热力学定律(一)
- 格式:pptx
- 大小:378.60 KB
- 文档页数:66
热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫ ⎝⎛∂∂+dp p H T⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=V T p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T VT S ⎪⎭⎫⎝⎛∂∂ C p =T p T S ⎪⎭⎫ ⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。
1.热力学第一定律热力学第一定律的主要内容,就是能量守恒原理。
能量可以在一物体与其他物体之间传递,可以从一种形式转化成另一种形式,但是不能无中生有,也不能自行消失。
而不同形式的能量在相互转化时永远是数量相当的。
这一原理,在现在看来似乎是顺理成章的,但他的建立却经历了许多失败和教训。
一百多年前西方工业革命,发明了蒸汽机,人们对改进蒸汽机产生了浓厚的兴趣。
总想造成不供能量或者少供能量而多做功的机器,曾兴起过制造“第一类永动机”的热潮。
所谓第一类永动机就是不需供给热量,不需消耗燃料而能不断循环做工的机器。
设计方案之多,但是成千上万份的设计中,没有一个能实现的。
人们从这类经验中逐渐认识到,能量是不能无中生有的,自生自灭的。
第一类永动机是不可能制成的,这就是能量守恒原理。
到了1840年,由焦耳和迈尔作了大量试验,测量了热和功转换过程中,消耗多少功会得到多少热,证明了热和机械功的转换具有严格的不变的当量关系。
想得到1J的机械功,一定要消耗0.239卡热,得到1卡热,一定要消耗4.184J的功,这就是著名的热功当量。
1cal = 4.1840J热功当量的测定试验,给能量守恒原理提供了科学依据,使这一原理得到了更为普遍的承认,牢牢的确立起来。
至今,无论是微观世界中物质的运动,还是宏观世界中的物质变化都无一例外的符合能量守恒原理。
把这一原理运用到宏观的热力学体系,就形成了热力学第一定律。
2.热力学第二定律能量守恒和转化定律就是热力学第一定律,或者说热力学第一定律是能量守恒和转化定律在热力学上的表现。
它指明热是物质运动的一种形式,物质系统从外界吸收的热量等于这个能的增加量和它对外所作的功的总和。
也就是说想制造一种不消耗任何能量就能永远作功的机器,即“第一种永动机”,是不可能的。
人们继续研究热机效率问题,试图从单一热源吸取能量去制作会永远作功的机器,这种机器并不违背能量守恒定律,只需将热源降温而利用其能量推动机器不断运转。
热力学第一定律的内容及公式
热力学第一定律是热力学很重要的定律,简称为第一定律。
热力学第一定律是物理和化学中最基本也是最重要的定律,概括地说,它指出了总热量是不可消失的,即能量守恒定律。
它是由德国物理学家莱布尼兹在1850年发现的。
热力学第一定律指出,内能系统内所有物质之间的总热量交换是不可消失的,即总热量守恒定律,在反应过程中能量不会消失,它只能以动能形式存在,也就是说,能量可以有很多形式存在,但是总量是不变的。
它可以用如下的公式来表示:
E=q+w
其中,E表示热力学第一定律定义的能量总量;q表示热量;w
表示功能。
热力学第一定律可以用来解释诸如内能的变化、热动力学中的功能过程、经典热力学定律的发展,以及熵的概念。
它的应用还可以普遍用于热力学和热工程的其他领域。
所有的能量转换都可以用热力学第一定律进行表述,即能量在某种形式变换到另一种形式的守恒定律。
比如,当将动能转化为功能,则q+w=E,即动能变为功能的过程中,能量总量E是不变的。
当功能转化为动能,则q-w=E,即功能变为动能的过程中,能量总量E也是不变的。
