肥乡区七年级数学上册5一元一次方程小结与复习教案新版北师大版
- 格式:doc
- 大小:76.00 KB
- 文档页数:4
河北省邯郸市肥乡区七年级数学上册5一元一次方程小结与复习教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省邯郸市肥乡区七年级数学上册5一元一次方程小结与复习教案 (新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省邯郸市肥乡区七年级数学上册 5 一元一次方程小结与复习教案(新版)北师大版的全部内容。
一元一次方程教学目标1.经历梳理本章知识的过程,能说出本章的知识要点及其联系,体会方程是刻画现实世界的有效数学模型;2.通过解一元一次方程,能说出解一元一次方程的一般步骤以及每一步的依据,发展有条理地思考与表达的能力,提高运算能力;3.会判断一个数是否是方程的解,能列方程解决实际问题,会判断方程的解是否符合要求,体验数学与生活的联系.重点解一元一次方程难点正确列出一元一次方程教学用具PPT教学环节说明二次备课课程讲第一环节情景引入《一元一次方程》这一章我们已经学完了,那么本章学了授 哪些内容?知识要点是什么?学习每一个知识要点时需要注意哪些问题?带着这些疑问我们这节课进行回顾与思考(教师板书)。
第二环节 知识梳理(预计10分钟)学生通过思考与解答下列问题梳理本章知识,教师有目的地辅导个别学生(学困生),还可以参与同学们的交流讨论,为学生答疑解惑.1.本章所学习的一元一次方程的定义、解法以及应用与小学学过的方程知识有怎样的联系?2.等式基本性质的内容是什么?你能用含有字母的式子表示吗?3.解下面两个方程,思考解一元一次方程的一般步骤及每一步的依据。
(1)12(4+x )=3; (2)21132x x +--=。
北师大版七年级上册第五章一元一次方程章节复习回顾与反思教学设计一、教学目标知识与技能:1、一元一次方程的概念、解的定义、等式的性质等基本知识的灵活应用。
2、掌握解方程的基本步骤,能根据方程的特点灵活应用解方程的基本步骤。
3、能对实际应用问题进行正确地分析,从而正确解决应用题。
过程与方法:掌握解决有关基本知识点的问题的方法是:牢牢抓住概念、定义、性质等基本知识的特征去解决。
能对实际应用问题进行分析,从而正确解决应用题。
正确理解并应用整体思想、数形结合思想、分类思想去解决问题。
情感与态度:借助技术手段还课堂于学生,进行差异化教学让学生积极主动参与数学的学,体会学生自己才是学习的主体感受团队的巨大力量,体验成功的喜悦。
激发学习数学的热情,从而学会有用的数学。
二、教学重难点教学重点:1、根据方程的具体特点灵活应用解方程的基本步骤。
2、能对实际应用问题进行分析,找出等量关系,列出方程,从而正确解决应用题。
3、整体思想、数形结合思想、分类思想在解决问题中的应用。
教学难点:1、对实际应用问题进行分析,找出等量关系,列出方程,从而正确解决应用题。
2、整体思想、数形结合思想、分类思想在解决问题中的应用。
三、教学过程:(一)揭示课题,展示知识思维导图1.展示线上前测数据,点评学生完成情况,出示本章思维导图。
2.出示学习目标,提出学习要求。
设计意图:学生已经学完了全章的知识,使学生对全章知识有一个全面认识和理解,理解数学方法、数学思想的应用,在交流讨论中小组每个成员互相补充,对全章知识进行归纳,知识进行联系,学生在交流讨论展示中成长,学会相互帮助,使他们养成学后归纳反思的良好习惯。
导学案分四个展示一个思考,并提出了一些小问题,便于引导学生思考。
应用变式题开拓学生思维,提升学生能力。
(二)小组展示,智慧闯关 【知识点1:认识一元一次方程】定义:只含有一个 , , 的次数都是1,这样的方程叫做一元一次方程.方程的解:使方程 ,叫做方程的解 智慧闯关一1.下列方程是一元一次方程的是( ) A 、42=-x x B 、12=-y x C 、12=x D 、21=x2.已知等式021=+-m x 是关于x 的一元一次方程,则=m3.方程12-=-x a x 的解是2=x ,则a 等于 ( ) A 、1- B 、1 C 、0 D 、 2【总结升华】解答这类问题,一定要严格按照一元一次方程的定义【知识点2:等式的性质】等式的性质1:符号语言:如果a =b ,那么 ;等式的性质2: 如果a =b ,那么 ;如果a =b ,那么a c= .智慧闯关二:1.在等式523=+-a 的两边都 ,得到等式33=-a ,这是根据2.若a b =,则①1133a b -=-;②1134a b =;③3344a b -=-;④3131a b -=-中,正确的有( ) (A)1个 (B)2个 (C)3个 (D)4个3.中央电视台套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于( )个正方体的重量.A.2B.3C.4D.54.发布线上练习基础题,及时进行数据反馈。
《第五章 一元一次方程》回顾与思考 教案教学目标:1、知识与技能:复习本章的知识要点及其联系;巩固并熟练掌握一元一次方程的解法;较熟练地列出一元一次方程解应用题2、过程与方法:经历回忆梳理知识体系3、情感态度价值观:提高归纳概括能力,形成反思意识。
教学重点:一元一次方程的解法及应用教学难点:依据相等关系准确地列出一元一次方程教学形式:合作交流,师生共析教学过程:一、 复习提问:1、 你学完本章后有何收获?(学习一元一次方程的解法及应用)2、 本章主要学习了哪些知识?(一元一次方程的意义、解法、应用)3、 什么叫一元一次方程?什么叫一元一次方程的解? 强调:一个未知数,最高次数一次。
1x+2=0 不是一元一次方程。
自觉养成检验的习惯 4、等式的基本性质 若y x =,则 (1)c y c x +=+(c 为一代数式)(2)c y c x -=-(c 为一代数式)(3)cy cx =(c 为一数)、(4)cy c x =(c 为一数,且0≠c ) 5、叙述一元一次方程的解法步骤及每一个解题步骤应注意什么?去分母:不漏乘加括号去括号:注意分配;括号前是负号时要变号移项: 注意要变号合并同类项:系数化“1”:注意约分和不要丢“—”号6、 列方程解应用题的步骤有哪些?关键是什么?审题:分析题意,找出题中的数量关系及其关系;设元:选择一个适当的未知数用字母表示(例如x ); 列方程:根据相等关系列出方程; 解方程:求出未知数的值;检验:检验求得的值是否正确和符合实际情形,并写出答案.关键:正确审清题意,找准“等量关系”二、回顾、思考所学知识:1、请你举一个生活中的实例,并运用一元一次方程解决它。
