第八讲SPSS非参数检验
- 格式:ppt
- 大小:846.50 KB
- 文档页数:38
spss基本知识点【篇一:spss基本知识点】结论不同麻醉诱导方法存在组间差别;患者的收缩压在不同的诱导方法下不同诱导时相变化的趋势不同,其中 a 组不同诱导时相收缩压较为稳定。
第八章非参数检验(nonparametrictests 菜单)参数检验:?? 通过样本的参数来检验总体参数的方法是参数检验。
如:通过样本的均值、方差来检验总体的数学期望与总体方差提出的假设是否为真.?? 参数检验对总体的分布有一定的要求,比如正态性和方差齐性非参数检验:?? 对总体分布情况未知时,无法用参数检验方法?? 非参数检验通过样本的分布对总体的分布进行检验非参数检验所要处理的问题:?? 两个总体分布未知,它们是否相同(用两组样本来检验)?? (由一组样本)猜出总体的分布(假设),然后用另一组样本去检验它是否正确注:两种分布是否相同,一般包含了参数(均值、方差等)是否相同的问题。
如果两个总体的分布函数形式相同,而参数不同,也被视为概率分布不同nonparametrictest 菜单(1) nonparametrictest 菜单(2) 卡方检验chi‐square?? 适用于拟合优度检验,即检验单变量的分布与理论分布是否一致?? 实例 1:贫困调查.sav 中身体状况变量的数据分布是否符合以往的经验:?? 完全不能自理 5%?? 基本不能自理10%?? 能自理无劳动能力 20%?? 部分丧失劳动能力 25%?? 身体健康 40% ?? 1.weightcasesby:death??2.analyze‐nonparametrictest‐chisquare 二项分布检验binomial ?? 二项分布的变量将总体分为两类(如医学中的生与死),二项分布的检验是通过样本中这两类的频率来检验总体中这两类的概率是否为给定的值 ?? binomial 过程可检验二项分类变量是个来自概率为 p 的二项分布例 1:一般来说,新生儿染色体异常率为1%,某医院观察了 400 名新生儿,只发现一例异常,请问该地新生儿异常率是否低于一般水平?数据文件见 6.2sav 1.weight cases by:num 2.analyze-nonparametric test-binomial 例 2:某地某一时期内出生 40 名婴儿,其中女性 12 名(定 sex=0),男性28名(定 sex=1)。
第八节非参数检验的SPSS操作前面一章介绍的二项分布的比率检验、配合度检验——卡方检验和1-Sample K-S检验等都属于非参数检验。
这一节我们主要结合前面参数假设检验一章讲过的t检验以及方差分析一章讲过的方差分析,来进一步分析,当参数检验的前提条件不满足时,两个样本和多个样本平均数差异的SPSS 操作方法。
一、两个独立样本的差异显著性检验两独立样本的的差异显著性检验只有在满足如下条件时才能进行T检验:变量为正态分布的连续测量数据。
若数据不满足这样的条件,强行进行T检验容易造成错误的结论。
在数据不能满足这种参数检验的条件下,我们可以选择非参数检验方法进行。
与两独立样本差异显著性检验相对应的方法可以在SPSS主菜单Analyze / Nonparametric Tests / 2 Independent Samples…中得到。
1.数据采用本章第一节中例2的数据(数据文件“9-4-1.sav”),具体介绍操作过程。
2.理论分析对于数据文件9-4-1.sav中的数据,目的是检验男女生之间注意稳定性是否存在显著差异,注意稳定性测量的结果虽然是测量数据但是从总体上来看不满足正态分布的前提假设,另外不同性别的学生可以看成是两组独立的样本,因此对上述资料的检验可以用非参数的独立样本的检验方法。
2.操作过程(1)在SPSS主菜单中选择Analyze / Nonparametric Tests / 2 Independent Samples…得到两个独立样本非参数检验的主对话框(图9-1),把因变量atten选入到检验变量表列(Test Independent-Sample Tests)中去,把gender选到分组变量(Grouping Variable)中,并单击Define Groups…,在随后打开的对话框中分别键入1与2,单击Continue回到主对话框如图9-1所示。
在Test Type中有四个可选项,其中最常用的是第一种方法Mann-Whitney U(又称秩和检验法)。
