1热力学第一定律1
- 格式:ppt
- 大小:3.27 MB
- 文档页数:63
热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫ ⎝⎛∂∂+dp p H T⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=V T p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T VT S ⎪⎭⎫⎝⎛∂∂ C p =T p T S ⎪⎭⎫ ⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。
热力学第一定律和第二定律热力学第一定律1. 内容:一般情况下,如果物体跟外界同时发生做功和热传递的过程,那么外界对物体做的功W,与物体从外界吸收的热量Q之和,等于物体的内能的增加量2. 数学表达式:W+Q=ΔU(1)Q取决于温度变化:温度升高,Q>0;温度降低,Q<0.(2)W取决于体积变化:V增大时,气体对外做功,W<0;V减小时,外界对气体做功,W>0.(3)特例:如果气体向真空扩散,那么W=0.(4)绝热过程Q=0,关键词是“绝热材料”或“变化迅速”。
3. 热力学第1定律的理解(1)做功改变物体的内能:外界对物体做功,物体内能增加;物体对外做功,物体内能减少。
在绝热过程,物体做多少功,改变多少内能。
(2)热传递改变物体的内能:外界向物体传递热量,即物体吸热,物体的内能增加;物体向外界传递热量,即物体放热,物体的内能减少。
传递多少热量,内能就改变多少。
(3)做功和热传递的实质,做功改变内能是能量的变化,用功的数值来度量;热传递改变内能是能量的转移,用热量来度量。
热力学第二定律1.热传导的方向性:热传导的过程可以自发地由高温物体向低温物体进行,但相反方向却不能自发地进行,即热传导具有方向性,是一个不可逆过程。
2.补充说明:(1)“自发地”过程就是不受外界干扰的条件下进行的自然过程;(2)热量可以自发地从高温物体向低温物体传递,却不能自发的从低温物体传向高温物体;(2)热力学第二定律的能量守恒表达式:ds≥δQ/T(3)热量可以从低温物体传向高温物体,必须有“外界的影响或帮助”,就是要由外界对其做功才能完成。
3.热力学第二定律的两种表述(1)克劳修斯表述:热量不能自发地从低温物体传向高温物体。
(2)开尔文表述:不可能从单一热源吸收热量,使之完全变为有用功,而不引起其他变化。
什么是热力学第一定律?热力学第一定律是热力学的基本原理之一,也被称为能量守恒定律。
它描述了能量在物质系统中的转化和守恒。
热力学第一定律可以通过以下几个方面来解释:1. 能量守恒:热力学第一定律表明,在一个封闭的系统中,能量不能被创建或破坏,只能从一种形式转化为另一种形式。
系统的总能量保持不变。
2. 内能:内能是物质系统中分子和原子的热运动能量的总和。
热力学第一定律描述了内能的转化和守恒。
当一个物质系统发生能量转移时,其内能会发生相应的变化。
3. 热量和功:热力学第一定律将能量转移分为两种方式:热量和功。
热量是由于温度差异而传递的能量,而功是通过外界对系统施加的力来进行的能量转移。
4. 系统的能量平衡方程:热力学第一定律可以用一个能量平衡方程来表示。
根据这个方程,系统的内能变化等于系统所接收的热量减去系统所做的功。
热力学第一定律的应用:热力学第一定律在许多领域有广泛的应用,包括工程、化学、天文学等。
以下是一些应用示例:1. 热效率:热力学第一定律可用于计算热机的热效率。
热机是将热能转化为机械能的设备,如汽车发动机和蒸汽轮机。
根据第一定律,热机的热效率定义为所产生的功与所吸收的热量之比。
2. 化学反应:热力学第一定律可以用于研究化学反应的能量变化。
化学反应中的能量变化可以通过测量反应的热效应来获得,例如焓变。
3. 热力学循环:热力学第一定律对于分析和设计热力学循环非常重要。
热力学循环是一种将热能转化为功的过程,如蒸汽动力循环和制冷循环。
根据第一定律,循环过程中的能量转移必须满足能量守恒。
4. 天体物理学:热力学第一定律在天体物理学中也有重要的应用。