2、在列方程解决实际问题的过程中,你认为最关键的是什么?有无比较可行的办法?3、你是如何解一元一次方程的?举一个例子说明解方程的步骤?再举例说明解方程的步骤并不是一呈不变的。
4. 运用方程解决实际问题的一般过程5、在解决实际问题的过程中,你怎样判断一个方程的解是否符合要求?请举例说明。
第五章一元一次方程小结与复习教学目的:1.复习本章的知识要点及其联系;2.巩固并熟练掌握一元一次方程的解法;3.较熟练地列出一元一次方程解应用题教学重点:一元一次方程的解法及应用教学难点:依据相等关系准确地列出一元一次方程教学过程:一、复习提问:1.你学完本章后有何收获?(学习一元一次方程的解法及应用)2.本章主要学习了哪些知识?(一元一次方程的意义、解法、应用)3.什么叫一元一次方程?什么叫一元一次方程的解?强调:一个未知数,最高次数一次。
1x+2=0 不是一元一次方程。
自觉养成检验的习惯4.叙述一元一次方程的解法步骤及每一个解题步骤应注意什么?去分母:不漏乘加括号去括号:注意分配;括号前是负号时要变号移项:注意要变号5.列方程解应用题的步骤有哪些?关键是什么?审题:分析题意,找出题中的数量关系及其关系;设元:选择一个适当的未知数用字母表示(例如x);列方程:根据相等关系列出方程;解方程:求出未知数的值;检验:检验求得的值是否正确和符合实际情形,并写出答案.关键:正确审清题意,找准“等量关系”二、习题讲解:1.有关定义运用的习题(填空题)2.有关方程解的判断及运用(解与解法的结合)(填空选择题)3.解下列各方程:P195/复习题/知识技能第一题(1~8)4.列方程解应用题(只要求写出假设步骤并列出一元一次方程)P195/问题解决/第1~11题。
三、作业一、选择题(每小题3分,共30分)1.下列方程中,是一元一次方程的是()A.243x x -=B.0x =C.23x y +=D.11x x -= 2.(2013•福建晋江中考)已知关于x 的方程2x a --5=0的解是2x =-,则a 的值为( ) A .1 B .-1 C .9 D .-93.已知方程235x +=,则610x +等于( )A.15B.16C.17D.344.甲、乙两人练习赛跑,甲每秒跑7 m ,乙每秒跑6.5 m ,甲让乙先跑5 m ,设x s 后甲可追上乙,则下列四个方程中不正确的是( )A.7 6.55x x =+B.75 6.5x x +=C.(7 6.5)5x -=D.6.575x x =-5.如果三个正整数的比是1∶2∶4,它们的和是84,那么这三个数中最大的数是( )A.56B.48C.36D.126.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )A.赚16元B.赔16元C.不赚不赔D.无法确定7.已知21(35)m --有最大值,则关于x 的方程5432m x -=+的解是x =( )A.79B.97C.79-D.97- 8. 已知等式523+=b a ,则下列等式中不.成立的是( ) A.b a 253=- B.6213+=+b aC.f bf ac 523+=D.3532+=b a 9.若关于x 的方程042=-+a x 的解是2-=x ,则a 等于( )A.-8B.0C.2D.810.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:11222y y -=,怎么办呢?小明想了一想,便翻看书后答案,此方程的解是53y =-,于是很快就补好了这个常数,你能补出这个常数吗?它应是( )A.1B.2C.3D.4二、填空题(每小题3分,共24分)11. 若与互为相反数,则的值是 .12.如果关于x 的方程340x +=与方程3418x k +=是同解方程,则k = . 13.已知方程23252x x -+=-的解也是方程32x b -=的解,则b =_________. 14.已知方程233m x x -=+的解满足10x -=,则m ________.15.若52x +与29x -+互为相反数,则2x -的值为 .16.(2013•四川凉山中考)购买一本书,打八折比打九折少花2元钱,那么这本书的原价是 元.17.(四川自贡中考)某公路一侧原有路灯106盏,相邻两盏灯的距离为36 m ,为节约用电,现计划全部更换为新型节能灯,且相邻两盏灯的距离变为54 m ,则需更换新型节能灯 盏.18.当日历中同一行中相邻三个数的和为63,则这三个数分别为 .三、解答题(共46分)19.(12分)解下列方程:(1)10(1)5x -=;(2)7151322324x x x -++-=-; (3)2(2)3(41)9(1)y y y +--=-;(4)0.89 1.33511.20.20.3x x x --+-=. 20.(5分)m 为何值时,关于x 的方程4231x m x -=-的解是关于x 的方程23x x m =-的解的2倍?21.(5分)将一批工业最新动态信息输入管理储存网络,甲单独做需要6 h ,乙单独做需要4 h ,甲先做30 min ,然后甲、乙一起做,则甲、乙一起做还需要多长时间才能完成工作?22.(6分)有一列火车要以每分钟600 m 的速度过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥多5 s 时间,又知第二座铁桥的长度比第一座铁桥长度的2倍短50 m ,试求两座铁桥的长分别为多少?23.(6分)某生态食品加工厂收购了一批质量为10 000 kg 的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2 000 kg ,求粗加工的该种山货质量.24.(6分)植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,求两校各植树多少棵.25.(6分) 为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定吨数以下的收费标准相同,规定吨数以上的超过部分收费标准相同,以下是小明家15月份用水量和交费情况:月份 1 2 3 4 5 用水量(吨)810 11 15 18费用(元)16 2023 35 44根据表格中提供的信息,回答以下问题:(1)求出规定吨数和两种收费标准.