概率论与数理统计第八讲
- 格式:ppt
- 大小:1.37 MB
- 文档页数:77
数学期望和方差是两个重要的数字特征,分别表示单个随机变量的平均值和离散程度;而对于多维随机变量,不仅能够确定边缘分布,还包含各分量之间关系的信息.刻划两个r.v.间相互关系的一个重要数字特征:协方差和相关系数若DX 、DY 存在,则有D (X ±Y )=DX +DY ±2E [(X−EX )(Y−EY )]这说明E [(X −EX )(Y −EY )]表达了X 与Y 之间的某种关系.且当X 和Y 独立时,有D (X ±Y )=DX +DY即:若X 和Y 独立,从而有结论:若E [(X −EX )(Y −EY )]≠0,则X 和Y 不独立.则有E [(X−EX )(Y−EY )]=0协方差1.定义设:二维随机变量(X ,Y ),它的分量的数学期望为E (X )和E (Y ),若E [(X −E (X ))(Y −E (Y ))]存在,则称它为X ,Y 的协方差,记为Cov (X ,Y ),即一、协方差(Covariance )()(,)(())(())Cov X Y E X E X Y E Y =--协方差为正说明同向变化程度更高;协方差为负说明反向变化程度更高2.计算(1)若二维离散型随机变量(X ,Y )的联合分布律为P (X =x i ,Y =y j )=p ij i,j =1,2,…(2)若二维连续型随机变量(X ,Y )的密度函数为f (x ,y )且Cov (X,Y )存在,则E [g (X ,Y )] E [g (X ,Y )] (,)[(())(())]Cov X Y E X E X Y E Y =--11(())(())i j iji j x E X y E Y p ∞∞===--∑∑(,)[(())(())]Cov X Y E X E X Y E Y =--(())(())(,)x E X y E Y f x y dxdy+∞+∞-∞-∞=--⎰⎰可见,若X 与Y 独立,Cov (X ,Y )=0.Cov (X ,Y )=E {[X -E (X )][Y -E (Y )]}=E (XY )-E (X )E (Y )-E (Y )E (X )+E (X )E (Y )=E (XY )-E (X )E (Y )=E {XY -XE (Y )-YE (X )+E (X )E (Y )}(3)Cov (X ,Y )=E (XY )-E (X )E (Y )证明:(5)Cov (X 1+X 2,Y )=Cov (X 1,Y )+Cov (X 2,Y )(2)Cov (X ,Y )=Cov (Y ,X )3.简单性质(4)Cov (aX ,bY )=abCov (X ,Y )a ,b 是常数(6)若X ,Y 的协方差Cov (X ,Y )存在,则E (XY )=E (X )E (Y )+Cov (X ,Y )(3)Cov (X ,X )=D (X )(1)Cov (X ,a )=0若X 1,X 2,…,X n 两两独立,则有D (X +Y )=D (X )+D (Y )+2Cov (X ,Y )4.随机变量和的方差与协方差的关系11()()n ni i i i D X D X ===∑∑11()()2(,)n ni i i j i j i i D X D X Cov X X <===+∑∑∑∑例1.设:随机变量X 和Y 的联合概率分布为求X 和Y 的协方差.解:,()[()](,)i j iji j E Z E g X,Y g x y p ==∑YX−1 0 1 010.06 0.18 0.160.080.32 0.20Cov (X ,Y )=E (XY )-E (X )E (Y )E (XY )=0×(−1)×0.06+0×0×0.18+0×1×0.16+1×(−1)×0.08+1×0×0.32+1×1×0.20=0.12另外,X 和Y 的边缘分布律分别为所以YX−1 0 1 010.06 0.18 0.160.080.32 0.20X 0 1P 0.4 0.6Y−1 0 1 P 0.14 0.5 0.36EY =−1×0.14+0×0.5+1×0.36=0.22EX =0×0.4+1×0.6=0.6E (XY )=0.12Cov (X ,Y )=E (XY )-E (X )E (Y )Cov (X ,Y )=E (XY )-E (X )E (Y )=0.12-0.6×0.22=-0.012例2.设:(X,Y)在圆域D={(x,y):x2+y2≤r2(r>0)}上服从均匀分布,求Cov(X,Y).解:易知(X,Y)的联合概率密度为所以22222221,(,)0,x y r f x y rx y rπ⎧+≤⎪=⎨⎪+>⎩22221x y ry dxdyrπ+≤=⋅⎰⎰=22221x y rx dxdyrπ+≤=⋅⎰⎰=(,)EX xf x y dxdy+∞+∞-∞-∞=⎰⎰(,)EY yf x y dxdy+∞+∞-∞-∞=⎰⎰所以E (X )=E (Y )=0Cov (X ,Y )=E (XY )-E (X )E (Y )=0此题表明,Cov (X ,Y )等于0,但X 与Y 不独立,.22222221, (,)0,x y r f x y r x y r π⎧+≤⎪=⎨⎪+>⎩(,)EXY xyf x y dxdy +∞+∞-∞-∞=⎰⎰22221x y r xy dxdy r π+≤=⋅⎰⎰0=协方差衡量了X和Y之间同向或反向的变化趋势。