它可以用于研究星体的能量转移和恒星的能量产生。
通过分析恒星的内部能量转化过程,我们可以了解恒星的演化和能量平衡。
总结起来,热力学第一定律是能量守恒的基本原理。
它描述了能量在物质系统中的转化和守恒。
热力学第一定律在能量转移、热效率、化学反应、热力学循环和天体物理学等领域具有重要的应用价值。
热力学第一定律科技名词定义中文名称:热力学第一定律英文名称:first law of thermodynamics其他名称:能量守恒和转换定律定义:热力系内物质的能量可以传递,其形式可以转换,在转换和传递过程中各种形式能源的总量保持不变。
概述热力学第一定律热力学第一定律:△U=Q+W。
系统在过程中能量的变化关系英文翻译:the first law of thermodynamics简单解释在热力学中,系统发生变化时,设与环境之间交换的热为Q(吸热为正,放热为负),与环境交换的功为W(对外做功为负,外界对物体做功为正),可得热力学能(亦称内能)的变化为ΔU = Q+ W或ΔU=Q-W物理中普遍使用第一种,而化学中通常是说系统对外做功,故会用后一种。
定义自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变。
英文翻译:The first explicit statement of the first law of thermodynamics, byRudolf Clausiusin 1850, referred to cyclic thermodynamic processes "In all cases in which work is produced by the agency of heat, a quantity of heat is consumed which is proportional to the work done; and conversely, by the expenditure of an equal quantity of work an equal quantity of heat is produced."基本内容能量是永恒的,不会被制造出来,也不会被消灭。
热力学第一定律热力学第一定律是热力学的基本原理之一,也被称为能量守恒定律。
它描述了能量的转化和守恒,对于揭示物质的能量变化和热力学性质具有重要的意义。
本文将深入探讨热力学第一定律的概念、原理和应用。
热力学第一定律的概念热力学第一定律是由英国物理学家焦耳在19世纪提出的。
它可以简洁地表述为能量守恒定律,即能量既不能被创造也不能被摧毁,只能在不同形式之间转化。
这意味着一个封闭系统中的能量总量是恒定的,能量既不能消失也不能产生。
当一个系统经历能量的转化时,其总能量保持不变,只是能量的形式和分布发生改变。
热力学第一定律的原理热力学第一定律的原理可以通过以下公式表示:ΔU = Q - W其中,ΔU表示系统内部能量的变化,Q表示系统吸收的热量,W表示系统对外做的功。
这个公式表明,系统内部能量的变化等于系统吸收的热量与系统对外做的功之间的差值。
当系统吸热时,ΔU为正,系统内部能量增加;当系统放热时,ΔU为负,系统内部能量减少;当系统对外做功时,ΔU 为负,系统内部能量减少;当系统由外界做功时,ΔU为正,系统内部能量增加。
热力学第一定律的应用热力学第一定律在工程和科学领域有着广泛的应用。
下面将介绍热力学第一定律的几个重要应用。
1. 热机效率计算热力学第一定律在热机效率计算中起着重要的作用。
热机的效率是指能够转化为有效功的热量与燃料能量之间的比例。
通过热力学第一定律的应用,我们可以计算出热机的效率,从而评估其性能。
2. 平衡热量计算在热平衡过程中,热力学第一定律可以用于计算平衡热量。
平衡热量是指系统从一个状态到另一个状态的过程中吸收或释放的热量。
通过应用热力学第一定律,我们可以计算系统在不同温度下的平衡热量,并进一步了解能量转化过程。
3. 定常流动计算在工程领域中,很多设备和系统都涉及流体的流动。
热力学第一定律可以用于定常流动过程的计算。
这种定常流动的例子包括空调系统、燃料电池、蒸汽涡轮等。
通过应用热力学第一定律,我们可以计算能量损失和效率,从而优化系统性能。
