K1.05-常见信号的拉普拉斯变换
- 格式:pdf
- 大小:264.10 KB
- 文档页数:3
拉普拉斯变换公式大全1.原始函数的拉普拉斯变换F(s)=L{f(t)}2.常数的拉普拉斯变换对于任意实常数A,其拉普拉斯变换为:L{A}=A/s3.单位冲激函数的拉普拉斯变换单位冲激函数δ(t)的拉普拉斯变换为:L{δ(t)}=14.时延定理时延定理指出,当原始函数向右延时T秒时,其拉普拉斯变换会乘以e^(-sT)。
具体公式如下:L{f(t-T)}=e^(-sT)F(s)5.缩放定理缩放定理指出,当原始函数的变量变为原来的α倍时,其拉普拉斯变换会变为原来的1/α倍。
具体公式如下:L{f(αt)}=1/αF(s/α)6.积分定理积分定理指出,对于原始函数的积分,其拉普拉斯变换可以通过将变换域上的变量s除以s平方。
具体公式如下:L{∫f(t)dt} = 1/sF(s)7.乘积定理乘积定理指出,对于原始函数的乘积,其拉普拉斯变换可以通过将变换域上的变量s替换为s减去相应函数的变换。
具体公式如下:L{f(t)g(t)}=F(s)*G(s)8.指数函数的拉普拉斯变换指数函数e^(at)的拉普拉斯变换为:L{e^(at)} = 1/(s-a)9.幂函数的拉普拉斯变换幂函数t^n的拉普拉斯变换为:L{t^n}=n!/(s^(n+1))10.正弦函数的拉普拉斯变换正弦函数sin(ωt)的拉普拉斯变换可通过欧拉公式和拉普拉斯变换公式进行变换。
具体公式如下:L{sin(ωt)} = ω/(s^2 + ω^2)以上是拉普拉斯变换的一些重要公式。
通过应用这些公式,我们可以将原始函数在时域上的操作转换为变换域上的操作,从而解决各种线性常微分方程、控制系统和信号处理问题。
成绩评定表课程设计任务书目录1.Matlab介绍............... 错误!未定义书签。
2.利用Matlab实现信号的复频域分析—拉普拉斯变化和拉普拉斯逆变换的设计 (5)2.1.拉普拉斯变换曲面图的绘制 (5)2.2.拉普拉斯变化编程设计及实现 (7)2.3.拉普拉斯逆变化编程设计及实现 (8)3.总结 (14)4.参考文献 (15)1.Matlab介绍MATLAB语言是当今国际上在科学界和教育界中最具影响力、也最具活力的软件;它起源于矩阵运算,现已发展成一种高度集成的计算机语言;它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、丰富的交互式仿真集成环境,以及与其他程序和语言便捷接口的功能。
经过多年的开发运用和改进,MATLAB已成为国内外高校在科学计算、自动控制及其他领域的高级研究工具。
典型的用途包括以下几个方面:1)数学计算;2)新算法研究开发;3)建模、仿真及样机开发;4)数据分析、探索及可视化;5)科技与工程的图形功能;6)友好图形界面的应用程序开发。
1.1Matlab入门Matlab7.0介绍Matlab7.0比Matlab的老版本提供了更多更强的新功能和更全面、更方便的联机帮助信息。
当然也比以前的版本对于软件、硬件提出了更高的要求。
在国内外Matlab已经经受了多年的考验。
Matlab7.0功能强大,适用范围很广。
其可以用来线性代数里的向量、数组、矩阵运算,复数运算,高次方程求根,插值与数值微商运算,数值积分运算,常微分方程的数值积分运算、数值逼近、最优化方法等,即差不多所有科学研究与工程技术应用需要的各方面的计算,均可用Matlab来解决。
MATLAB7.0提供了丰富的库函数(称为M文件),既有常用的基本库函数,又有种类齐全、功能丰富多样的的专用工具箱Toolbox函数。
函数即是预先编制好的子程序。
在编制程序时,这些库函数都可以被直接调用。
无疑,这会大大提高编程效率。
拉普拉斯变换
拉普拉斯变换是工程数学中常用的一种积分变换(又名拉式转换)。
基本定义
如果定义:
∙是一个关于t的函数,使得当时候,;
∙是一个复变量;
∙是一个运算符号,它代表对其对象进行拉普拉斯积分
;是的拉普拉斯变换结果。
则的拉普拉斯变换由下列式子给出:
拉普拉斯逆变换
拉普拉斯逆变换,是已知,求解的过程。
用符号表示。
拉普拉斯逆变换的公式是:
对于所有的;
是收敛区间的横坐标值,是一个实常数且大于所有的个别点的实部值。
拉普拉斯变换的存在性
关于一个函数的拉普拉斯变换,只有在拉普拉斯积分是收敛的情况下才存在。
也就是说,必须是在对于的每一个有限区间内都是片断性连续的,且当趋于无穷大的时候,
是指数阶地变化。
拉普拉斯变换的基本性质
∙线性叠加
∙微分
∙时域
∙频域
∙积分
∙初始值定理
∙终值定理
, 所有极点都在左半复平面。
终值定理的实用性在于它能预见到系统的长期表现,且避免部分分式展开。
如果函数的极点在右半平面,那么系统的终值是
不定义的(例如:或)。
∙s移动
∙t移动
注: 表示阶跃函数.
∙n次幂移动
∙卷积
变换简表
原函数转换后函数
收敛区域
在工程学上的应用
应用拉普拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。
在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s 域)上来表示;在线性系统,控制自动化上都有广泛的应用。
拉普拉斯变换表
拉普拉斯变换表
拉普拉斯变换是进行信号分析的重要工具之一,通过将时间域上的函数进行变换,可以将其转化为在复平面上展开的函数。
下面是拉普拉斯变换中一些最基本的函数及其变换结果的表格。
1. 常数函数:f(t)=a
拉普拉斯变换结果:F(s)=a/s
2. 单位冲击函数:f(t)=δ(t)
拉普拉斯变换结果:F(s)=1
3. 单位阶跃函数:f(t)=u(t)
拉普拉斯变换结果:F(s)=1/s
4. 指数函数:f(t)=e^-αt
拉普拉斯变换结果:F(s)=1/(s+α)
5. 正弦函数:f(t)=sin(ωt)
拉普拉斯变换结果:F(s)=ω/(s^2+ω^2)
6. 余弦函数:f(t)=cos(ωt)
拉普拉斯变换结果:F(s)=s/(s^2+ω^2)
7. 时域上的微分:f(t)=df(t)/dt
拉普拉斯变换结果:F(s)=sF(s)-f(0)
8. 时域上的积分:f(t)=∫f(τ)dτ
拉普拉斯变换结果:F(s)=1/sF(s)+f(0)
9. 常见分布函数:f(t)=t^n/n!, n为正整数
拉普拉斯变换结果:F(s)=1/s^(n+1)
10. 指数衰减信号:f(t)=e^-αt u(t)
拉普拉斯变换结果:F(s)=1/(s+α)
总结
通过以上的表格可以看出,拉普拉斯变换可以将时域上的函数转换为在复平面上的函数,这种函数在进行信号分析时特别有用。
我们可以通过这种方法来推导出系统的传递函数,从而进一步进行系统稳定性的分析。