线性代数与解析几何 序言
- 格式:ppt
- 大小:1.65 MB
- 文档页数:94
线性代数结课论文论文题目:浅谈线性代数与空间解析几何学员姓名:娃哈哈学号:9090980学院:xxx专业班级:xxx指导老师:xxx二零一一年十二月摘要:在我们的学习过程中,可以发现线性代数和空间解析几何中有很多相似之处。
确切的说是线性代数中的一些理论是从空间解析几何中发展和改进而来的。
比如说通过空间解析几何中多元一次方程组的解法线性代数提出了行列式,使行列式有了几何意义,同时是行列式直观化。
也是通过行列式,多元方程组的解答更便捷、快速。
又比如在线性代数中先后提出来线性空间、欧氏空间。
线性空间也将向量做了推广,使向量抽象化。
欧氏空间也在线性空间的基础上提出内积,使几何空间中的向量的一些度量性质推广化,等等,这样的例子很多很多。
总体来说线性代数与空间解析几何是相互联系、相互促进的。
可以更确切一点的说是空间解析几何是线性代数的基石,而线性代数是空间解析几何的推广和并使之抽象化。
关键词:线性代数解析几何欧氏空间联系促进ABSTRACTIn our study process, we can find linear algebra and space analytic geometry have much in common. Exactly linear algebra theory from some of the space analytic geometry in development and improvement. For example, by space analytic geometry in a multiple linear algebra equations solution method proposed determinants, make the determinant with geometric meaning, at the same time, is the determinant direct. Also through the determinants, multiple equations solution more convenient, fast. For instance in linear algebra and linear space, has brought out the Euclidean space. The linear space will also vector do promotion, make vector abstraction. Euclidean space in linear space is put forward based on the dot product, make the geometry of space vector of the some measure properties of promotion, and so on.Key words:Linear Algebra; Analytic Geometry; Euclidean Space; Contact;Promotion一.引言在十七世纪, 笛卡尔及费马在几何空间中引入了坐标系, 从而在几何与代数间建立了一座桥梁, 用代数方法解决空间的几何问题, 产生了解析几何. 解析几何的产生, 可以说是数学发展史上的一次飞跃.恩格斯曾经这样评价[1]: 数学中的转折点是笛卡尔的变数, 有了变数, 运动进入了数学, 有了变数, 辩证法进入了数学, 有了变数, 微分和积分也就成了必要的了.从代数与几何的发展历史来看,线性代数与解析几何从来就是相互联系、相互促进的。
《线性代数与解析几何》课程教学大纲一,课程基本信息二,课程简介《工程数学基本(1)(代数与几何)》是大学阶段最重要地数学基本课程之一。
本课程依据教育部数学基本课程教学指导委员会对工科院校相关课程教学地基本要求开展教学。
课程着重介绍线性代数与空间解析几何地基本知识,包含行列式,矩阵与线性方程组地理论,二次型,向量代数,空间坐标系,平面与空间直线地方程,常见二次曲面地标准方程和其图形基本知识,并以矩阵为基本工具,围绕矩阵间地价,相似,合同关系,介绍线性代数地基本理论与基本方法。
作为大学生数学知识结构地重要组成部分,本课程着重培养学生严密地逻辑推理能力与分析问题,解决问题地能力,为今后学习其它学科知识打下基本;同时,该课程地理论与方法在科学研究与工程技术领域都有着广泛地应用;此外,该课程对于培养学生地抽象思维能力,空间想象能力也具有重要地作用。
考虑到线性代数与空间解析几何地内在联系,将线性代数与空间解析几何作为一门课程来教学,但基本要求地具体内容还是相对独立地,并且不要求所有专业都遵循这一模式。
三,课程教学目标线性代数与空间解析几何是高学校非数学类专业理工科类本科生地重要工程数学课程之一,是学生必修地重要基本理论课。
通过该课程地学习,应使学生获得向量代数与空间解析几何,线性代数方面地基本知识,基本概念,基本理论,基本方法,并接受基本运算技能地训练,为今后学习相关后继课程奠定必要地数学基本,培养学生自主学习,综合运用所学知识分析与解决问题地能力。
此外,在该课程中开设与理论教学相配套地数学实验,培养学生利用数学软件解决实际问题地能力。
(一)具体目标目标1:掌握行列式,矩阵与线性方程组地理论,二次型,向量代数,空间坐标系,平面与空间直线地方程,常见二次曲面地标准方程和其图形基本知识,掌握矩阵间地价,相似,合同关系线性代数地基本理论与基本方法,为今后学习相关后继课程奠定必要地数学基本。
目标2:培养学生严密地逻辑推理能力,抽象思维能力与空间想象能力能以向量代数矩阵为基本工具,具有一定地分析与解决问题地能力目标3:了解数学软件Matlab地基本功能与使用方法,具备利用该软件求解线性代数与解析几何地基本计算与绘图地能力。