热力学第一定律知识点总结热力学第一定律,也被称为能量守恒定律,是热力学中最基本也最重要的定律之一。
它描述了能量的守恒原理,即能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。
本文将对热力学第一定律的几个核心知识点进行总结,帮助读者理解和应用这一重要定律。
1. 能量守恒定律热力学第一定律是基于能量守恒定律的原理,它表明能量在系统中的总量守恒。
能量可以以多种形式存在,包括热能、机械能、化学能等。
根据第一定律,能量从一个系统转移到另一个系统时,总能量保持不变。
2. 内能和热量内能是物质系统所具有的能量总量,包括分子间势能和分子内能量。
内能可以通过热量的传递进行改变。
热量是指能量由高温物体传递到低温物体的过程,它可以增加或减少系统的内能。
3. 等内能过程等内能过程是指系统的内能保持不变的过程。
在等内能过程中,系统可能发生其他形式的能量转化,比如从热能到机械能的转化。
根据热力学第一定律,等内能过程中输入和输出的能量必须相等。
4. 功和能量转化功是指力对物体施加的作用导致物体发生移动的过程中所做的能量转化。
功可以改变系统的内能,从而遵循热力学第一定律的原则。
例如,当气体在容器中膨胀时,外界对气体所做的功会增加气体的内能。
5. 热容和热容量热容是指物体吸收单位热量时温度的变化量。
热容量是指物体吸收或释放的热量与温度变化之间的关系。
热容和热容量可以用来量化系统对热量的响应以及系统内能的变化。
6. 等压和等体过程等压过程是指物体在恒定压力下发生的过程,例如,蒸汽锅炉中水的加热过程。
在等压过程中,系统的内能改变等于输入或输出的热量减去所做的功。
同样地,等体过程是指物体的体积保持不变的过程。
总结:热力学第一定律是热力学中的核心原理,它描述了能量的守恒以及能量在系统中的转化。
通过理解和应用热力学第一定律,我们能够分析和解释能量的转移过程,进而更好地理解和掌握热力学的基本概念和定律。
在实际应用中,热力学第一定律也为工程领域提供了重要的理论基础,例如在能源利用和转化、热机工作原理等方面发挥着关键作用。
第一章热力学第一定律1.“根据道尔顿分压定律p=∑B p B压力具有加和性,因此是广延性质。
”这一结论正确否?为什么?答:不对。
压力与温度一样是强度性质。
不具有加和性,所谓加和性,是指一个热力学平衡体系中,某物质的数量与体系中物质的数量成正比,如C p=∑n B C p,m(B)。
而道尔顿分压定律中的分压p B是指在一定温度下,组分B单独占有混合气体相同体积时所具有的压力。
总压与分压的关系不是同一热力学平衡体系中物量之间的关系,与物质的数量不成正比关系,故p=∑p B不属加和性。
本题所犯错误是把混和气体中总压p与各组分分压p B关系误认为是热力学平衡体系中整体与部分的关系。
2.“凡是体系的温度升高时就一定吸热,而温度不变时,体系既不吸热也不放热”,这种说法对否?举实例说明。
答:不对。
例如:绝热条件下压缩气体,体系温度升高,但并未从环境中吸热。
又如:在绝热体容器中,将H2SO4注入水中,体系温度升高,但并未从环境吸热。
再如:理想气体等温膨胀,从环境吸了热,体系温度并不变化。
在温度不变时,体系可以放热或吸热,相变时就是这样。
例如水在1atm、100℃下变成水蒸气,温度不变则吸热。
3.-p(外)d V与-p(外)ΔV有何不同?-pV就是体积功,对吗?为什么在例2中-pV m(g)是体积功?答:-p(外)d V是指极其微小的体积功。
-p(外)ΔV是在指外压不变的过程体积功。
即在外压p不变的过程中体积由V1变化到V2(ΔV=V2-V1)时的体积功。
-pV不是体积功,体积功是指在外压(p外)作用下,外压p与体积变化值(d V)的乘积。
V与d V是不同的,前者是指体系的体积,后者是体积的变化值。
体积变化时才有体积功。
例2中的-pV m(g)实为-p[V m(g)-V m(l)],在这里忽略了V m(l),这里的V m(g)实为ΔV=V m(g)-V m(l),因此-pV m是体积功。
4.“功、热与内能均是能量,所以它们的性质相同”这句话正确否?答:不正确。