(2)若小明家6月份用水20吨,则应缴多少元?(3)若小明家7月份缴水费29元,则7月份用水多少吨?参考答案一、选择题1.B 解析:243x x -=中,未知数的次数是2,所以不是一元一次方程;23x y +=中,有两个未知数,所以不是一元一次方程;11x x -=不是整式方程.故选B.2.D 解析:将2x =-代入方程,得450a ---=,解得9a =-.故选D.3.B 解析:解方程235x +=,可得1x =.将1x =代入610x +,可得61061016x +=+=.4.B 解析:x s 后甲可追上乙,是指x s 时,甲跑的路程等于乙跑的路程,所以可列方程7 6.55x x =+,所以A 正确;将7 6.55x x =+移项、合并同类项,可得(7 6.5)5x -=,所以C 正确;将7 6.55x x =+移项,可得6.575x x =-,所以D 正确.故选B.5.B 解析:设这三个正整数分别为,2,4x x x .根据题意,得2484x x x ++=.解得12x =.所以这三个数中最大的数是448x =,故选B.6.B 解析:设此商人赚钱的那件衣服的进价为x 元,则x (1+25%)=120.解得96x =.设此商人赔钱的那件衣服进价为y 元,则y (1-25%)=120.解得160y =.所以他一件衣服赚了120-96=24(元),一件衣服赔了160-120=40(元),所以卖这两件衣服,总共赔了40-24=16(元).故选B.7.A 解析:由21(35)m --有最大值,可得350m -=,则53m =,554323x ⨯-=+,解得79x =.故选A. 8.C 解析:A 项可由移项得到;B 项可由方程两边都加上1得到;D 项可由方程两边同除以3得到,只有C 项是不一定成立的. 9. D 解析:将2-=x 代入方程得044=-+-a ,解得8=a .10.C 解析:设所缺的部分为,则x y y -=-21212, 把53y =-代入,可求得,故选C .二、填空题11. 5 解析:∵与互为相反数,∴ ,解得,则. 12.112解析:由340x +=可得43x =-.又因为340x +=与3418x k +=是同解方程,所以43x =-也是3418x k +=的解代入可求得112k =. 13.137 解析:由23252x x -+=-,得2420(515)x x -=-+.解得97x =. 所以9133277b =⨯-=. 14.-6或-12 解析:由10x -=,得1x =±.当1x =时,由233m x x -=+,得2313m -=+,解得6m =-; 当1x =-时,由233m x x -=+,得2313m --=-,解得12m =-. 综上可知,6m =-或12m =-.15.173- 解析:由题意可列方程52(29)x x +=--+,解得11.3x =- 所以11172233x -=--=-. 16.20 解析:设这本书的原价为x 元,由题意得0.9x -0.8x =2,解得x =20. 17.71 解析:设需更换的新型节能灯有x 盏,则54(x -1)=36×(106-1),54x =3 834,x =71,故需更换的新型节能灯有71盏.18.20,21,22 解析:设中间一个数为x ,则与它相邻的两个数分别为1,1x x -+.根据题意,得1163x x x -+++=.解得21x =.所以这三个数分别为20,21,22.三、解答题19.解:(1)10(1)5x -=.去括号,得10105x -=.移项,得1015x =.系数化为1,得32x =. (2)7151322324x x x -++-=-. 去分母,得4(71)6(51)243(32)x x x --+=-+.去括号,得2843062496x x x ---=--.移项,得2830924664x x x -+=-++.合并同类项,得728x =.系数化为1,得4x =.(3)2(2)3(41)9(1)y y y +--=-.去括号,得2412399y y y +-+=-.移项,得2129934y y y -+=--.合并同类项,得2y -=.系数化为1,得2y =-.(4)0.89 1.33511.20.20.3x x x --+-=. 去分母,得(0.89)6(1.33)451)x x x ---=+(.去括号,得0.897.818204x x x --+=+.移项,得9182047.80.8x x x -+-=+-.合并同类项,得1111x -=.系数化为1,得1x =-.20.解:关于x 的方程4231x m x -=-的解为21x m =-.关于x 的方程23x x m =-的解为3x m =.因为关于x 的方程4231x m x -=-的解是关于x 的方程23x x m =-的解的2倍,所以2123m m -=⨯,所以14m =-. 21.解:设甲、乙一起做还需要x h 才能完成工作. 根据题意,得111116264x ⎛⎫⨯++= ⎪⎝⎭.解得115x =. 115h=2 h 12 min. 答:甲、乙一起做还需要2 h 12 min 才能完成工作.22.解:设第一座铁桥的长为x m ,则第二座铁桥的长为(250)x -m ,过完第一座铁桥所需要的时间为600x min ,过完第二座铁桥所需要的时间为250600x -min . 依题意,可列出方程600x +560=250600x -.解得100x =. 所以250210050150x -=⨯-=.答:第一座铁桥长100 m ,第二座铁桥长150 m .23.解:设粗加工的该种山货质量为x kg.根据题意,得(32000)10000 x x ++=.解得2000 x =.答:粗加工的该种山货质量为2 000 kg .24.解:设励东中学植树x 棵.根据题意,得(23)834x x +-=,解得279x =.2322793555x -=⨯-=.答:励东中学植树279棵,海石中学植树555棵.25. 分析:(1)根据1、2月份可知,当每月用水量不超过10吨时,每吨收费2元.根据3月份的条件,用水11吨,其中10吨应交20元,超过的1吨收费3元,则超出10吨的部分每吨收费3元.(2)根据求出的收费标准,则用水20吨应缴水费就可以算出.(3)中存在的相等关系是:10吨的费用20元+超过部分的费用=29元.解:(1)从表格中可以看出规定吨数为不超过10吨(包括10吨),每吨2元,超过10吨的部分每吨3元.(2)小明家6月份的水费是:(元). (3)设小明家7月份用水吨,因为,所以. 由题意得,解得:. 故小明家7月份用水13吨.学习名言:1、学习必须与实干相结合。
