第八讲 x2检验
- 格式:ppt
- 大小:418.00 KB
- 文档页数:27
x2检验本章重点1.熟悉x2检验的基本思想。
2.掌握x2检验在四格表资料、行×列表资料中的应用。
3.掌握配对计数资料的x2检验。
χ2 检验是一种用途广泛的假设检验方法,本章只介绍它在分类变量资料中的应用: χ2 检验的适用范围:1.推断两个或两个以上总体率或构成比之间有无差异;2.配对计数资料差异的显著性。
检验统计量:χ2应用:计数资料第一节 四格表资料的χ2 检验目的:推断两个总体率(构成比)是否有差别要求:两样本的两分类个体数排列成四格表资料一、四格表资料的基本公式x2检验基本思想检验“实际数”和假设“理论数”的差异是否是由于抽样误差引起(两个样本率的差异体现在“实际数”和假设“理论数”的差异中)。
实际数,用四格表表示,称为四格表资料,分别为a 、b 、c 、d ,其他的数据是从这四个实际数推算出来的,称为理论数(表中括号内的数据)。
实际数用A 表示,理论数T 表示。
A :表示实际频数,即实际观察到的例数。
T :理论频数,即如果假设检验成立,应该观察到的例数。
TRC :第R 行C 列的理论频数nR :相应的行合计,nC :相应的列合计n 为总例数检验统计量χ2 值反映了实际频数与理论频数的吻合程度。
Χ2检验是检验实际数与理论数差异程度的指标。
A 与T 的值越接近, χ2越小,相反,实际数与理论数之间的差数越大, χ2值也就越大。
所得χ2值如果小于界值的χ2,P>0.05,即接受了原假设,可认为两组人群的治疗效果差异无统计学意义。
反之,如果所得χ2值大于查表所得χ2值,则P<0.05,即差异有统计学意义。
自由度计算公式Χ2值的大小,除了取决于A-T 的差值外,还取决于格子数的多少,格子数越多, χ2值越大,只有排除了这种影响, χ2值才能正确反映A 与T 的吻合程度,因此,在查χ2表时,要考虑自由度的大小。
22(), ()(1)A T Tχν-=∑=-行数-1列数 R C RC n n T n=计算公式:V=(行-1)(列-1) 四格表资料由2行2列组成,V=(2-1)(2-1)=1自由度即自由变动的范围,由于四格表周边的合计数已经固定,因此只要算出任一格的理论数,其余三个格子的理论数就没有自由变动的余地了,四格表的自由度V=1。
8 无序分类资料的统计推断—— χ2检验χ2检验(chi-square test )是一种用途较广的假设检验方法,这里仅介绍它在分类变量资料中的应用,检验两个或两个以上的样本率或构成比之间的差异是否有统计意义。
8.1 四格表资料的χ2检验四格表即2 ⨯ 2列联表,其自由度df =1,又分为一般与配对两种情形,本节介绍一般四格表的χ2检验,主要是用来推断两个总体率或构成比之间有无差别。
一般四格表,①在总频数n ≥40且所有理论频数≥5时,用Pearson χ2统计量;②在总频数n ≥40且有理论频数<5但≥1时,用校正χ2统计量;③在总频数n <40或有理论频数<1时,用Fisher 精确概率法检验。
计数资料的数据格式有两种,一种是频数表格式,如表8-1;一种是原始记录格式,如前面第4章统计描述中的表4-3,这两种格式在SPSS 操作时有所不同。
例8-1 欲研究内科治疗对某病急性期和慢性期的治疗效果有无不同,某医生收集了182例采用内科疗法的该病患者的资料,数据见表8-1。
请分析不同病期的总体有效率有无差别?表8-1 两种类型疾病的治疗效果组别 有效 无效 合计 有效率(%)急性期 69 37 106 65.1 慢性期 30 46 76 39.5 合计998318254.4解 这是一般四格表,012:H ππ=,即急性期和慢性期的总体有效率相同。
建立3列4行的数据文件,如图8-1,其中行变量r 表示组别(值标签:1=“急性期”、2=“慢性期”),列变量c 表示疗效(值标签:1=“有效”、2=“无效”),freq 表示频数。
1.指定频数变量 选择菜单Data →Weight cases ,弹出Weight cases 对话框,见图8-2;选中Weight cases by ;在左边框中选中频数freq ,并将其送入Frequency 框中;单击OK 。
图8-1 例8.1数据文件 图8-2 Weight cases 对话框2.进行χ2检验 选择菜单Analyze → Descriptive Statistics → Crosstabs (交叉表),弹出Crosstabs 主对话框;将组别r 送入行变量Row(s)框,将疗效c 送入列变量Column(s)框,如图8-3。
X2(称卡方)检验用途较广,但主要用于检验两个或两个以上样本率或构成比之间差别的显著性,也可检验两类事物之间是否存在一定的关系。
一、两个率的比较(一)X2检验的基本公式下页末行的例3.1是两组心肌梗塞病人病死率的比较,见表3.5,其中对照组未用抗凝药。
两组病人的病死率不同,抗凝药组为25.33%,对照组为40.8%。