总之,热力学第一定律是一个重要的定律,它表明能量总量在任何过程中都是守恒的,它是对物理和化学中反应过程能量变化的最基
本的定律。
热力学第一定律解释了热力学和热工程中诸如内能的变化、热动力学中的功能过程、熵的性质及其变化的原理,在热力学和热工程的理论和应用方面有着重要的意义。
热力学第一定律的表达式热力学第一定律的表达式:ΔE=W+Q。
在热力学中,热力学第一定律通常表述为:热能和机械能在转化时,总能量保持不变。
其数学表达式为ΔE=W+Q,其中ΔE表示系统内能的改变,W表示系统对外所做的功,Q表示系统从外界吸收的热量。
这个定律表明,能量的转化和守恒定律是自然界的基本定律之一,它适用于任何与外界没有能量交换的孤立系统。
换句话说,在一个封闭系统中,能量的总量是恒定的,改变的只是能量的形式。
因此,热力学第一定律是能量守恒定律在热现象领域中的应用。
另外,对于一个封闭系统,如果系统内部没有发生化学反应或相变等过程,那么系统对外做的功等于系统从外界吸收的热量。
这是因为系统内能的改变量等于系统对外做的功和系统从外界吸收的热量之和。
值得注意的是,热力学第一定律也适用于非平衡态系统。
即使系统处于非平衡态,热力学第一定律仍然适用。
因此,它不仅是热力学的基石之一,也是整个物理学的基石之一。
为了更好地理解热力学第一定律,我们可以考虑一些具体的应用场景。
例如,在汽车发动机中,汽油燃烧产生的热能转化为汽车的动能和废气中的内能。
在这个过程中,系统内能的改变量等于系统对外做的功和系统从外界吸收的热量之和。
因此,根据热力学第一定律,我们可以计算出汽车发动机的效率,从而评估其能源利用效果。
此外,热力学第一定律还可以应用于电学、化学等领域。
例如,在电学中,当电流通过电阻时会产生热量,根据热力学第一定律可以计算出电阻产生的热量。
在化学中,反应热的计算也可以根据热力学第一定律来进行。
以下是一些具体例子,说明热力学第一定律的应用:1. 热电站:在热电站中,燃料燃烧产生的热能转化为蒸汽的机械能,再转化为电能。
根据热力学第一定律,热能被转化为机械能和电能,而总能量保持不变。
通过计算输入和输出的能量,我们可以评估热电站的效率。
2. 制冷机:制冷机是一种将热量从低温处转移到高温处的设备。
在制冷过程中,制冷剂在蒸发器中吸收热量并转化为气态,然后通过压缩机和冷凝器将热量释放到高温处。
热力学第一定律摩尔热容21()Q U U A U A =-+=∆+则有: — 热力学第一定律A QU 1U 2一、热力学第一定律热力学第一定律的实质就是包含热现象在内的能量守恒定律。
具有普适性,适用于一切系统,对固、液、气都成立;适用于一切过程,包括非平衡过程。
热力学第一定律是1942年迈耶提出来的,表明:系统从外界吸收的热量一部分用来增加自身的热力学能(内能),一部分用来对外界做功。
系统从状态1变化到状态2,内能从U1变为U2,对外作功A ,同时从外界吸收热量Q(1)定律中的热量、功和热力学能增量都是代数量,可正可负Q > 0 系统吸热 说明:规定:A > 0 表示系统对外正作功A<0 系统对外界作负功(或外界对系统做正功)Q <0 系统放热系统热力学能增加 系统热力学能减少0<U ∆0>U ∆(2)对任意元过程有: d d d Q U A=+V∆U= 0pA = QQ“第一类永动机” 不可能制成(3)循环过程:系统对外界所做的净功等于它从外界吸收的净热量第一类永动机:不用吸热就可以对外做功的机械循环过程:如果系统经过一系列变化又回到初始状态,这样的过程叫作循环过程。
是微小量,不是全微分,以示区别加横短线 d d Q A ,第一定律也可表述为:系统经过循环过程要做功而不吸热是 不可能的。