北师版七(上)《第五章一元一次方程》教学设计第五章一元一次方程1认识一元一次方程第1课时一元一次方程1.理解并掌握一元一次方程、方程的解的概念.2.初步了解列方程的一般步骤,体会用方程解决实际问题的优越性.重点理解并掌握一元一次方程、方程的解的概念.难点列方程解决实际问题.一、情境导入课件出示问题:一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h 到达B地.A,B两地间的路程是多少?教师:请同学们用算术方法解决这个问题.学生独立思考后,与同桌交流,老师作简单讲解.教师:如果设A,B两地相距x km,你能分别用代数式表示客车和卡车从A 地到B地的行驶时间吗?学生思考后举手回答,教师点评并进一步讲解:匀速运动时,时间=路程速度.根据问题的条件,客车和卡车从A地到B地的行驶时间可以分别表示为x70h和x60h.因为客车比卡车早1 h到达B地,所以可以得到方程:x70-x60=1.教师:我们已经知道,方程是含有未知数的等式.上面等式中的x是未知数,这个等式是一个方程.以后我们将学习如何解方程求出未知数x,从而得出A,B两地间的路程为420 km.教师:比较这两种方法,用方程来解决问题有什么优点?学生相互交流,说出自己对方程的感受. 二、探究新知1.一元一次方程的概念课件出示问题:根据下列问题,设未知数并列出方程.(1)用一根长24 cm 的铁丝围成一个正方形,正方形的边长是多少? (2)一台计算机已使用1 700 h ,预计每个月再使用150 h ,经过几个月这台计算机的使用时间达到规定的检修时间2 450 h?(3)某校女生占全体学生人数的52%,比男生多80人,这个学校有多少学生? 学生完成后举手回答,教师点评总结:同学们在列方程时,一定要弄清方程两边的代数式所表示的意义,体会列方程所依据的等量关系.教师:上面各方程都含有一个未知数(元),未知数的指数都是1,这样的方程叫做一元一次方程.那么在实际问题中怎样列出方程呢? 引导学生总结出列方程的一般步骤:实际问题――→设未知数、列方程一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程是用数学知识解决实际问题的一种方法.2.方程的解教师:当x =6时,4x 的值为多少? 学生:24.教师:也就是说,x =6是方程4x =24的解.引导学生得出:解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解.三、练习巩固教材第131页“随堂练习”第1,2题. 四、小结1.通过本节课的学习,你有什么收获? 2.一元一次方程、方程的解的概念分别是什么?3.实际问题中列一元一次方程的步骤是什么?五、课外作业教材第132页习题5.1第1,3题.本节课的内容是一元一次方程的初步认识,主要使学生了解什么是方程,什么是一元一次方程;体会字母表示数的好处,体会从算式到方程是数学的一大进步;会将实际问题抽象为数学问题,通过找相等关系列方程解决问题.在教学过程中,通过新旧知识的联系,使学生温故而知新,并能从学习过的知识中得到拓展和延伸.同时结合生活实例,理解一元一次方程的概念.使学生感受数学的魅力,提高学习的兴趣.课堂上,营造宽松、和谐的课堂氛围,激活学生的思维,提高学生参与课堂的积极性.第2课时等式的基本性质1.理解等式的基本性质.2.会根据等式的基本性质解简单的方程.重点理解等式的基本性质.难点根据等式的基本性质解简单的方程.一、复习导入问题1:什么叫一元一次方程?问题2:什么叫方程的解?问题3:什么叫等式?学生回答,教师点评.二、探究新知教师:像m+n=n+m,x+2x=3x,3×3+1=5×2等都是等式.下面,我们通过实验一起来探究等式的性质.(1)教师演示:天平两边分别放入一个铁球和砝码,天平平衡,再在两边都加上相同的木块,天平仍平衡,再拿掉木块天平仍平衡.教师:如果我们把天平看成是等式,会得到什么结论呢?学生小组讨论,合作交流.教师总结得出等式的性质1:等式两边同时加(或减)同一个代数式,所得结果仍是等式.(2)教师演示:天平两边各放入一个小球和砝码,天平平衡,把两边小球与砝码的数量都变成原来的3倍,天平仍平衡.再将两边小球与砝码的数量还原,天平仍平衡.教师:如果我们把天平看成是等式,那么又有什么结论呢?引导学生得出等式的性质2:等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式.三、举例分析例1(课件出示教材第133页例1)要求学生独立完成后汇报答案,教师点评.例2(课件出示教材第133页例2)要求学生独立完成后汇报答案,教师点评.四、练习巩固教材第133页“随堂练习”第1,2题.五、小结1.通过本节课的学习,你有什么收获?2.等式的基本性质是什么?3.如何用等式的基本性质解方程?六、课外作业教材第134页习题5.2第1~3题.本节课的学习内容是等式的性质,是学生在刚刚认识了等式与方程的基础上进行教学的.它是系统学习方程的开始,是解方程的基础和依据.其核心思想是构建等量关系的数学模型.本节课的学习是在学生实验的基础上,引导学生通过比较,发现规律,掌握等式的基本性质,并为今后运用等式的基本性质解方程奠定基础.课堂上,让学生观察实验,提高学生的兴趣.通过让学生合作交流,培养学生的团队合作精神.2求解一元一次方程第1课时移项解一元一次方程1.掌握移项变号的基本原则.2.用移项解一元一次方程.重点移项法则及其应用.难点理解移项的同时必须变号.一、复习导入问题1:什么是一元一次方程?问题2:等式的基本性质是什么?学生举手回答,教师引入新课.二、探究新知教师:你会解方程3x+20=4x-25吗?引导学生思考:方程3x+20=4x-25的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25),怎样才能使它向x=a(常数)的形式转化呢?要求学生思考后举手回答,教师点评.教师:上述演变过程中,方程的哪些项改变了在原方程中的位置?