第八章非参数检验OUTLINE计数数据的检验01独立样本的非参数检验02相关样本的非参数检验03计数数据的检验配合度的卡方检验操作过程打开数据文件“fit_test.sav”,在SPSS中选择“Data→Weight Cases…”;选择“Weight cases by”,在“Frequency Variable”下选择“freq”,点击“OK”;选择“Analyze→NonparametricTests→Legacy Dialogs→Chi-square…”;将“major”选入“Test Variable List”框中,在“Expected Values”框中选择“Values”,并将国家统计比例依次“Add”;这里我们选择“Add”选项,并依次输入各类别的比例。
如果假设各类别比例相同,则可以选择默认的“All categories equal”选项。
在“Exact…”选项框中选择“Asymptotic only”选项,点击“Continue→OK”配合度的卡方检验操作过程打开数据文件“fit_test.sav”,在SPSS中选择“Data→Weight Cases…”;选择“Weight cases by”,在“Frequency Variable”下选择“freq”,点击“OK”;选择“Analyze→NonparametricTests→Legacy Dialogs→Chi-square…”;将“major”选入“Test Variable List”框中,在“Expected Values”框中选择“Values”,并将国家统计比例依次“Add”;这里我们选择“Add”选项,并依次输入各类别的比例。
如果假设各类别比例相同,则可以选择默认的“All categories equal”选项。
在“Exact…”选项框中选择“Asymptotic only”选项,点击“Continue→OK”配合度的卡方检验操作过程打开数据文件“fit_test.sav”,在SPSS中选择“Data→Weight Cases…”;选择“Weight cases by”,在“Frequency Variable”下选择“freq”,点击“OK”;选择“Analyze→NonparametricTests→Legacy Dialogs→Chi-square…”;将“major”选入“Test Variable List”框中,在“Expected Values”框中选择“Values”,并将国家统计比例依次“Add”;这里我们选择“Add”选项,并依次输入各类别的比例。
SPSS中非参数检验方法的使用SPSS中非参数检验方法的使用统计软件包SPSS给统计工作者提供了很大方便,SPSS for Windows版本推出后,使用者无需编写程序也可完成分析,使用更广泛了。
然而,面对软件包提供的众多统计过程(或方法),有些使用者感到迷惘。
针对这种情况,本文就如何正确使用SPSS for Windows软件包中Nonparametric Tests过程清单提供的8个非参数检验过程(或方法)逐一介绍。
一、Chi-SquareChi-Square是对单个样本作检验的推断方法,用于推断目前掌握的样本是否来自某特定分布总体,属拟合优度检验〔1〕。
要求提供假定总体的理论频数;默认总体为均匀分布时无需提供理论频数〔2〕。
Chi-Square过程通过分析实际频数与理论频数吻合的程序来完成检验,因此特别适合于频数资料的分析,也只接受和处理频数资料,如病人经治疗后治愈、好转、有效和无效的人数总的说来是否相同(实为治愈、好转、有效和无效的概率或机会是否相同),成绩优、良、中、差的学生人数总的说来是否相同,赞同某种观点的人数总的说来是否达到80%,等等。
要求样本足够大,按观察值从小到大的顺序提供理论频数。
理论频数通过主对话框中Expected Values的Values选项提供,All categories equal是默认项,即均匀分布。
若只想推断样本中某一范围内的频数是否来自某种特定分布总体,可通过主对话框中ExpectedRange的Use speciffied range选项提供范围的上、下限。
上述理论频数需根据假定总体分布计算或问题的实际背景确定。
二、BinomialBinomial过程对二值变量的单个样本作检验,推断总体中两类个体的比例是否分别为π和(1-π),π值通过T est Proportion选项提供,默认值是π=0.5〔2〕。
可借助于主对话框中Define Dichotomy的Cut point选项提供截断点,将连续变量转化成二值变量作分析;若提供的变量已经是二值变量,则不需提供截断点。