故放出热量为600J例:某一定量气体由状态a 沿路径m 变化到状态b ,吸热800J ,对外作功500J ,问气体内能改变了多少?如果气体沿路径n 由状态b 回到状态a ,外界对气体作功300J ,问气体放出多少热量?a b P VO m n bV aV对于路径n 有 = -300-300= -600J800500300b a amb amb U U U Q A J J J ∆=-=-=-=解: bna bna a b bnaQ U A U U A '=∆+=-+二、 气体的摩尔热容量比热: 单位质量物质温度升高 所吸收的热量,用 表示 K 1c 摩尔热容量:物质温度升高1度所吸收的热量,用 表示mol 1C cM TM QM T M M Q TQC mol mol mol====∆∆∆ν等体过程:2V mQ i C R T ν==∆,——定体摩尔热容量2iQ U R Tν=∆=∆,m V V Q C T ν=∆等体过程吸热:等压过程: ,22P mQ i C R T ν+==∆ ——定压摩尔热容量)(212T T R iU -=ν∆212121()()VV A PdV P V V R T T ν==-=-⎰212()2i Q U A R T T ν+=∆+=-等压过程吸热: ,m P P Q C Tν=∆,,P mV m C C R=+使 理想气体温度升高 经过等压过程比等体过程多吸收的热量,这一部分热量转化成等压过程气体对外界的功了 K 18.31R J =mol 1,2V mi C R =,22P m i C R+=⎪⎪⎪⎩⎪⎪⎪⎨⎧====)(33.168)(40.157)(67.135多双单 m m222p V i R RC i i C i Rγ++===,,比热容比:将表所列气体的热容量和γ值的理论值与实验值对比,可以看出单原子、双原子分子气体二者符合较好,而对于多原子分子气体二者有较大差别。
热力学第一定律热力学第一定律,也被称为能量守恒定律,是热力学基本定律之一。
它阐述了能量在物理系统中的守恒原理,即能量不会被创造或消灭,只会在不同形式之间转换或传递。
该定律在许多领域都有广泛的应用,包括工程、物理、化学等。
1. 定律的表述热力学第一定律可从不同的角度进行表述,以下是几种常见的表述方式:1.1 内能变化根据热力学第一定律,一个封闭系统内能的变化等于系统所吸收的热量与系统所做的功的代数和。
数学表达式如下:ΔU = Q + W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统所做的功。
1.2 能量守恒根据能量守恒定律,能量既不能被创造也不能被摧毁,只会在不同形式之间传递或转换。
能量的总量在一个封闭系统中保持不变。
2. 系统内能的变化系统内能的变化是热力学第一定律的核心内容之一。
系统内能的变化是由系统吸收或释放的热量以及系统所做的功决定的。
2.1 系统吸收的热量系统吸收的热量指的是系统从外界获得的热能。
当一个热源与系统接触时,能量会以热量的形式从热源传递到系统中。
系统吸收的热量可以引起系统内能的增加。
2.2 系统所做的功系统所做的功指的是系统对外界做的能量转移。
当系统对外界施加力并移动时,能量会以功的形式从系统传递到外界。
系统所做的功可以引起系统内能的减少。
3. 热力学第一定律的应用3.1 工程应用热力学第一定律在工程领域有着广泛的应用。
例如,在能源系统的设计与优化中,需要根据系统的能量转换过程,计算系统的内能变化和热功效率等参数,以提高能源利用效率。
3.2 物理学应用在物理学研究中,热力学第一定律通常用于分析热力学过程中的能量转化。
例如,在热力学循环中,通过计算各个环节的能量转换情况,可以确定工作物质的热效率,从而评估系统的性能。
3.3 化学反应在化学反应中,热力学第一定律对于研究反应的能量变化和平衡状态具有重要意义。
通过计算反应过程中释放或吸收的热量,可以确定反应的放热性或吸热性,并预测反应的发生与否。