怎样变的?改变的项有什么变化?学生思考后举手回答,教师点评,并进一步讲解:把原方程的某项改变符号后,从方程的一边移到另一边,这种变形叫移项.课件出示问题:下列移项是否正确,请说明理由.(1)6+x=8移项,得x=8+6;(2)3x=8-2x移项,得3x+2x=-8;(3)5x-2=3x+7移项,得5x+3x=7+2.要求学生认真观察找出错误,并说明理由,教师点评.课件出示练习:将下列方程化为ax=b的形式.(1)2x-3=6;(2)5x=3x-1;(3)2.4y+2=-2y;(4)8-5x=x+2.学生完成后举手回答,教师点评,并进一步讲解:①移动的项要改变符号;②为了方便计算,移项通常是将未知项移到方程的左边,常数项移到方程的右边,使方程化为ax=b的形式.三、举例分析例1(课件出示教材第135页例1)要求学生独立完成并思考:(1)移项的根据是什么?(2)解方程中“移项”起了什么作用?学生汇报答案,教师点评.例2(课件出示教材第135页例2)指名板演,教师巡视指导,集体订正,教师再次强调移项时符号的变化.四、练习巩固教材第136页“随堂练习”.五、小结1.通过本节课的学习,你有什么收获?2.什么叫移项?3.移项时应注意什么问题?六、课外作业教材第136页习题5.3第1,3题.本节课主要内容是解一元一次方程的重要步骤——移项.在教学过程中,学生通过观察、讨论,归纳出移项的定义,体现了学生的主体地位.课堂上,教师通过讲练结合,使学生更好地掌握移项的法则.学生对移项的掌握比较牢固,但移项时要“变号”这个问题,个别学生掌握得不够扎实,不能灵活应用,需要加强练习.在用移项解方程的过程中,教师要逐步渗透数学中变未知为已知的重要数学思想.第2课时去括号解一元一次方程1.理解并掌握解含有括号的一元一次方程的方法.2.能用多种方法灵活地解一元一次方程.重点含括号的一元一次方程的解法.难点结合方程的特点选择不同的方法解方程,并解释解法的合理性.一、复习导入问题1:什么叫移项?问题2:用移项法解下列方程:(1)2x-2=3x+3;(2)-3x+5=4x+2.学生举手回答,教师讲评.二、探究新知1.去括号解一元一次方程课件出示:解方程:6x+6(x-2 000)=150 000.教师:如何解这个方程呢?学生思考后回答,教师讲评.教师:如果去括号,就能简化方程的形式,那么我们一起来解这个方程(教师边讲解,边板书).6x+6(x-2 000)=150 000解:去括号,得6x+6x-12 000 =150 000.移项,得6x+6x =150 000+12 000.合并同类项,得12x =162 000.方程两边同除以12,得x =13 500.教师:我们来试一试解下面的方程(课件出示).(1)-3(x-5)=6;(2)2(3-x)=9;(3)-2(x-1)=4.学生完成后汇报答案,教师点评并引导学生总结出去括号解一元一次方程的步骤:①去括号;②移项;③合并同类项;④系数化为1.强调:括号前是“+”号,去括号时,不改变符号;括号前是“-”号,去括号时,要改变符号.2.去括号解一元一次方程的应用课件出示:一艘船从甲码头到乙码头顺流行驶,用了2 h;从乙码头返回甲码头逆流行驶,用了2.5 h.已知水流的速度是3 km/h,求船在静水中的速度.教师:如果设船在静水中的速度为x km/h,船顺流的速度为多少?学生:(x+3)km/h.教师:船逆流的速度为多少?学生:(x-3)km/h.教师:这个方程的等量关系是什么?学生:往返的路程相等.师生共同探讨,列出方程:2(x+3)=2.5(x-3).学生完成解方程,指名板演,集体订正.三、举例分析例1(课件出示教材第137页例3)要求学生完成后汇报答案,教师点评.例2(课件出示教材第137页例4)要求学生用两种方法解答,并写出解题过程,引导学生比较这两种方法的区别与联系.四、练习巩固教材第138页“随堂练习”.五、小结1.通过本节课的学习,你有什么收获?2.如何去括号解一元一次方程?六、课外作业教材第138页习题5.4第1~3题.本节课主要内容是解一元一次方程的重要步骤——去括号.在教学过程中,学生通过思考、讨论、练习,归纳出去括号解一元一次方程的步骤,体现了学生的主体地位,培养了学生的自主学习能力.课堂上,教师通过讲练结合,使学生熟悉去括号解一元一次方程的步骤及其注意事项.通过分析具体问题中的数量关系,使学生了解到解方程是运用方程解决实际问题的需要.第3课时去分母解一元一次方程1.会解含有分母的一元一次方程.2.掌握解一元一次方程的基本步骤和方法,能根据方程的特点灵活地选择解法.重点解一元一次方程的基本步骤和方法.难点含有分母的一元一次方程的解法.一、复习导入问题1:什么是移项法则?什么是去括号法则?学生举手回答,教师点评.问题2:解方程:(1)2(x+15)=x-10;(2)4(x+7)=2(x-1).学生独立完成,指名板演,集体订正.二、探究新知课件出示问题:一个数与它的三分之二、它的一半、它的七分之一加起来的和是33,求这个数.教师:设这个数为x,怎样列出方程呢?学生:23x+12x+17x+x=33.教师:如何解这个方程呢?解这个方程的关键是什么?依据是什么?要求学生合作探究,并与同桌交流自己的解法是否正确.教师指名学生回答.教师:根据等式的基本性质,在方程两边同乘各分母的最小公倍数42,即可将方程化为熟悉的类型.教师边讲解板书:23x+12x+17x+x=33.去分母,得28x+21x+6x+42x =1 386. 合并同类项得97x =1 386.系数化为1得,x =1 386 97.课件出示练习:解方程:(3x+1)2-2=(3x-2)10-(2x+3)5.学生独立完成,写出解题过程,教师点评并引导学生总结解一元一次方程的一般步骤:(1)去分母(方程两边同乘各分母的最小公倍数);(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.三、举例分析例1(课件出示教材第138页例5)要求学生用两种方法解答并写出解题过程,教师点评.例2(课件出示教材第139页例6)要求学生独立完成后汇报答案,教师点评.四、练习巩固教材第139页“随堂练习”.五、小结1.通过本节课的学习,你有什么收获?2.如何解含有分母的一元一次方程?3.解一元一次方程的步骤有哪些?六、课外作业教材第140页习题5.5第1~3题.本节课主要内容是解一元一次方程的重要步骤——去分母,及解一元一次方程.