造成这种不同的原因可能有两种:一种是仅由抽样误差所致;另一种是两个总体病死率确实有所不同。
为了区别这两种情况,应当进行X2检验。
其基本步骤如下:1.首先将资料写成四格表形式,如表3.6。
将每个组的治疗人数分为死亡与生存两部分,各占四格表中的一格,这些数字称为实际频数,符号为A,即实际观察得来的数字。
2.建立检验假设为了进行检验,首先作检验假设:两种疗法的两总体病死率相等,为35%(即70/200),记为H0:π1=π2。
即不论用或不用抗凝药,病死率都是35%,所以亦可以换一种说法:病死率与疗法无关。
上述假设经过下面步骤的检验后,可以被接受也可以被拒绝。
当H0被拒绝时,就意味着接受其对立假设即备择假设H1。
此例备择假设为两总体病死率不相等,记为H1:π1≠π2因为我们观察的是随机现象,所以无论是接受或拒绝H0都冒有一定风险,即存在着错判的可能性。
一般要求,当错误地被拒绝的概率α不超过一定的数值,如5%(或0.05),此值称为检验水准,记为α=0.05。
3.计算理论频数根据“检验假设”推算出来的频数称理论频数,符号为T。
计算方法如下:假设两总体病死率相同,都是35.0%,那么抗凝血组治疗75人,其死亡的理论频数应为75×35.0%=26.25人,而生存的理论频数为75-26.25=48.75人。
用同样方法可求出对照组的死亡与生存的理论频数,前者为43.75人。
后者为81.25人。
然后,把这些理论频数填入相应的实际频数格内,见表3.6括号内数字。
计算理论频数也可用下式(3.4)TRC=nRnC/N (3.4)式中,TRC为R行与C列相交格子的理论频数,nR为与计算的理论频数同行的合计数,nC为与该理论频数同列的合计数,N为总例数。
X2检验X2检验是用途广泛的假设检验方法,它的原理是检验实际分布和理论分布的吻合程度。
主要用途有:两个及以上样本率(或构成比)之间差异比较,推断两变量间有无相关关系,检验频数分布的拟合优度。
X2检验类型有:四格表资料X2检验(用于两样本率的检验),行×列表X2检验(用于两个及两个以上样本率或构成比的检验), 行×列列联表X2检验(用于计数资料的相关分析)。
在SPSS中,所有X2检验均用Crosstabs完成。
Crosstabls过程用于对计数资料和有序分类资料进行统计描述和统计推断。
在分析时可以产生二维至n维列联表,并计算相应的百分数指标。
统计推断则包括了我们常用的X2检验、Kappa值,分层X2(X2M-H)。
如果安装了相应模块,还可计算n维列联表的确切概率(Fisher's Exact Test)值。
Crosstabs过程不能产生一维频数表(单变量频数表),该功能由Frequencies 过程实现。
界面说明【Rows框】用于选择行*列表中的行变量。
【Columns框】用于选择行*列表中的列变量。
【Layer框】Layer指的是层,对话框中的许多设置都可以分层设定,在同一层中的变量使用相同的设置,而不同层中的变量分别使用各自层的设置。
如果要让不同的变量做不同的分析,则将其选入Layer框,并用Previous和Next钮设为不同层。
Layer在这里用的比较少,在多元回归中我们将进行详细的解释。
【Display clustered bar charts复选框】显示重叠条图。
【Suppress table复选框】禁止在结果中输出行*列表。
【Statistics】按钮弹出Statistics对话框,用于定义所需计算的统计量。
Chi-square复选框:计算X2值。
Correlations复选框:计算行、列两变量的Pearson相关系数和Spearman等级相关系数。
Norminal复选框组:选择是否输出反映分类资料相关性的指标,很少使用。
x2检验的注意事项
进行x2检验时,有一些注意事项需要考虑。
首先,x2检验是用于检验两个分类变量之间是否存在相关性的统计方法。
在进行x2检验时,需要确保样本数据符合一些前提条件。
首先,样本数据应该是随机抽取的,以确保结果的代表性和可靠性。
其次,样本容量应该足够大,通常要求每个单元格中的期望频数都不低于5,以确保x2检验的准确性。
另外,需要注意的是x2检验是一种非参数检验方法,不对总体分布做出假设,但是对于观测值之间的独立性有一定要求,因此在进行x2检验前需要对数据进行独立性检验。
另外,进行x2检验时,需要注意选择适当的假设。
在x2检验中,零假设通常是指两个变量之间不存在相关性,备择假设则是存在相关性。
根据研究问题和实际情况,选择适当的假设对于结果的解释至关重要。
此外,在进行x2检验时,需要注意对结果的解释。
x2统计量的计算结果需要进行适当的解释,包括对p值的理解以及相关性的强弱程度。
同时,也需要考虑实际意义,避免对统计显著性的过分解读。
最后,需要注意x2检验的局限性。
x2检验只能用于分析两个分类变量之间的相关性,对于其他类型的数据不适用。
另外,x2检验不能说明因果关系,只能说明相关性。
因此,在进行x2检验时,需要综合考虑其他因素,避免过分依赖统计结果。