《线性代数与解析几何》课程教学大纲课程性质:学科基础课英文名称:Geometry and Algebra课程代码:080210学时:56 (讲课时数:52 课内实践时数:4 )学分:3.5适用专业:理工类本科各专业一、课程教学基本要求《线性代数与解析几何》课是我校理工类本科各专业必修的、重要的基础理论课,通过本课程的学习,要使学生较系统地理解和掌握有关的基本概念、基本理论、基本方法。
在讲解本课程内容的同时通过各个教学环节逐步培养学生的抽象思维能力、空间想象能力和综合运用所学知识分析问题、解决问题的能力,也为后继课打下良好的数学基础。
二、课程教学大纲说明在分级教学中,本课程是与《高等数学A》相配套的系列课程。
其内容是以往高等数学中空间解析几何的内容与线性代数向量部分有机的结合。
几何向量就是有限维向量空间的实际背景,是抽象的线性代数理论的具体解释。
这种安排使线性代数内容更加丰富、具体,也缩减了课时,这是数学课的一项改革。
大纲对概念与基本技能的要求与《高等数学A》课程的要求一致,这里不在重复。
第七章内容不在基本要求之列,视学生情况,由教师决定讲与不讲。
三、各章教学内容结构与具体要求(一)第一章彳亍列式1、教学目的和要求:目的:使学生掌握行列式的概念与性质、计算方法。
要求:(1)理解行列式的概念,理解行列式的子式、余子式及代数余子式的概念。
(2)掌握行列式的性质,按行、列展开定理,Cramer法则。
2、教学内容与要点:内容:彳亍列式及性质;计算方法;Cramer法则。
要点:行列式的定义与性质。
(二)第二章矩阵1、教学目的与要求:目的:使学生掌握矩阵代数的内容、矩阵的初等变换、秩的概念。
要求:(1)理解矩阵的概念,熟悉单位矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵的概念及其性质。
(2)掌握矩阵的线性运算、乘法、转置、以及它们的运算规律。
(3)理解逆矩阵的概念,掌握逆矩阵存在的充要条件与计算方法;掌握伴随矩阵的构成与性质。
《线性代数与空间解析几何》课程教学大纲课程编号:11100340适用专业:理、工、经、管各专业学时数:54 学分数: 4 开课学期:第一学期先修课程:执笔者:蒲和平编写日期:2010.1 审核人(教学副院长):高建一、课程性质和目标授课对象:本科一年级学生课程类别:公共基础课教学目标:《线性代数与空间解析几何》是理工科大学的基础理论课,是我校培养方案中各专业必修的公共基础课程。
由于线性问題广泛存在于科学技术的各个领域, 其些非线性问題在一定条件下可以转化为线性问題, 尤其是计算机飞速发展的今天, 解大型线性方程组、求矩阵的特征值与特征向量等问题已经成为科学技术人员经常遇到的问題, 因此,本课程所介绍的内容和方法,广泛应用于各个学科,这就要求学生具备有关本课程的基本理论知识,并熟练地掌握它的方法。
通过本课程的学习使学生获得本课程的基本理论和基本方法,培养学生的抽象思维能力、逻辑推理能力、熟练运算能力、空间想象能力、创造性思维能力和自学能力,以及综合运用所学知识解决一些实际问题的能力,为后续课程的学习奠定必要的数学基础。
二、课程内容安排和要求(一)教学内容、要求及教学方法第一章矩阵及其初等变换1.教学内容:(1)矩阵及其运算(2)高斯消元法与矩阵的初等变换(3)逆矩阵(4)分块矩阵2. 教学要求:(1)理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质。
(2)掌握矩阵的线性运算、乘法、转置,以及它们的运算规律,了解矩阵多项式的概念。
(3)理解逆矩阵的概念,掌握逆矩阵的性质。
(4)掌握矩阵的初等变换,了解初等矩阵的性质和矩阵等价的概念,掌握用初等变换求逆矩阵的方法。
(5)了解分块矩阵及其运算。
第二章行列式1. 教学内容:(1)n阶行列式的定义(2)行列式的性质与计算(3)Laplace展开定理(4)克拉默法则(5)矩阵的秩2. 教学要求:(1) 了解行列式的概念。
1. 线性代数发展简史线性代数是高等代数的一大分支。
我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。
在线性代数中最重要的内容就是行列式和矩阵。
行列式和矩阵在十九世纪受到很大的注意, 而且写了成千篇关于这两个课题的文章。
向量的概念, 从数学的观点来看不过是有序三元数组的一个集合, 然而它以力或速度作为直接的物理意义, 并且数学上用它能立刻写出物理上所说的事情。
向量用于梯度, 散度, 旋度就更有说服力。
同样, 行列式和矩阵如导数一样(虽然dy/dx 在数学上不过是一个符号, 表示包括△y/△x的极限的长式子, 但导数本身是一个强有力的概念, 能使我们直接而创造性地想象物理上发生的事情)。
因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。
然而已经证明这两个概念是数学物理上高度有用的工具。
线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。
行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683 年写了一部叫做《解伏题之法》的著作,意思是“ 解行列式问题的方法” ,书里对行列式的概念和它的展开已经有了清楚的叙述。
欧洲第一个提出行列式概念的是德国的数学家,微积分学奠基人之一莱布尼兹(Leibnitz ,1693 年)。
1750 年克莱姆(Cramer )在他的《线性代数分析导言》(Introduction d l'analyse des lignes courbes alge'briques )中发表了求解线性系统方程的重要基本公式(既人们熟悉的Cramer 克莱姆法则)。
1764 年, Bezout 把确定行列式每一项的符号的手续系统化了。
对给定了含n 个未知量的n 个齐次线性方程, Bezout 证明了系数行列式等于零是这方程组有非零解的条件。
Vandermonde 是第一个对行列式理论进行系统的阐述( 即把行列' 式理论与线性方程组求解相分离) 的人。