相同,整个街区进入和离开的车辆数也相同。
(1) 建立描述每条道路车流量的线性方程组; (2) 分析哪些流量数据是多余的;(3) 为了确定未知流量,需要增添哪几条道路的车流量统计?解:(1)因为假设每个道口进入和离开的车辆数相同,整个街区进入和离开的车辆数也相同,所以每个节点(交叉口)进入的车数和离开的车数相等, 由此可建立线性方程组:x1+x7=180+220; x1-x2+x9=300; x2-x11=300-100; x3+x7-x8=350; x3-x4+x9-x10=0; x4-x11+x12=500; x5+x8=150+160;x5-x6+x10=400;x6-x12=150-290;(2)把线性方程组的增广矩阵输入matlab软件:>>A=[1,0,0,0,0,0,1,0,0,0,0,0,400;1,-1,0,0,0,0,0,0,1,0,0,0,300;0,1,0,0,0,0,0,0,0,0,-1,0,200;0,0,1,0,0,0,1,-1,0,0,0,0,350;0,0,-1,1,0,0,0,0,-1,1,0,0,0;0,0,0,1,0,0,0,0,0,0,-1,1,500;0,0,0,0,1,0,0,1,0,0,0,0,310;0,0,0,0,1,-1,0,0,0,1,0,0,400;0,0,0,0,0,1,0,0,0,0,0,-1,-140]点击“回车”键,A =1 0 0 0 0 0 1 0 0 0 0 0 4001 -1 0 0 0 0 0 0 1 0 0 0 3000 1 0 0 0 0 0 0 0 0 -1 0 2000 0 1 0 0 0 1 -1 0 0 0 0 3500 0 -1 1 0 0 0 0 -1 1 0 0 00 0 0 1 0 0 0 0 0 0 -1 1 5000 0 0 0 1 0 0 1 0 0 0 0 3100 0 0 0 1 -1 0 0 0 1 0 0 4000 0 0 0 0 1 0 0 0 0 0 -1 -140把增广矩阵经初等变换成最简阶梯型矩阵>> rref(A)点击“回车”键,得到最简阶梯型矩阵ans =1 0 0 0 0 0 0 0 1 0 -1 0 5000 1 0 0 0 0 0 0 0 0 -1 0 2000 0 1 0 0 0 0 0 1 -1 -1 1 5000 0 0 1 0 0 0 0 0 0 -1 1 5000 0 0 0 1 0 0 0 0 1 0 -1 2600 0 0 0 0 1 0 0 0 0 0 -1 -1400 0 0 0 0 0 1 0 -1 0 1 0 -1000 0 0 0 0 0 0 1 0 -1 0 1 500 0 0 0 0 0 0 0 0 0 0 0 0由于最简阶梯型矩阵最后一行均为“0”,所以最后一个方程中的数据“150”和“290”是多余的。
线性代数与空间解析几何线性代数和空间解析几何是数学中重要的两个分支学科,它们的研究领域可以追溯到古希腊时代。
它们的知识不仅重要,而且非常有用,可以帮助我们解决复杂的问题。
它们经常被应用到其他数学领域,尤其是计算机科学。
线性代数的研究重点是研究和处理线性方程组等线性方程。
它涉及向量空间、矩阵、行列式、向量空间线性变换、特征值、特征向量和其他主题。
在机器学习、深度学习和其他领域,线性代数是重要的理论基础。
空间解析几何是一种几何学,它研究和描述特定空间中点,线段,平面和曲面的关系和结构。
它主要研究直线、圆、椭圆、抛物线、曲线等,以及它们的交点、切线、曲率等。
在计算机图形学中,空间解析几何是一种基础,可以用来计算和绘制场景中几何图形。
线性代数和空间解析几何具有高度的应用价值,它们经常被用来解决实际生活中出现的复杂问题,及计算机科学和数学中的技术问题。
研究它们的历史也是重要的,古希腊人就开始研究这两个学科,曾有像欧几里得和费马这样的著名数学家。
从古至今,线性代数和空间解析几何在数学中的地位没有任何改变,这是数学家们发现其中的魅力所在。
在未来,它们都将在各个数学领域中发挥重要作用,并取得更大的发展。
在线性代数和空间解析几何方面,学习和掌握基本概念,定义,定理,证明,概率,建模等是很重要的。
要想从中受益,就必须了解基本概念,了解它们的应用。
另外,一定要花费足够的时间去研究它们,这样才能让自己更好地掌握这两个学科。
总之,线性代数和空间解析几何是十分重要的学科,它们在数学领域有着深远的影响。
在未来,它们将持续发挥重要作用,并取得新的进展。
要想学好它们,就必须具备基本知识,且要不断练习。
线性代数与空间解析几何
从解析几何和线性代数的观点来看,《线性代数与空间解析几何》是一门重要的学科,它可以帮助学生们更深入地了解几何学和线性代数学的概念。
本文将对线性代数和空间解析几何的基本概念进行简要介绍,并讨论这两个学科之间的联系。
线性代数是一门数学学科,主要研究线性方程组和其解的性质,以及线性变换之间的关系。
它研究向量空间中变换矩阵的性质,以及矩阵之间的乘法性质、特征值和特征向量等。
线性代数可以用来解决各种数学问题,包括统计分析、优化问题、概率论、数值分析、信号处理等。
空间解析几何是一门涉及几何形状和空间构造的学科。
它主要研究点、线段、平面和曲线的性质,以及空间中的特殊物体的构造。
它也研究几何形状的相关属性,比如各种角度、距离、面积和体积等。
线性代数和空间解析几何之间有着密切联系。
比如,当涉及到几何中的投影和变化时,就可以使用矩阵乘法,实现几何上的变换。
同样,空间解析几何中的投影也可以被表达为一个矩阵,通过矩阵乘法可以表达出投影的效果。
此外,解析几何中的空间变换也可以被表达为一个矩阵,并通过线性代数的思想来求解。
线性代数和空间解析几何的应用也很广泛。
比如,在工程设计中,人们需要进行精确的几何变换,而线性代数和空间解析几何就可以提供帮助。
此外,空间解析几何在视觉里程计中也得到了广泛的应用,它可以用来分析和处理机器在空间中的位置和行为。
《线性代数与空间解析几何》是一门重要的学科,它为学生们提供了深入了解几何学和线性代数学概念的机会。
它可以帮助学生们更好地掌握线性代数和空间解析几何的基本概念,并能在实际运用中体现出价值。