在教学过程中,学生通过思考、讨论、练习,归纳出去分母的依据和解一元一次方程的步骤,体现了学生的主体地位,培养了学生的自主学习能力.课堂上,通过讲练结合,使学生熟悉解一元一次方程的步骤及其注意事项.强调根据具体情况选择解一元一次方程的方法,培养学生具体问题具体分析的能力.3应用一元一次方程——水箱变高了1.通过分析图形问题中的等量关系,建立方程解决问题.2.进一步了解一元一次方程在解决实际问题中的应用.重点列一元一次方程解简单的图形变化的实际问题.难点从复杂问题中寻找等量关系.一、情境导入1.课件出示两瓶矿泉水(容量一样,一瓶短而宽,另一瓶长而窄).教师:哪瓶矿泉水多?为什么?2.教师演示:先用一块橡皮泥捏出一个“瘦长”的圆柱体,然后再让这个“瘦长”的圆柱“变矮”,变成一个“又矮又胖”的圆柱.教师:在刚才操作的过程中,圆柱由“高”变“低”,圆柱的底面直径变了没有?圆柱的高呢?在这个变化过程中,是否有不变的量?是什么没变?学生思考后回答问题,教师点评.二、探究新知课件出示教材第141页图5-1,提出问题:某居民楼顶有一个底面直径和高均为4 m的圆柱形储水箱.现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由4 m减少为3.2 m.那么在容积不变的前提下,水箱的高度由原先的4 m变为多少米?教师:这道题该如何解答呢?其中的等量关系是什么?引导学生找出等量关系:旧水箱的容积=新水箱的容积.教师:设水箱的高度为x,请同学们把下表补充完整.学生完成后举手汇报答案,教师点评.教师:根据等量关系,怎样列出方程?解得x的值是多少?学生列出方程并解答,教师点评.课件出示实验题:一个圆柱形玻璃杯中装满了水,把杯中的水倒入一个长方体形状的可盛水的盒子里(玻璃杯的容积大于长方体的容积),当盒子装满水时,玻璃杯中的水下降了多少?要求学生用玻璃杯按要求分组实验后,全班交流各组得到的结果及解决问题的方法、步骤,并派小组代表进行操作示范、讲解.教师巡视课堂,指导、参与学生的实验.三、举例分析例(课件出示教材第141页例题)要求学生分四人小组讨论解决问题,并根据计算的结果画出各自的长方形(或正方形).最后,抽派小组代表阐述解题的步骤以及思路,并展示自己所在的小组所画的长方形(或正方形).四、练习巩固教材第142页“随堂练习”.五、小结1.通过本节课的学习,你有什么收获?2.列一元一次方程解实际问题时,关键是什么?六、课外作业教材第144页习题5.6第1~3题.本节课是对前面所学的一元一次方程的一个应用——水箱变高了.让数学与几何问题相结合,使学生学以致用.在课堂上,让学生观察水箱由“矮”变“高”的变化过程,引导学生找出问题中的等量关系,列出方程,并解方程,使问题得到解决.通过学生自己动手操作实验、计算、验证,调动学生学习的积极性和主动性,充分体现“自主、合作、交流、探究”的新课程理念.观察、演示、分析问题中各个量之间的关系使学生初步体验把实际问题转化为数学问题的“化归”过程.4应用一元一次方程——打折销售1.理解成本、售价、利润、利润率之间的关系.2.会列一元一次方程解决有关商品打折销售的问题.重点理解售价、成本、利润、利润率之间的关系.难点列一元一次方程解决有关商品打折销售的问题.一、复习导入教师:列方程解决实际问题的关键是什么呢?学生回答,教师点评.教师:今天,我们学习一元一次方程的一个应用——打折销售.二、探究新知课件出示问题:商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%;另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?教师提示:如果进价大于售价就亏损,反之就盈利.要求学生列出方程,写出解题过程.教师点评,并讲解:本题中,设盈利25%的那件衣服的进价是x元,它的利润就是0.25x元,根据进价+利润=售价,列出方程x+0.25x=60.由此得x=48.类似地,可以设另一件衣服的进价为y元,它的利润是-0.25y元,列出方程y-0.25y=60.由此得y=80.两件衣服的进价是x+y=128元,而两件衣服的售价是60+60=120元,进价大于售价,由此可知卖这两件衣服总共亏损8元.课件出示练习:在商品市场经常可以听到小贩的叫卖声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买啊!”“能不能再便宜2元?”如果小贩真的让利2元卖了,他还能获利20%,求一个玩具赛车的进价是多少元?要求学生独立思考后列出方程汇报答案,教师点评.教师:在打折销售问题中的利润、利润率、成本、售价之间有怎样的关系?引导学生得出等量关系:①利润=售价-成本;②利润率=利润成本×100%.教师:通过上面的讲解和练习,你能总结出列一元一次方程解决实际问题的步骤吗?引导学生总结:①分析问题,找出等量关系式;②列出方程,求出方程的解;③验证方程的解是否合理.三、举例分析例(课件出示教材第146页例题)要求学生独立完成后汇报答案,教师点评.四、练习巩固1.教材第146页“随堂练习”.2.某服装店以135元的价格卖出两件衣服,按成本计算,第一件盈利25%,第二件亏损25%,则该商店卖这两件衣服总体上是赚了,还是亏了?这两件衣服的成本价会一样吗?算一算.五、小结1.通过本节课的学习,你有什么收获?2.成本、售价、利润、利润率之间有怎样的关系?3.列一元一次方程解实际问题的步骤有哪些?六、课外作业教材第146页习题5.7第1~4题.本节课是对前面所学的一元一次方程的一个应用——打折销售.对于打折问题,学生在小学阶段已有所接触和认识,本节课是进一步地延伸此知识.在教学过程中,通过由具体实例的分析、思考与合作学习的过程培养学生理论联系实际的辩证唯物主义思想以及善于分析问题、利用知识解决实际问题的良好学习习惯.根据具体问题中的数量关系,形成方程的模型,初步培养学生利用方程的观点认识现实世界的意识和能力.通过分组合作学习的活动,让学生学会在活动中与他人合作,并能与他人交流思维的过程与结果.调动学生学习的积极性和主动性,充分体现“自主、合作、交流、探究”的新课程理念.5应用一元一次方程——“希望工程”义演1.学会列方程解决实际问题,掌握用一元一次方程解决实际问题的一般步骤.2.借助表格分析复杂问题中的数量关系,建立方程模型解决实际问题.重点正确分析实际问题的题意,列出一元一次方程.难点探究解题方法的多样性.一、情境导入教师介绍希望工程的相关知识:希望工程是由中国青少年发展基金会于1989年10月发起并组织实施的一项社会公益事业. 它的宗旨:根据政府关于多渠道筹集教育经费的方针,从社会集资,建立希望工程基金,以民间救助方式,资助贫困地区失学儿童,继续学业,改善贫困地区的办学条件,促进贫困地区基础教育事业的发展. 希望工程的实施范围是:我国农村贫困地区,重点是国家省级贫困县.目前希望工程工作的重点是:我国的西部地区. 希望工程的目标是:改善办学条件,消除失学现象,配合政府完成普及九年制义务教育任务.自1989年推出希望工程至1999年,10年来希望工程共救助失学儿童230万名,援建希望小学8 000所,接受海内外捐款18亿元,影响遍及海内外,成为当今中国最著名、最具影响力的公益事业.二、探究新知课件出示教材第147页情境图,提出问题:某文艺团体为“希望工程”募捐组织了一场义演,共售出1 000张票,筹得票款6 950元.成人票与学生票各售出多少张?教师:这道题中包含哪些等量关系?学生1:售出的票包括成人票和学生票,因此有:成人票数+学生票数=1 000张.①学生2:所得的票款包括成人票款和学生票款,因此有:成人票款+学生票款=6 950元.②教师:设售出的学生票为x张,请同学们把下表补充完整.引导学生根据表格列出方程5x+8(1 000-x)=6 950,解得x=350,所以售出成人票650张,学生票350张.教师:同学们还有其他的方法吗?学生:设所得的学生票款为y元,则可得y5+6 950-y8=1 000,解得y=1 750,所以售出学生票数为17505=350,成人票数为650张.教师:如果票价不变,那么售出1 000张票所得票款可能是6 930元吗?为什么?学生小组内讨论,派代表回答,教师讲评.课件出示练习:某文艺团体为“希望工程”募捐义演,全价票为每张18元,学生享受半价.某场演出共售出966张票,收入15 480元,这场演出共售出学生票多少张?学生独立解答,教师巡视,对有疑问的学生予以帮助.指名学生汇报答案,教师点评.并引导学生总结运用方程解决实际问题的一般步骤:(1)审题:分析题意,找出题中的数量及其关系;(2)设元:选择一个适当的未知数用字母表示(如x);(3)列方程:根据等量关系列出方程;(4)解方程:求出未知数的值;(5)检验:检查求得的值是否正确和符合实际情况,并写出答案.三、练习巩固1.教材第149页“随堂练习”.2.某商店积压了100件某种商品,为使这批商品尽快卖完,该商店采取了如下销售方案,将价格提高到原来的2.5倍,再做3次降价处理:第1次降价30%,第2次又降价30%,第3次再降价30%,3次降价销售的结果如下表所示:(1)求第3(2)该商品按新销售方法销售,相比原价全部卖完,哪一种方案更盈利?四、小结1.通过本节课的学习,你有什么收获?2.用方程解决实际问题的一般步骤是什么?五、课外作业教材第149页习题5.8第1~3题.本节课是对前面所学的一元一次方程的一个应用——“希望工程”义演.在教学过程中,通过由具体实例的分析、思考与合作学习的过程,培养学生理论联系实际的辩证唯物主义思想以及善于分析问题、利用知识解决实际问题的良好学习习惯.培养学生的数学兴趣,协助学生发展逻辑思维的能力,并能应用数学解决日常生活中的问题.借助表格分析复杂问题中的数量关系和等量关系,体会间接设未知数的解题思路,从而建立方程解决实际问题,并要求学生进一步明确必须检验方程的解是否符合题意.培养学生有始有终的习惯.6应用一元一次方程——追赶小明1.通过画线段图分析追及问题中的数量关系,找出等量关系.2.进一步培养学生分析问题、解决问题的能力.3.学会用一元一次方程解决复杂的实际问题.重点找出追及问题中的等量关系,列出方程,解决实际问题.难点通过画线段图找等量关系.一、复习导入问题1:以前学习的行程问题中,路程、速度、时间三者间有什么关系?问题2:若小明每秒跑4 m,那么他5 s能跑多少米?。
新北师大版七年级数学上册一元一次方程回首与思虑教课方案教课目标:1、复习本章的知识重点及其联系;2、稳固并娴熟掌握一元一次方程的解法;3、较娴熟地列出一元一次方程解应用题教课重点:一元一次方程的解法及应用教课难点:依照相等关系正确地列出一元一次方程教课过程:一、复习发问:1.你学完本章后有何收获?(学习一元一次方程的解法及应用)2.本章主要学习了哪些知识?(一元一次方程的意义、解法、应用)3.什么叫一元一次方程?什么叫一元一次方程的解?1重申:一个未知数,最高次数一次。
x +2=0 不是一元一次方程。
自觉养成查验的习惯4.表达一元一次方程的解法步骤及每一个解题步骤应注意什么?去分母:不漏乘加括号去括号:注意分派;括号前是负号时要变号移项:注意要变号归并同类项:系数化“ 1”:注意约分和不要丢“—”号5.列方程解应用题的步骤有哪些?重点是什么?审题:剖析题意,找出题中的数目关系及其关系;设元:选择一个适合的未知数用字母表示(比如 x);列方程:依据相等关系列出方程;解方程:求出未知数的值;查验:查验求得的值能否正确和切合实质情况,并写出答案.重点:正确审清题意 , 找准“等量关系”二、回首、思虑所学知识:1、请你举一个生活中的实例,并运用一元一次方程解决它。
2、在列方程解决实质问题的过程中,你以为最重点的是什么?有非常较可行的方法?3、你是如何解一元一次方程的?举一个例子说明解方程的步骤?再举例说明解方程的步骤其实不是一呈不变的。
4、在解决实质问题的过程中,你如何判断一个方程的解能否切合要求?请举例说明。
第一审清题意,抓住问题中的重点字、词,常常一个实质问题的相等关系就在一些重点字、词上。
我们还可借助于“线段图”和“列表格”来找寻相等关系。
比如像行程问题借助于“线段图”能够使相等关系清楚可见。
归纳、归纳本章的知识框架图。
含义 问题情况一元一次方程解方程列方程解应用问题三、随堂测试:1、写出一个方程,使它的解为:(1)7(2)0(3)22、解方程 |4x+5|=233、已知 -1 是对于 x 的方程 4x m 7 0 的解,求代数式 6 2m 的值。
第五章 一元一次方程小结与复习一、等式的概念和性质1.等式的概念,用等号“=”来表示相等关系的式子,叫做等式.在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则. 2.等式的类型(1)恒等式:无论用什么数值代替等式中的字母,等式总能成立.如:数字算式123+=. (2)条件等式:只能用某些数值代替等式中的字母,等式才能成立.方程56x +=需要1x =才成立.(3)矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立.如125+=,11x x +=-.注意:等式由代数式构成,但不是代数式.代数式没有等号.3.等式的性质等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.若a b =,则a m b m ±=±;等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.若a b =,则am bm =,a b mm=(0)m ≠.注意:(1)在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边. (2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同.(3)在等式变形中,以下两个性质也经常用到:①等式具有对称性,即:如果a b =,那么b a =.②等式具有传递性,即:如果a b =,b c =,那么a c =. 二、方程的相关概念1.方程,含有未知数的等式叫作方程.注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母.二者缺一不可. 2.方程的次和元方程中未知数的最高次数称为方程的次,方程中不同未知数的个数称为元. 3.方程的已知数和未知数已知数:一般是具体的数值,如50x +=中(x 的系数是1,是已知数.但可以不说).5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上有a 、b 、c 、m 、n 等表示.未知数:是指要求的数,未知数通常用x 、y 、z 等字母表示.如:关于x 、y 的方程2ax by c -=中,a 、2b -、c 是已知数,x 、y 是未知数.4.方程的解使方程左、右两边相等的未知数的值,叫做方程的解. 5.解方程求得方程的解的过程.注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程.6.方程解的检验要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边数值相等,那么这个数就是方程的解,否则就不是. 三、一元一次方程的定义1.一元一次方程的概念只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数. 2.一元一次方程的形式标准形式:0ax b +=(其中0a ≠,a ,b 是已知数)的形式叫一元一次方程的标准形式.最简形式:方程ax b =(0a ≠,a ,b 为已知数)叫一元一次方程的最简形式.注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证.如方程22216x x x ++=-是一元一次方程.如果不变形,直接判断就出会现错误.(2)方程ax b =与方程(0)ax b a =≠是不同的,方程ax b =的解需要分类讨论完成. 四、一元一次方程的解法 1.解一元一次方程的一般步骤(1)去分母:在方程的两边都乘以各分母的最小公倍数.注意:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号.(2)去括号:一般地,先去小括号,再去中括号,最后去大括号.注意:不要漏乘括号里的项,不要弄错符号.(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边.注意:①移项要变号;②不要丢项.(4)合并同类项:把方程化成ax b =的形式.注意:字母和其指数不变.(5)系数化为1:在方程的两边都除以未知数的系数a (0a ≠),得到方程的解b x a=.注意:不要把分子、分母搞颠倒.2.解一元一次方程常用的方法技巧解一元一次方程常用的方法技巧有:整体思想、换元法、裂项、拆添项以及运用分式的恒等变形等. 3.关于x 的方程 ax b 解的情况⑴当a 0时,x ⑵当a,b 0时,方程有无数多个解⑶当a 0,b 0时,方程无解练习1、等式的概念和性质 列说法不正确的是( )A .等式两边都加上一个数或一个等式,所得结果仍是等式.B .等式两边都乘以一个数,所得结果仍是等式.C .等式两边都除以一个数,所得结果仍是等式.D .一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式. 2.根据等式的性质填空. (1)4a b =-,则a b =+; (2)359x -=,则39x =+;(3)683x y =+,则x =; (4)122x y =+,则x =.练习2、方程的相关概念1.列各式中,哪些是等式?哪些是代数式,哪些是方程?①34a +;②28x y +=;③532-=;④1x y ->;⑤61x x --;⑥; ⑦230y y +=;⑧2223a a -;⑨32a a <-. 2.判断题.(1)所有的方程一定是等式. ( ) (2)所有的等式一定是方程. ( ) (3)241x x -+是方程. ( ) (4)51x -不是方程.( ) (5)78x x =不是等式,因为7x 与8x 不是相等关系. ( ) (6)55=是等式,也是方程.( )(7)“某数的3倍与6的差”的含义是36x -,它是一个代数式,而不是方程. ( ) 练习3、一元一次方程的定义1.在下列方程中哪些是一元一次方程?哪些不是?说明理由:(1)3x+5=12; (2)31+x +2x =5; (3)2x+y=3;(4)y 2+5y -6=0;(5)x 3-x =2.2.已知2(1)(1)30k x k x -+-+=是关于x 的一元一次方程,求k 的值.()7421=+--m x m 是关于x 的一元一次方程,则m=_________4.已知方程1(2)40a a x --+=是一元一次方程,则a =;x =.练习4、一元一次方程的解与解法1)一元一次方程的解 一)、根据方程解的具体数值来确定x 的方程a xx -=+332的解是2x =-,则代数式21aa -的值是_________。